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Competition and Product Differentiation in the Argentine 

Chocolate Bar Industry  

Germán Coloma * 

 

Abstract 

 This paper analyzes the behavior of the Argentine chocolate bar industry during the 

period 2019-2022. It mainly focuses on the level of competition between the firms in the 

industry, estimating conduct parameters that signal the existence of harder or softer 

competition. The estimations change considerably under different demand specifications, 

and also if we explicitly model product differentiation at the level of the supplying firms. 

This allows discarding extreme hypotheses such as perfect competition and collusion, and it 

slightly favors the existence of quantity (Cournot) competition over price (Bertrand) 

competition.   

 

Keywords: Chocolate bars, Argentina, competition, product differentiation, conduct 

parameters. 

 

JEL Classification: C32, L13, L66. 

 

1. Introduction 

 Competition under product differentiation has several features that do not appear in 

industries with homogenous products. The main distinctive characteristic is probably the fact 

that there is a sharp distinction between perfect (or price-taking) competition and price (or 

Bertrand) competition. 

Under product homogeneity, if firms act as price-takers, then they cannot set prices, 

and their only possible choice has to do with the quantities that they are willing to sell in the 

market. Conversely, under product differentiation, firms can act as price-takers of the other 

firms’ prices and at the same time set their own prices, and that is a completely different kind 

of competition than the one that occurs when all prices are exogenous to the firms. It is also 

different from other types of competition in which firms do not take other firms’ prices as 

                                                           
* CEMA University, Av. Córdoba 374, Buenos Aires, C1054AAP, Argentina; Tel: 54-11-3614-3000; E-mail: 
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of CEMA University. This paper is dedicated to Valeria Dowding, who was for many years the editorial 

assistant of the working paper series at CEMA University, and also the editorial assistant of the Journal of 

Applied Economics. She passed away on March 14, 2024. 
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given (for example, cases in which they react to the other firms’ quantity decisions) and, of 

course, different from cases in which they cooperate or collude with other firms in order to 

set prices or quantities.1 

 In this paper we will see the empirical difference between all those alternatives, using 

data from the Argentine chocolate bar industry. At first, we will model competition through 

a homogeneous-product approach, under which there is a single demand function and a single 

supply price function. That will allow us to calculate “conduct parameters” that try to 

estimate if the industry is close to perfect competition or to monopoly, with intermediate 

values for cases of imperfect competition. 

 Using data for quantities and prices of the two main firms that operate in the industry, 

however, we will be able to model competition between those two firms, and that competition 

will have an implicit assumption of product differentiation. We will therefore be able to 

distinguish between perfect competition, price competition and quantity competition, and to 

measure the individual market power of each firm, as opposed to the possible existence of 

“joint market power” (if those firms coordinate their decisions between themselves).   

 The structure of this paper will be the following. In section 2 we will briefly describe 

the Argentine chocolate bar industry during the period 2019-2022, while in section 3 we will 

estimate conduct parameters under different single-demand assumptions. Section 4, in turn, 

will introduce product differentiation and the effect that it has on competition. We will also 

estimate individual and joint conduct parameters for the two main chocolate bar 

manufacturers. Section 5, finally, will be devoted to the conclusions of the whole paper. 

  

2. The Argentine chocolate bar industry 

 The chocolate bar industry in Argentina is basically constituted by firms that 

manufacture and distribute chocolate bars in different outlets such as supermarkets, grocery 

stores and candy stores (kioscos). This industry is highly concentrated in two main suppliers: 

Arcor (which has a revenue market share around 55%) and Mondelez (whose market share 

is roughly 30%). The remaining 15% of the market is supplied by several other 

manufacturers, of which the main ones are Nestlé and Georgalos (whose market shares are 

                                                           
1 For a thorough treatment of the differences between all those concepts, see Vives (1999), chapters 3-6. 
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around 3% each). 

 Chocolate bars can be considered as a single product, but they are subject to a 

considerable differentiation due to characteristics such as size, type of chocolate (e.g., dark 

chocolate, white chocolate, milk chocolate) and combination with other products (e.g., 

chocolate with almonds, with peanuts, etc.). They are also substitutable by other goods such 

as chocolate cookies, peanut paste bars and nougats, but in this paper the analysis will not be 

extended to those goods. 

 In Argentina, chocolate bars are sold under several brands, which are controlled by 

the different supplying firms. The most important ones are Cofler, Block, Aguila, Hamlet 

and Tofi (Arcor), Milka, Toblerone and Shot (Mondelez), Kit Kat and Suflair (Nestlé), Full 

Maní (Georgalos), Felfort, etc. The main data concerning the Argentine chocolate bar 

industry are summarized on Table 1, where we can see the evolution of quantities, prices, 

and revenue market shares during the period 2019-2022.2 

 

1. Data from the Argentine chocolate bar industry 

Concept / Year 2019 2020 2021 2022 Average 

Quantities (kg)      

   Mondelez 4,370,844 3,373,587 4,529,151 5,234,084 4,376,917 

   Arcor 9,347,139 7,499,005 10,475,180 11,445,355 9,691,670 

   Others 1,760,605 1,614,723 3,607,141 4,955,782 2,984,563 

      Total 15,478,588 12,487,315 18,611,472 21,635,221 17,053,149 

Prices (US$/kg)      

   Mondelez 20.97 20.40 25.35 28.86 23.89 

   Arcor 17.92 17.01 18.36 23.65 19.23 

   Others 20.44 17.41 16.76 20.52 18.78 

      Total 19.07 17.98 19.75 24.19 20.35 

Revenue market shares (%)      

   Mondelez 31.05% 30.66% 31.24% 28.86% 29.91% 

   Arcor 56.75% 56.82% 52.32% 51.71% 54.92% 

   Others 12.19% 12.52% 16.45% 19.43% 15.17% 

      HHI 0.4158 0.4205 0.3862 0.3545 0.3942 

Source: Own calculations based on data from A. C. Nielsen. 

