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Abstract

Linear algebra is without a doubt a fundamental tool to deal with empirical economic problems. The

goal of this paper is to use some of these techniques to treat business cycles. To do that, we present the

classic ordinary least square approach to estime the coefficients of a detrended time series in addition to

the matrix form of the Hodrick–Prescott (HP) filter. This is a paper is part of “Intuitive Mathematical

Economic Series”.
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1 Introduction

In macroeconomic, business cycles are generally described as fluctuations found in country’s overall economic

activity. Cycles need to be defined in terms of a secular component1. For instance, take the following 1960-

2019 yearly GDP data for of Argentina and USA2.

1960 1970 1980 1990 2000 2010 2020

8.6

8.7

8.8

8.9

9.0

9.1

9.2

9.3

ln
(Y

t)

Figure 1: Argentina. GDP Data
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Figure 2: United States. GDP Data

For a regular time series pattern, the value of the series “yt” is usually a function of previous values and

time explicitly. The the goal is to build a model of the type:

yt = f (t, yt−1, yt−2, yt−3, . . . , yt−n) + et (1)

but also with the ability to decompose the secular and cyclical components as

yt ≡ yct + yst (2)

There is an important trade-off between respecting the data generating process and providing meaningful

information regarding business cycles. There are several methods to do this, in this paper we use Ordinary

Least Square, the objective is to make the underlying liner algebra as transparent and intuitive as possible.

2 Ordinary Least Square (OLS)

.

Before dialing straight to our economic problem, in the spirit of this series, we briefly review some linear

algebra techniques from the perspective presented in Pernice (2019). Ordinary least squares is one of

1See Burns (1946).
2Source: World Bank Data. We could have used a different serie such as unemployment, consumption, investment, or prices.

For non stationary series is common practice to apply logarithms before dealing with cycle analysis. We will follow that approach

and work with yt ≡ ln(Yt).
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many linear algebra techniques to observe some relationship between a predicted variable y ∈ R and some

covariates x = 〈x0, . . . , xp〉> ∈ Rp+1. For instance, a linear regression could be described as

y = β0x0 + β1x1 + . . .+ βpxp (3)

where β = 〈β0, . . . , βp〉 are the parameters of the linear regression.

In practice, we typically have a data set containing n observations of (xi; yi) that are supposed to come from

the same data generating process. We structure the data as3

y =


y1
...

yn

 ∈ Rn X =


−x>1 −

...

−x>n−

 =


x10 · · · x1p

...
...

xn0 · · · xnp

 ∈ Rn×(p+1)

In economic applications we normally have significantly more data points than the amount of variables we

are using, meaning n � p, so in general y is not in the span of the columns of X. Therefore, we need to

specify the estimation error as4

y1

y2
...
...

yn


n×1

=



1 x11 x12 . . . x1p

1 x21 x22 . . . x2p
...

...
... . . .

...
...

...
... . . .

...

1 xn1 xn2 . . . xnp


n×k



β0

β1
...
...

βp


k×1

+



ε1

ε2
...
...

εn


n×1

We need to decide the criteria for how to choose the most adequate β’s to fit the data5. The most conventional

approach is to find the vector β ∈ Rk such that the linear combination Xβ ∈ Rn of columns of X, minimizes

the sum of squared residuals (RSS). Formally,

β = argminβ∈Rk ‖y −Xβ‖22

= argminβ∈Rk ‖ε‖22
(4)

From the first expression it is clear that the minimum corresponds to the linear combination of the columns

of X closest to y. By Pythagoras, y −Xβ should be orthogonal to Xβ. Using vector space notation, the

3We use small Roman or Greek letters such as “a” or “α” for scalars, boldsymbol small Roman or Greek letters such as “y”

or “β” for vectors, and big letters such as “X” for matrices.
4where k ≡ p+ 1 and xn0 ≡ 1 ∀n
5Note that we normalize the first column, this is a conventional way of controlling by fixed base effects that are unrelated to

the set of variables {x1, ..., xp}. Therefore, there are p variables and k ≡ p+ 1 parameters to estimate.
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square of the Euclidean norm6 ‖ε‖22. may be written as ε · ε or ε>ε

[
ε1 ε2 . . . εn

]
1×n


ε1

ε2
...