 

 The last line of Table 1 shows the values of the Herfindahl and Hirschman index 

(HHI) for the industry as a whole. This index is the sum of the squares of the firms’ revenue 

                                                           
2 All the information concerning the Argentine chocolate bar industry that we use in this study comes from data 

sets elaborated by the consulting firm A. C. Nielsen. Prices are expressed in US dollars, converted into such 

currency by using exchange rate information published by the Central Bank of Argentina (BCRA). 
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market shares, and it measures the concentration of the industry. It can also be seen as a 

weighted average of those revenue shares, measured in a scale from 0 to 1. 

 Chocolate bars are subject to some seasonality of consumption. They are typically 

consumed in larger quantities during the Winter season (which in Argentina lasts from June 

to September). This can be seen in Figure 1, in which we see that this seasonality basically 

applies to all chocolate brands, no matter whether they are supplied by Mondelez, Arcor or 

other firms.  

 

1. Chocolate bar sales in Argentina (kg) 

 

Source: Own calculations based on data from A. C. Nielsen. 

 

 The evolution of prices, depicted on Figure 2, shows instead a considerable variation 

among firms. We can observe that, in general, the Mondelez chocolate bars are on average 

more expensive than Arcor’s and other firms’ bars, and that the evolution of those figures is 

considerably different. As prices are here expressed in US dollars per kilogram, part of their 

variation is caused by changes in the exchange rate between the US dollar and the Argentine 
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peso, which in the period under analysis were considerably large.3 Note that the prices 

reported here are in all cases consumer prices, i.e., they are the average prices paid by final 

consumers when they buy chocolate bars. 

 

2. Chocolate bar prices in Argentina (US$/kg) 

 

Source: Own calculations based on data from A. C. Nielsen. 

 

 The evolution of revenue market shares during the period 2019-2022 is much more 

stable than the evolution of prices. In Figure 3 we can see that, during the period under 

analysis, Arcor has always been the firm with the largest revenue share, and Mondelez has 

always been second in the market share ranking. We can nevertheless observe a minor change 

that becomes evident in 2021 and 2022, which is related to an increase in the share of the 

other firms that participate in the Argentine chocolate bar industry. This generates a reduction 

in the HHI concentration index, which in the last two years is always below 0.4, while in the 

                                                           
3 The use of the US dollars to express prices in this section is due to the large inflation rates that Argentina 

experienced during the period under analysis, which makes intertemporal price comparisons useless. In the 

following sections, the computation problem caused by inflation rates will be solved in a different way, using 

the evolution of several price indices such as the Argentine consumer price index, and the wholesale price 

indices for chocolate products and milk products.   
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previous years it had typically been above that threshold. 

 

3. Revenue market shares and concentration (%) 

 

Source: Own calculations based on data from A. C. Nielsen. 

 

The determinants of the evolution of prices, quantities and market shares described 

in this section of the paper may be due to some factors related to the kind of competition that 

takes place between the different suppliers of the Argentine chocolate bar industry. This 

competition will be analyzed in the following sections using different strategies, including 

supply and demand estimations, conduct parameters, and hypothesis testing of models that 

aim to represent the behavior of the firms that operate in the industry. 

 

3. Competition and conduct parameters 

 One way to model competition in a market is to consider the corresponding demand 

and supply relationships that occur in that market. This essentially implies running 

regressions to estimate a demand function (which relates quantity values with price values 

and with other variables that shift demand along time) and a supply price function (which 
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relates price values with cost variables and with some measurement of the exercise of the 

market power that is supposed to exist in the industry under analysis).4 

 In order to perform demand and supply estimations, it is necessary to have price and 

quantity data (such as the ones that we described in section 2) together with some data on 

demand and cost shifters. These last data will be here obtained using public information for 

the Argentine economy, which is elaborated by the National Institute of Statistics and the 

Census of Argentina (INDEC). In particular, we will use series for the consumer price index 

(IPC), the monthly estimator of economic activity (EMAE), the wholesale price index of 

chocolate products (IPCHOC), and the wholesale price index of milk products (IPLACT).5 

 The consumer price index and the estimator of economic activity will in turn be used 

to build a “nominal income index”, that aims to reflect the evolution of chocolate consumers’ 

nominal income along time. This index (YNOM) is simply the multiplication of IPC and 

EMAE, and it will be included as the main determinant of chocolate bar demand, together 

with the price of chocolate bars. 

 Our first model of demand and supply of chocolate bars in Argentina is a linear model 

that follows this specification: 

QTOTAL = c(1) +c(2)*TREND +c(3)*WINTER +c(4)*PTOTAL +c(5)*YNOM           (1) ; 

PTOTAL = c(7) +c(8)*IPCHOC +c(9)*IPLACT –c(10)/c(4)*QTOTAL              (2) ; 

where QTOTAL is total chocolate bar sales measured in kilograms, PTOTAL is the average 

price of chocolate bars measured in Argentine pesos per kilogram, WINTER is a dummy 

variable that takes a value equal to one for the months of June, July, August and September 

(and zero otherwise), and TREND is a variable that goes from 1 to 48 as time goes by in the 

data sample (which begins in January 2019 and ends in December 2022). 

 As we can see, Equation 1 represents the demand function for chocolate bars, while 

Equation 2 represents the supply price function. Coefficients c(1) to c(10) are parameters to 

be estimated using a regression procedure, and they can be interpreted as the effects that 

different variables have on demand or supply. Coefficient c(3), for example, measures the 

increase in chocolate bar demand that occurs during the Winter season, while c(5) is the 

                                                           
4 For a more complete explanation of the empirical logic behind these models, see Perloff, Karp and Golan 

(2007), chapter 3. 
5 These last two indices are in fact chapters of the domestic wholesale price index (IPIM), published monthly 

by INDEC.  
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marginal effect that a change in consumers’ nominal income has on the quantity demanded. 

In turn, coefficients c(8) and c(9) represent the effects that changes in input prices (in this 

case, wholesale chocolate and milk prices) have on the marginal cost of chocolate bars. 

 Coefficient c(4) has a particular interpretation, since it is an estimate of the slope of 

the demand function. It should therefore have a negative value, that can be related to the 

behavior of the supply price equation. Indeed, if firms have some kind of market power in 

this industry, it is expected that their supply price be inversely related to the value of c(4), 

since demands which are steeper generate incentives for firms to exploit that characteristic 

in order to obtain higher profits. This interaction, however, crucially depends on the level of 

competition that the industry exhibits, that is measured here by coefficient c(10), which is an 

estimate of the so-called “conduct parameter” of the industry. 

 The idea behind this relationship has to do with the interpretation of Equation 2 as the 

sum of a certain marginal cost (equal to “c(7) +c(8)*IPCHOC +c(9)*IPLACT”) and a margin 

between price and marginal cost (equal to “-c(10)/c(4)*QTOTAL”). This margin could be 

equal to zero if “c(10) = 0”, and equal to “-1/c(4)*QTOTAL” if “c(10) = 1”. This last situation 

is equivalent to the case of a monopoly industry, while the first one could be identified with 

a situation of perfect competition.6 

 

2. Linear demand and supply regression results 

Variable / Results Coefficient Std. Error t-statistic Probability 

Demand equation     

   Constant 1064613 155255.9 6.857146 0.0000 

   Trend 9666.681 9025.509 1.071040 0.2871 

   Winter 805810.5 90562.21 8.897867 0.0000 

   Price -1968.481 645.2246 -3.050846 0.0030 

   Nominal income 49.51725 13.62422 3.634500 0.0005 

Supply price equation     

   Constant -202.7624 18.62655 -10.88567 0.0000 

   Chocolate price index 0.245525 0.181288 1.354337 0.1791 

   Milk price index 2.871870 0.218144 13.16504 0.0000 

   Conduct parameter 0.041255 0.032599 1.265555 0.2091 

  

Table 2 shows the main results of the estimation of equations 1 and 2, performed 

using the methodology of three-stage least squares.7 This methodology allows to consider 

                                                           
6 For a good explanation of the theory of conduct parameters, see Davis and Garcés (2012), chapter 6. 
7 This estimation, like all the others whose results are reported in this paper, was performed using the software 
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the fact that some independent variables are endogenous to the system (which is the case of 

PTOTAL and QTOTAL), and the fact that the estimation errors of the two equations could 

be correlated. To solve both statistical problems, the three-stage least-square method replaces 

the endogenous variables by linear functions of all the other (exogenous) variables, and it 

also incorporates the correlation between estimation errors in the calculation of the final 

coefficients.8 

 The results obtained can in general be considered good, and they are coherent with 

the assumptions of the model. Both equations generate a good fit of the data, since their 

corresponding R2 coefficients of determination are equal to 0.736759 (demand) and 0.998016 

(supply). Moreover, all coefficient signs are the expected ones, since WINTER, YNOM, 

IPCHOC and IPLACT have positive coefficients, and PTOTAL has a negative coefficient in 

the demand equation. The conduct parameter c(10) also has a positive sign, but its absolute 

value (0.041255) is relatively close to zero (and it is not significantly different from that 

number, either). Its probability value is 0.2091, which implies that it is not significant at a 

10% probability level. 

 The relative value of c(10) in this estimation can be seen as an indication that the 

industry under analysis is close to perfect competition and far away from monopoly. This is 

reinforced by the fact that, if we run a Wald test of the restriction “c(10) = 1”, the implied 

probability value is virtually zero, and this can be read as a sign that the monopoly hypothesis 

is impossible under this model specification. 

 The conclusion of the previous paragraph, however, is strongly dependent of the 

linear specification used to model demand under Equation 1. If we alternatively use a 

logarithmic demand specification, our model could be rewritten in the following way: 

LOG(QTOTAL) = c(1) +c(2)*TREND +c(3)*WINTER +c(4)*LOG(PTOTAL/YNOM)  (3) ; 

PTOTAL = c(7) +c(8)*IPCHOC +c(9)*IPLACT –c(10)/c(4)*PTHAT               (4) ; 

where LOG indicates the natural logarithm of the corresponding variable, and PTHAT is an 

artificial variable that replaces PTOTAL by the fitted values of a least-square regression of 

that variable against a constant, TREND, WINTER and YNOM. 