εn


n×1

= [ε1 × ε1 + ε2 × ε2 + . . .+ εn × εn]1×1

We can write this expression as:

ε>ε = (y −Xβ)>(y −Xβ)

= y>y − β>X>y − y>Xβ + β>X>Xβ

= y>y − 2β>X>y + β>X>Xβ

where we use the fact that the transpose of a scalar is the same scalar, i.e. y>Xβ =
(
y>Xβ

)>
= β>X>y

To find the β̂ that minimizes the sum of squared residuals, the gradient with respect to β should vanish:

∇β
(
ε>ε

)
= ∇β

[
y>y − 2β>X>y + β>X>Xβ

]
=0

−2X>y + 2X>Xβ̂ =0

or (
X>X

)
β̂ = X>y

X>X is a symmetric matrix, and since n � p, it is invertible with high probability, which means that the

β that minimizes the squared errors (β̂) is

β̂ =
(
X>X

)−1
X>y (5)

The components of the vector β̂ correspond to the coordinates of the vector in the subspace of Rn spanned

by the columns of X, closest to the vector y, and written as a linear combination of these columns.

This OLS estimator produces a ŷ estimation which may be written as

ŷ = Xβ̂ = X
(
X>X

)−1
X>y = Ĥy (6)

Where Ĥ ∈ Rn×n is the orthogonal projector on the span(X)7. This technique will be very useful when

determining business cycles. Equations (5) and (6) are important since they are going to determine the

coefficients and trend, respectively, for the approach discussed in the next section.

6There are several other types of norms used in computer science. The general approach of an Lp-norm is given by ‖x‖p =(∑N
i=0 ‖xi‖

p
)1/p

while the particular case of the Euclidean norm is when p=2. See Lange, Zühlke, Holz, Villmann, and

Mittweida (2014) for some applications on LP -norms.

7Note that H2 =
[
X
(
X>X

)−1
X>
] [
X
(
X>X

)−1
X>
]

= X
(
X>X

)−1 (
X>X

) (
X>X

)−1
X> = H.
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3 Power series expansion approach

Let us assume that a time series can be described by the following linear model

yt = β0 + β1t+ εt (7)

The evolution of the series is composed by a secular component identified by a linear trend

yst = β0 + β1t

while the residuals represent the cyclical component

yct = εt

The problem is straight forward, there is a parametric approach to the time series where β0 and β1 have

to be estimated using a specific criteria (OLS for instance). For our particular case we define the relevant

vectors and matrices as

y =



yt

yt−1

yt−2
...

y1


X =



1 t

1 t− 1

1 t− 2
...

...

1 2

1 1


β =

 β0

β1



The product Xβ results in a linear combination of the columns of X, where the first column of X (the

constant component) is multiplied by the parameter β0 while the second column is multiplies by β1. Applying

(5) we find the coefficients8.
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Figure 3: Argentina. Log-Linear Trend
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Figure 4: Argentina. Log-Linear Cycle

8The Appendix contains the python codes for the linear problem (7).
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Figure 5: United States. Log-Linear Trend
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Figure 6: United States. Log-Linear Cycle

What if the proposed model is not the best approach? For instance, what if the addition of a quadratic term

fits the data much better than using only a linear term? The OLS methodology easily handles extensions

to the model. Moreover, it makes very intuitive to see to what extent we can complexify the model while

still remaining meaningful. Consider a quadratic specification of the form,

yt = β0 + β1t+ β2t
2 + εt (8)

where the secular component is described by

yst = β0 + β1t+ β2t
2

while the cyclical component is described by

yct = εt

For this particular case we define the relevant vectors and matrices as

y =



yt

yt−1

yt−2
...

y1


X =



1 t t2

1 t− 1 (t− 1)2

1 t− 2 (t− 2)2

...
...

...

1 2 4

1 1 1


β =


β0

β1

β2



The crucial observation is that in Rt, the three columns of the new matrix X are linearly independent, so

for arbitrary βi, i = 0, 1, 2, Xβ span a 3-dimensional subspace in Rt. Therefore, once again, using the OLS

methodology we estimate β0, β1 and β2. These values determine the vector in the subspace spanned by the

columns of X closest to y9.

9The Appendix contains the python codes for the quadratic problem (8).
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Figure 7: Argentina. Log-Quadratic Trend
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Figure 8: Argentina. Log-Quadratic Cycle
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Figure 9: United States. Log-Quadratic Trend
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Figure 10: United States. Log-Quadratic Cycle

By now it should be evident that this methodology extends to a p-degree power series

yt = β0 + β1t+ β2t
2 + · · ·+ βpt

p + εt (9)
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with the relevant vectors and matrices now given by10

y =



yt

yt−1

yt−2
...

y0


X =



1 t t2 . . . tp−1 tp

1 t− 1 (t− 1)2 . . . (t− 1)p−1 (t− 1)p

1 t− 2 (t− 2)2 . . . (t− 2)p−1 (t− 2)p

...
...

...
...

...
...

1 2 4 . . . 2p−1 2p

1 1 1 . . . 1 1


β =



β0

β1

β2
...

βp−1

βp


As long as p+ 1 ≤ t, the p+ 1 columns of X are linearly independent and span a p+ 1 dimensional subspace

in Rt. However, if p ∼ t we would be over-fitting the model. This linear algebra perspective makes it very

intuitive to understand including higher powers of t makes sense only to the extent that k � t.