 This new demand specification assumes that the relationship between QTOTAL and 

                                                           

package EViews 10. The complete results of all estimations are shown in Appendix 2. 
8 For a thorough explanation of the three-stage least-square method, see Greene (2012), chapter 10.  
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PTOTAL is exponential rather than linear, and it also assumes that the demand function is 

homogenous of degree zero in prices and income.9 This last feature implies that, if nominal 

income and prices changed in the same proportion, then consumers would not change their 

consumption decisions. 

 Under this specification, coefficient c(4) can be interpreted as a price elasticity, rather 

than a slope of the demand function. It also serves to calculate the margin between price and 

marginal cost. This margin can now be defined as equal to “-c(10)/c(4)*PTHAT”, where 

“c(10)” is the new conduct parameter of the system (which once again must be equal to zero 

under perfect competition and equal to one under monopoly). 

 The main results of this new regression are reported on Table 3. They were obtained 

under the same methodology used for the previous regression (three-stage least squares), 

assuming that all the independent variables are exogenous except PTOTAL and PTHAT. 

 

3. Logarithmic demand and supply regression results 

Variable / Results Coefficient Std. Error t-statistic Probability 

Demand equation     

   Constant 5.118936 1.910314 2.679631 0.0088 

   Trend 0.003635 0.003079 1.180609 0.2409 

   Winter 0.565893 0.068238 8.292909 0.0000 

   Price/Nominal income -2.408260 0.542196 -4.441674 0.0000 

Supply price equation     

   Constant -161.2958 18.02152 -8.950175 0.0000 

   Chocolate price index 0.107897 0.143147 0.753749 0.4530 

   Milk price index 2.492638 0.244852 10.18016 0.0000 

   Conduct parameter 0.427758 0.191383 2.235082 0.0279 

 

Most results obtained here are qualitatively similar to the ones gotten under the 

previous linear demand specification. The corresponding R2 coefficients are now equal to 

0.701003 (demand) and 0.998639 (supply). Besides, the estimated price elasticity is -

2.408260, which is not significantly different from the elasticity value implied by the figures 

reported on Table 2 (which is equal to -2.478136).10 One important difference, however, 

arises in the value of the conduct parameter c(10). This figure is now equal to 0.427758, 

                                                           
9 This is why there is a single coefficient for LOG(PTOTAL/YNOM), instead of two separate coefficients for 

LOG(PTOTAL) and LOG(YNOM). 
10 This figure comes from multiplying the price coefficient of the linear regression (-1968.481) times the average 

price of the whole sample (which is equal to Arg$ 1789.03 per kilogram), and dividing that by the average 

quantity (which is equal to 1,421,096 kilograms per month). 
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instead of 0.041255 (which was the value reported on Table 2). That number, moreover, is 

now statistically different from zero at a 5% probability level (since its probability value is 

0.0279). 

Figure 4 depicts the estimated demand and marginal cost functions under our linear 

and logarithmic demand specifications. Both demand functions (“Dem(Lin)” and 

“Dem(Log)”) are calibrated so that they pass through the point that corresponds to the 

average values of price and quantity in the whole sample (i.e., “Pa = 1789.03 Arg$/kg” and 

“Qa = 1,421,096 kg/month”). The marginal costs functions (“MC(Lin)” and “MC(Log)”) are 

in turn associated to situations in which the conduct parameters are the ones estimated in the 

corresponding regressions (i.e., 0.041255 and 0.427758, respectively). As we see, this 

implies that the margin between Pa and MC(Lin) is much smaller than the margin between 

Pa and MC(Log). 

 

4. Demand and supply under different specifications 

 

 

If we now focus on the logarithmic system regressions, and we run a Wald test of the 
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with the idea that the monopoly hypothesis is highly implausible in this case. But we can run 

another Wald test assuming that “c(10) = 0.394241” (which is the average value of the HHI 

concentration index for the whole sample). This new test generates a probability value equal 

to 0.8610, which is a very large number that signals that it is very likely that the market 

operates under some kind of “imperfect competition”. 

 The situation in which “c(10) = HHI”, moreover, is in fact a particular case of 

competition known as “Cournot oligopoly”, which assumes that firms choose their quantities 

to maximize profits in response to the quantity choices of the other firms.11 This, however, 

is only one of the possible equilibria that can arise under imperfect competition, and the 

possibilities increase in contexts in which there is product differentiation. Those contexts 

cannot be analyzed if we only estimate aggregate demand and supply functions, and they 

require the use of more complex specifications. This is what we will do in the following 

section, in which we will try to unravel the strategic interaction that exists between the two 

main firms in the Argentine chocolate bar industry (i.e., the interaction between Arcor and 

Mondelez). 

 

4. Product differentiation and strategic interaction 

 In contexts of product differentiation, there is not a single demand function that can 

be used for the whole industry, but we have to consider different functions for the different 

goods that are supplied in that industry. Each function will relate a certain quantity with its 

own price, but also with the prices of the other goods that compete in the same market, 

generating coefficients that can be read as “own-price” elasticities and coefficients that can 

be read as “cross-price” elasticities. 

 Using the data that we have, we are able to define three different demand functions 

that correspond to the quantities sold by Mondelez (QMOND), Arcor (QARCOR) and the 

other firms (QOTHER). Under a logarithmic specification, we can write those functions in 

the following way: 

LOG(QMOND) = c(1) +c(2)*TREND +c(3)*WINTER +c(4)*LOG(PMOND/YNOM) 

+C(5)*LOG(PARCOR/YNOM)*SARCOR +C(5)*LOG(POTHER/YNOM)*SOTHER 

+C(6)*LOG(QMOND(-1))                               (5) ; 

                                                           
11 See Appendix 1 for an explanation of this identification between the conduct parameter and the HHI index. 
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LOG(QARCOR) = c(11) +c(12)*TREND +c(3)*WINTER +C(14)*LOG(PARCOR/YNOM) 

+c(5)*LOG(PMOND/YNOM)*SMOND +C(5)*LOG(POTHER/YNOM)*SOTHER 

+C(6)*LOG(QARCOR(-1))                                (6) ; 

LOG(QOTHER) = c(21) +c(22)*TREND +c(3)*WINTER +C(24)*LOG(POTHER/YNOM) 

+c(5)*LOG(PMOND/YNOM)*SMOND +C(5)*LOG(PARCOR/YNOM)*SARCOR 

+C(6)*LOG(QOTHER(-1))                                (7) ; 

where PMOND, PARCOR and POTHER are the corresponding prices, SMOND, SARCOR 

and SOTHER are revenue shares, and QMOND(-1), QARCOR(-1) and QOTHER(-1) are 

one-period lagged quantities (i.e., quantities that correspond to the previous month).  

 Under this specification, coefficients c(4), c(14) and c(24) can be seen as estimates 

for the short-run own-price elasticities of each demand, while c(6) (which is the same 

coefficient in the three equations) is a measure of autocorrelation. If we divide short-run 

elasticities by “1-c(6)”, we can obtain estimates for the long-run elasticities of demand, which 

we will later use to estimate price/cost margins for each firm. 

 Coefficient c(5), which also appears in the three demand equations, is here an estimate 

of the so-called “elasticity of substitution” between goods. It is a symmetric concept that tries 

to capture the degree of substitution between the chocolate bars manufactured by Mondelez, 

Arcor and the other firms. It can also be used to calculate the implicit cross-price elasticities 

of the whole system, that are equal to c(5) times the corresponding revenue shares (which in 

this system are treated as variables that change along time).12 

 In order to analyze the behavior of this market, we can include two additional 

equations that represent supply price functions for Arcor and Mondelez. These can be 

estimated using the following specification: 

PMOND = c(31) +c(32)*IPCHOC +c(33)*IPLACT +c(34)*PMHAT +c(35)*PARCOR 

(8) ; 

PARCOR = c(41) +c(32)*IPCHOC +c(33)*IPLACT +c(44)*PAHAT +c(45)*PMOND  

(9) ; 

where PMHAT and PAHAT are artificial variables that replace PMOND and PARCOR by 

the fitted values of least-square regressions of those variables against a constant, TREND, 

WINTER and YNOM.13 

                                                           
12 For a more complete explanation of this, see Coloma (2009).  
13 Note that we are not including a supply price function for the other firms in the industry. We are implicitly 

assuming that those firms have no market power, and that the relevant strategic interaction here occurs between 
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 Once again, the first terms of these supply price equations (i.e., “c(31) 

+c(32)*IPCHOC +c(33)*IPLACT” and “c(41) +c(32)*IPCHOC +c(33)*IPLACT”) are 

estimates of marginal cost (for both Mondelez and Arcor). Conversely, the last terms (i.e., 

“c(34)*PMHAT +c(35)*PARCOR” and “c(44)*PAHAT +c(45)*PMOND”) are estimates of 

the margins between price and marginal cost. Coefficients c(34), c(35), c(44) and c(45) are 

in turn estimates of conduct parameters that have to do with the individual market power of 

the firms, and with possible coordination or collusion between those firms.14 If those 

coefficients are all positive, we can infer that firms have market power, and that they exhibit 

some kind of (explicit or tacit) coordination to set supply prices. 

 If coefficients c(34) and c(44) are positive, but c(35) and c(45) are null or negative, 

then we can infer that firms have market power but do not behave in a cooperative or 

collusive fashion. Therefore, c(34) and c(44) can be compared with functions of the demand 

parameters that signal different types of competition between Arcor and Mondelez. In order 

to check that, we have performed two sets of simultaneous regressions (using three-stage 

least squares) for the system formed by equations 5, 6, 7, 8 and 9. The main results of those 

regressions are shown on Table 4. 

 

4. Demand and supply regressions under product differentiation 

Variable / Results 
General Model 1 General Model 2 

Coefficient Probability Coefficient Probability 

Demand equations     

   Price elasticity Mondelez c(4) -0.595416 0.0225 -1.009664 0.0000 

   Price elasticity Arcor c(14) -0.946998 0.0001 -1.292262 0.0000 

   Price elasticity other firms c(24) -0.912576 0.0002 -1.065365 0.0000 

   Elasticity of substitution c(5) 0.268706 0.0033 0.278797 0.0018 

   Autocorrelation c(6) 0.529766 0.0000 0.526567 0.0000 

Supply price equations     

   Chocolate price index c(32) 0.659737 0.0172 0.491678 0.0232 

   Milk price index c(33) 2.162377 0.0000 0.967015 0.0012 

   Conduct parameter c(34) 0.755413 0.0000 0.598987 0.0000 

   Conduct parameter c(35) -0.624775 0.0000   

   Conduct parameter c(44) 0.402993 0.0004 0.520856 0.0000 

   Conduct parameter c(45) -0.266293 0.0018   

 

 As we see, General Model 1 corresponds to a case where we have estimated the 

                                                           

the two main firms (i.e., between Mondelez and Arcor). 
14 For a complete explanation of the derivation of these conduct parameters, see Appendix 1. 
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complete model prescribed by equations 5 to 9. In General Model 2, conversely, we have 

eliminated coefficients c(35) and c(45), since those coefficients turned out to be negative in 

the estimations under General Model 1. This implies considering that there is no cooperative 

or collusive behavior in this industry, and that the relevant type of strategic interaction 

between Arcor and Mondelez has to do with some kind of competition. 