4 Hodrick–Prescott Filter

The Hodrick–Prescott filter11 (usually referred to as the HP filter) is a non-linear filter used to remove the

cyclical component of a time series from raw data. It is used to obtain a smoothed-curve representation of

a time series, one that is more sensitive to long-term than to short-term fluctuations.

argmin
{yst }

T
t=1

{
T∑
t=1

(yt − yst )2 + λ
T−1∑
t=2

[(
yst+1 − yst

)
−
(
yst − yst−1

)]2}

or

argmin
ys

{
(y − ys)>(y − ys) + λ(Ays)>(Ays)

}
or

argmin
ys

{
‖y − ys‖2 + λ‖Ays‖2

}
(10)

where λ ∈ R

y =


y0

y1
...

yt

 ys =


ys0

ys1
...

yst

 A
T−2×T

=


1 −2 1 0 . . . 0 0 0 0

0 1 −2 1 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 0 1 −2 1


where A is the second order difference matrix. Although this is a non-linear filter, when reduced to matrix

form, simple linear algebra techniques should do the trick.

10In practice it is convenient to form the matrix X by dividing the elements of the jth column by its norm, so that every

column of X has norm 1. This simply re-scales the constants βj .
11Popularized in the 1990s and named after economists Robert J. Hodrick and Edward C. Prescott.
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Let’s stop for a minute and try to grasp the concept of what this filter actually does. The left term is simply

the square of the Euclidian norm (meaning the dot product) of the cyclical component,

T∑
t=1

(yt − yst )2 =
T∑
t=1

yct
2 ⇒ (y − ys)> (y − ys) = ‖yc‖22

If we were to minimize solely this expression then the optimal solution would be yt − yst = 0 ∀t, meaning

that the trend would fit the data to perfection providing no information regarding a cycle component.

On the other hand, the right term of the expression has to do with the second order differentiation of y2t+1,

yst+1 − 2yst + yst−1 =
(
yst+1 − yst

)
−
(
yst − yst−1

)
= ∆yst+1 −∆yst

= ∆
(
yst+1 − yst

)
= ∆

(
∆yst+1

)
= ∆2yst+1

This is strictly related to the curvature of the trend component12. For instance, ∆2yst+1 is positive if

∆yst+1 > ∆yst , meaning the trend will exhibit a convex behavior (positive curvature) with respect to the

instantly previous path. ∆2yst+1 is negative if ∆yst+1 < ∆yst , meaning the trend will exhibit a concave

behavior (negative curvature) with respect to the instantly previous path. The only way that curvature is

not affected is if ∆yst+1 = ∆yst .

This last statement requires that

∆yst+1 −∆yst = 0⇒ yst+1 − 2yst + yst−1 = 0

yst =
yst+1 − yst−1

2
meaning that yst has to stays equidistant between the strictly past and consecutive data point along a

straight line. But notice something, if we were to minimize the right term, we should apply this equidistant

linear concept throughout our whole data set, meaning that three points yst+1, y
s
t , y

s
t−1 are on the same line

throughout all T − 1. Essentially, the second term in the objective function is zero if and only if yst is affine,

i.e., has the form yst = β0 + β1t for some constants β0 and β1.

We are now able to discuss the role that λ plays. When λ→ 0 there is convergence to the original data. On

the other hand, λ → ∞ the HP estimated trend converges to the best affine (straight-line) fit to the time

series data which is identical to the linear case in section 3.

Going back to the problem of minimizing (10) as a whole, using

(y − ys)>(y − ys) = y>y − 2y>ys + ys>ys and λ(Ays)>(Ays) = ys>λA>Ays

12It should now be easy to understand why matrix A is the second order difference matrix.
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is possible to differentiate and find the first order condition

∇ys
{
y>y − 2y>ys + ys>

(
I + λA>A

)
ys
}

= 0

⇒ −2y + 2
(
I + λA>A

)
ys = 0

Finally, we arrive to the conclusion that

ys =
(
I + λA>A

)−1
y (11)

yc ≡ y − ys =

[
I −

(
I + λA>A

)−1]
y (12)
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Figure 11: Argentina. HP Filter Trend
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Figure 12: Argentina. HP Filter Cycle
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Figure 13: United States. HP Filter Trend
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Figure 14: United States. HP Filter Cycle

As we see there is no predetermined ad-hock structure (nor linear or non-linear) for the trend. For the
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particular λ of choice we see smaller cycles compared to the previous cases13. The discussion of the appro-

priate λ is a complicated one, particularly since it is not chosen as part of the optimization process. That

said, there are commonly used values of λ according to the frequency of the data used. The most common

formula is

λ = 100× w2

where w represents the number of periods in one year.