 The results of both sets of regressions, however, allow to discard perfect competition 

as a plausible scenario for this industry. This is due to the fact that coefficients c(34) and 

c(44) are both positive and significantly different from zero, so it is almost impossible to 

believe that this is an industry in which supply prices equal marginal costs (which is the main 

characteristic of a perfectly competitive market). 

 The two main models of competition that we can test are therefore related to different 

versions of imperfect competition, and they are known as “Bertrand (or price) competition” 

and “Cournot (or quantity) competition”. Cournot competition is something similar to the 

hypothesis that we have tested in section 3, which predicted a relationship between the 

conduct parameter and the HHI concentration index. Under product differentiation, however, 

the kind of competition that arises when firms choose their quantities in response to the 

quantity choices of the other firms generates different results, since it is important to take 

into account not only the market shares of the firms but also the own-price and cross-price 

elasticities estimated by the model. 

 Supply prices under Bertrand competition, conversely, are basically dependent on the 

long-run own-price elasticities of each firm, and do not take into account cross-price 

elasticities. In our case, they imply that coefficient c(34) should be equal to “-(1-c(6))/c(4)”, 

while coefficient c(44) should be equal to “-(1-c(6))/c(14)”. This means that “c(34) = 

0.468901” (instead of the estimated figure of 0.598987), while “c(44) = 0.366360” (instead 

of 0.520856). The differences between those numbers, however, fail to be statistically 

significant at any reasonable probability level. In fact, if we run a joint Wald test for the 

restrictions “c(34) = -(1-c(6))/c(4)” and “c(44) = -(1-c(6))/c(14)”, we find that its probability 

value is 0.3681, which is a number that largely exceeds the 10% threshold usually employed 

in these cases. 

 But a very similar result is here obtained if we test for Cournot competition, under 

which it should hold that “c(34) = -c(14)*(1-c(6))/(c(4)*c(14)-c(5)2*0.164251)” and that 
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“c(44) = -c(4)*(1-c(6))/(c(4)*c(14)-c(5)2*0.164251)”.15 Indeed, the corresponding Cournot 

assumption implies that c(34) should be equal to 0.473535, while c(44) should be equal to 

0.369980. These figures also fail to be statistically different from the estimated values of 

those coefficients, and the corresponding joint Wald test generates a probability value of 

0.3979, which is higher than the one gotten for the case of Bertrand competition.16 

 

5. Demand and supply under General Model 2 

 

 

 Figure 5 is a representation of the results of General Model 2, translated into a graph 

for total demand and average marginal cost. The line depicted as “Demand” comes from the 

aggregation of the logarithmic demands for QMOND, QARCOR and QOTHER, and it is 

calibrated so that it passes through the point that corresponds to the average values of price 

and total quantity. Its price elasticity is equal to -2.133244, which is the long-run figure that 

we obtain when we aggregate the three estimated demand functions.17 “MC(Comp)” is 

                                                           
15 The number 0.164251 that appears in these formulae is the product of the average Arcor revenue share (equal 

to 0.549156) times the Mondelez revenue share (equal to 0.299098).  
16 By contrast, a joint Wald test for perfect competition under this specification (i.e., a joint test of “c(34) = 0” 

and “c(44) = 0”) produces a probability value that is virtually equal to zero.  
17 For an explanation about the steps to calculate this, see Coloma (2023). 
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actually identical to the average price of the sample (equal to 1789.03 Arg$/kg), while 

“MC(Bert)” and “MC(Cour)” are estimates of the industry average marginal costs under the 

Bertrand and Cournot hypotheses (which turn out to be equal to 1178.19 Arg$/kg and to 

1172.15 Arg$/kg, respectively). Note that the two lines are extremely close to one another, 

but they are quite different for MC(Comp) (and from the actual average price). This is due to 

the fact that MC(Bert) and MC(Cour) are consistent with the margins calculated under the 

alternative Bertrand and Cournot hypotheses. 

 Another way to compare the feasibility of Cournot and Bertrand competition in this 

case is to run two sets of regressions, imposing the restrictions mentioned in the previous 

paragraphs. Those sets use the same demand functions stated in equations 5, 6 and 7, and 

alternative sets of supply price functions. For the case of Bertrand competition, those 

functions are: 

PMOND = c(31) +c(32)*IPCHOC +c(33)*IPLACT –(1-c(6)/c(4)*PMHAT           (10) ; 

PARCOR = c(41) +c(32)*IPCHOC +c(33)*IPLACT –(1-c(6)/c(14)*PAHAT          (11) ;  

while under Cournot competition, the corresponding supply prices can be estimated as: 

PMOND = c(31) +c(32)*IPCHOC +c(33)*IPLACT 

–c(14)*(1-c(6))/(c(4)*c(14)-c(5)2*0.164251)*PMHAT   (12) ; 

PARCOR = c(41) +c(32)*IPCHOC +c(33)*IPLACT  

– c(4)*(1-c(6))/(c(4)*c(14)-c(5)2*0.164251)*PAHAT   (13) . 

 

5. Demand and supply regressions under Bertrand and Cournot competition 

Variable / Results 
Bertrand Model Cournot Model 

Coefficient Probability Coefficient Probability 

Demand equations     

   Price elasticity Mondelez c(4) -0.744017 0.0000 -0.747809 0.0000 

   Price elasticity Arcor c(14) -0.841805 0.0000 -0.847750 0.0000 

   Price elasticity other firms c(24) -1.034171 0.0000 -1.025251 0.0001 

   Elasticity of substitution c(5) 0.179616 0.0909 0.170198 0.1172 

   Autocorrelation c(6) 0.533075 0.0000 0.536448 0.0000 

Supply price equations     

   Chocolate price index c(32) 0.512437 0.0237 0.520855 0.0214 

   Milk price index c(33) 0.831548 0.0064 0.833341 0.0063 

 

 Using three-stage least squares, this leads to the results shown on Table 5. In it we 

see that most estimates are extremely similar. Moreover, if we reconstruct the implicit values 
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of c(34) and c(44) provided by these estimations, we see that they are almost identical. The 

Bertrand model estimation produces “c(34) = -(1-c(6)/c(4) = 0.627573” and “c(44) = -(1-

c(6)/c(14) = 0.554671”, while the Cournot model implies “c(34) = -c(14)*(1-

c(6))/(c(4)*c(14)-c(5)2*0.164251) = 0.624569” and “c(44) = -c(4)*(1-c(6))/(c(4)*c(14)-

c(5)2*0.164251) = 0.550938”. 

 The goodness of fit of both estimations (measured by the corresponding R2 

coefficients) is also remarkably similar. The Bertrand model is slightly better than the 

Cournot model in the estimation of the Mondelez demand and the Mondelez supply price 

functions, and slightly worse in the estimation of the Arcor demand, the other firms’ demand 

and the Arcor supply price.18 

 An alternative to evaluate the relative performance of the Bertrand and Cournot 

models is to run a couple of “J-tests” for non-nested hypotheses, that try to see if the predicted 

values of one model are able to improve the estimations under the other model.19 In our case, 

this can be done by running a set of regressions formed by equations 5, 6 and 7, together with 

two equations of the following form: 

PMOND = c(31) +c(32)*IPCHOC +c(33)*IPLACT 

–(1-c(6)/c(4)*PMHAT +c(36)*(PMCFIT-PMBFIT)   (14) ; 

PARCOR = c(41) +c(32)*IPCHOC +c(33)*IPLACT  

–(1-c(6)/c(14)*PAHAT +c(36)*(PACFIT-PABFIT)   (15) ; 

where PMCFIT and PACFIT are the fitted values for PMOND and PARCOR under the 

Cournot model, while PMBFIT and PABFIT are the fitted values for PMOND and PARCOR 

under the Bertrand model. In this specification, coefficient c(36) measures the relative ability 

of the Cournot model (i.e., of the estimates of that model) to improve the results obtained 

under the Bertrand model. Alternatively, we can also run another set of regressions formed 

by equations 5, 6 and 7, together with these two equations: 

PMOND = c(31) +c(32)*IPCHOC +c(33)*IPLACT 

–c(14)*(1-c(6))/(c(4)*c(14)-c(5)2*0.164251)*PMHAT +c(36)*(PMBFIT-PMCFIT)   (16) ; 

PARCOR = c(41) +c(32)*IPCHOC +c(33)*IPLACT  

–c(4)*(1-c(6))/(c(4)*c(14)-c(5)2*0.164251)*PAHAT +c(36)*(PABFIT-PACFIT)   (17) ; 

                                                           
18 See Appendix 2. 
19 For other alternative ways to test non-nested hypotheses, see Pesaran (2015), chapter 11. 
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in which c(36) measures the relative ability of the Bertrand model to improve the results 

obtained under the Cournot model. 

 Under the regressions of the system formed by equations 14 and 15, the value of c(36) 

is estimated as equal to -41.61307, while, under the regressions of the system formed by 

equations 16 and 17, it is equal to 40.48812. Both coefficients fail to be significantly different 

from zero, since their corresponding probability values are 0.1661 and 0.1827. As the first of 

those values is smaller than the second value, however, we can say that the Cournot model 

is slightly better than the Bertrand model to improve the estimates of its alternative 

counterpart. 

 

5. Concluding remarks 

 After all the analyses performed with data from the Argentine chocolate bar industry 

during the period 2019-2022, we can basically conclude that such industry seems to operate 

under a regime of competition that could be close to both the Bertrand model (i.e., price 

competition) and the Cournot model (i.e., quantity competition). When we introduce the 

possible existence of product differentiation (implied by the distinction between the 

chocolate brands sold by Arcor, Mondelez, and the other firms in the market), we can discard 

extreme pricing behaviors such as perfect competition and collusion, but we cannot clearly 

distinguish between alternative models of imperfect competition. 