Data Frequency λ = 100× w2 λ

Yearly 100× 12 100

Quarterly 100× 42 1600

Monthly 100× 122 14400

Weekly 100× 522 270400

Generally, GDP data has either anual or quarterly frequency. Ravn and Uhlig (2002) argue that λ = 6.25

should be used annual data. Kaiser and Maravall (1999) propose a λ = 8 for annual data, and Pedersen

(2001) argues for a value of λ = 1000 for quarterly data and for λ ∈ [3, 5] for annual data. In Bouthevillain

et al. (2001) the filter is applied with λ = 30 and in Mohr (2001) with λ = 20 to annual data. As shown,

there is a lot of discussion regarding the adequate value for λ.

5 Conclusions

As mentioned in the introduction, the purpose of this series is to present in an intuitive way the mathematical

technics that students of economics use, so that they can follow every step of a derivation and not, as is

often the case, using the technics as black boxes. In particular, for time series with OLS, students are often

confused about the consistency of the application of linear techniques while including in the series terms

that depend on tn with n > 1. This problem is a particular case of the general technique of including

nonlinear terms in regression-type models where, again, students are often confused about the linearity of

the underlying problem and the simultaneous nonlinearities of the terms in the regression. The hope is that

this geometric way of presenting the problem, emphasizing the fact that what is really crucial is the linear

independence of the resulting columns of the matrix X, which is in general automatic for different powers

of t (as long as n > k), clarifies the point.

13The Appendix contains the python codes for the minimization problem (10).
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6 Apendix

6.1 Log-Linear Detrending

1 #Log -Linear Detrending

2 #@author: Tomas Marinozzi , Leandro Nallar and Sergio Pernice

3

4 import pandas as pd

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 GDP_Main = pd.read_excel (r’/Users /.../ Documents /.../.../ GDP_data.xls’,sheet_name="USE")

9 GDP_Numbers=GDP_Main.values

10

11 S=np.column_stack ((np.transpose(np.matrix(GDP_Numbers [:,0 ])),np.transpose(np.matrix(np.

log(GDP_Numbers [:,1])))))

12

13 x_1=np.ones((len(S[:,1]) ,1))

14 x_2=np.transpose(np.matrix(np.linspace(1,len(S[:,1]),len(S[:,1]))))

15 X=np.hstack ((x_1 ,x_2))

16

17 BETA=np.matmul(np.linalg.inv(np.matmul(np.transpose(X),X)),np.matmul(np.transpose(X),S

[:,1]))

18

19 GDP_trend=np.matmul(X,BETA)

20 GDP_cycle =(S[:,1]- GDP_trend)*100

6.2 Log-Quadratic Detrending

1 #Log -Quadratic Detrending

2 #@author: Tomas Marinozzi , Leandro Nallar , Sergio Pernice

3

4 import pandas as pd

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 GDP_Main = pd.read_excel (r’/Users /.../ Documents /.../.../ GDP_data.xls’,sheet_name="USE")

9 GDP_Numbers=GDP_Main.values

10

11 S=np.column_stack ((np.transpose(np.matrix(GDP_Numbers [:,0 ])),np.transpose(np.matrix(np.

log(GDP_Numbers [:,2])))))

12 #S = S[~np.isnan(S).any(axis =1)]

13

14 x_1=np.ones((len(S[:,1]) ,1))

15 x_2=np.transpose(np.matrix(np.linspace(1,len(S[:,1]),len(S[:,1]))))

11



16 x_3=np.power(x_2 ,2)

17 X=np.hstack ((x_1 ,x_2 ,x_3))

18

19 BETA=np.matmul(np.linalg.inv(np.matmul(np.transpose(X),X)),np.matmul(np.transpose(X),S

[:,1]))

20

21 GDP_trend=np.matmul(X,BETA)

22 GDP_cycle =(S[:,1]- GDP_trend)*100

6.3 HP Filter

1 #HP Filter

2 #@author: Tomas Marinozzi , Leandro Nallar , Sergio Pernice

3

4 import statsmodels.api as sm

5 import pandas as pd

6 import numpy as np

7 import matplotlib.pyplot as plt

8

9 GDP_Main = pd.read_excel (r’/Users /.../ Documents /.../.../ GDP_data.xls’,sheet_name="USE")

10 GDP_Numbers=GDP_Main.values

11

12 S=np.column_stack ((np.transpose(np.matrix(GDP_Numbers [:,0 ])),np.transpose(np.matrix(np.

log(GDP_Numbers [:,1])))))

13 #S = S[~np.isnan(S).any(axis =1)]

14

15 GDP_cycle_100 , GDP_trend_100 = sm.tsa.filters.hpfilter(S[:,1], 100)

16 GDP_cycle_6d25 , GDP_trend_6d25 = sm.tsa.filters.hpfilter(S[:,1], 6.25)
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