 The Argentine chocolate bar industry is characterized by a relatively high supply 

concentration (since its main supplier has a revenue share around 55%, and the second largest 

supplier has a revenue share around 30%). This does not mean, however, that the largest firm 

(Arcor) has more market power than the second one (Mondelez). As we see that the average 

Mondelez prices are higher than the average Arcor prices (at least during the period under 

analysis), there is a chance that the first of those firms has more market power than the second 

one, due to the existence of product differentiation. 

 This possibility is confirmed in our analysis when we observe that, in all our 

alternative estimations, the Mondelez demand function appears to be more inelastic than the 

Arcor demand function, and this is a key to obtain a result under which it is more likely that 

Mondelez price/cost margins are higher than Arcor price/cost margins. This is indeed what 

we get when we estimate coefficients c(34) and c(44) in a model that nests all types of 
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competition (General Model 2), for which we obtain a relative margin of 0.598987 for 

Mondelez and a relative margin of 0.520856 for Arcor.20 Similar results appear when we 

restrict our estimations to alternative non-nested cases of price competition (Bertrand) and 

quantity competition (Cournot). 

 The introduction of product differentiation also helps to avoid some conclusions that 

appear in the demand-and-supply specifications that ignore that characteristic. For example, 

when we estimated a model with a linear demand function for the whole Argentine chocolate 

bar industry, we obtained a conduct parameter that was consistent with perfect competition 

instead of imperfect competition. This identification disappears if we use a logarithmic 

demand, but that model still ignores the fact that strategic interaction in this industry occurs 

mainly between two firms that supply idiosyncratically differentiated products. 

 The single-demand approach is also unable to distinguish between imperfect 

competition and “imperfect collusion”. For example, when we estimated a conduct parameter 

“c(10) = 0.427758” in our logarithmic specification of section 3, we could not discard that 

such coefficient had been generated by a process in which firms cooperated to increase prices 

above the competitive level but below the monopoly one. When we introduced product 

differentiation and demands at the level of the firms, conversely, we had separate conduct 

parameters for individual market power (c(34) and c(44)) and for joint market power (c(35) 

and c(45)). As the last set of parameters turned out to be negative, we could safely reject the 

collusive hypothesis, and focused on analyzing alternative competitive hypotheses (i.e., the 

Bertrand and Cournot models).21 

 Our comparison between the Bertrand and Cournot models is in this case not 

conclusive, but it shows a slight preference for the Cournot hypothesis. This is because, in 

General Model 2, it is a bit more likely that the conduct parameter coefficients are equal to 

the predicted Cournot values, and the Cournot model also generates a better J-test statistic 

when its fitted values are introduced into the Bertrand model.  

 

                                                           
20 These numbers can be interpreted as estimates of the ratio between price minus marginal cost and price itself 

((Pi-MCi)/Pi), also known as “Lerner index”. They imply that Mondelez’s marginal profit would be equivalent 

to 59.90% of its price, and that Arcor’s marginal profit would be equivalent to 52.09% of its price.  
21 This is actually a way to overcome one of the main critiques to the conduct parameter approach, originally 

stated by Corts (1999). For other alternatives to deal with the Corts critique, see Reiss and Wolak (2007) and 

Puller (2009).  
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Appendix 1. Derivation of conduct parameter values 

 The bulk of the analysis that was performed in this paper has to do with the estimation 

of conduct parameters for the Argentine chocolate bar industry under different assumptions. 

In this appendix we will derive the main formulae used to compute those parameters. 

 The first conduct parameter that we calculated was the one corresponding to the 

context of a single linear demand. Let us assume that demand has the following form: 

YgPbaQ                  (A1) ; 

and each individual firm in the industry seeks to maximize the following profit function: 

ii QcP  )(                 (A2) ; 

where P is price, Q is total quantity, Qi is individual quantity, Y is nominal income, and a, b, 

g and c are parameters. Under perfect competition, each firm will maximize profits choosing 

Qi and taking P as given, and that will generate the following first-order condition: 
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  Conversely, in a monopoly situation, the corresponding first-order condition will be: 
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while under Cournot competition we will have that: 
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  On average, this last equation can be written as: 
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  (A6) ; 

where si is the market share of the individual firm, and HHI is the Herfindahl-Hirschman 

index. As we can see, equations A3, A4 and A6 can all be nested into the following 

formulation: 

Q
b

cP 


          (A7) ; 

where θ is a conduct parameter whose value should be equal to zero under perfect 

competition, equal to one under monopoly, and equal to HHI under Cournot oligopoly. In 

the econometric model shown on section 3, the conduct parameter θ was estimated by 

coefficient c(10), while the demand parameter b was estimated by coefficient c(4).   

 If, instead of having a linear demand, we have a power function demand of the 

following form: 

 YPAQ                  (A8) ; 
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where A, α and λ are parameters, then we can rewrite this demand function using a 

logarithmic transformation under which it holds that:   

)log()log()log()log( YPAQ                (A9) ; 

where log is the natural logarithm of the corresponding variable or parameter. If this function 

is homogeneous of degree zero, then it will hold that “α + λ = 0”, and we can therefore write: 

)/log()log()log()log()log()log( YPAYPAQ        (A10) . 

 With this change in demand, the profit-maximizing decision of a perfectly 

competitive firm will still be equal to the one prescribed by Equation A3, but the first-order 

condition of a monopolist would in turn become: 

0








cQ

Q

P
P

Q

i         →  PcP
P

Q

Q

P
cP 








1
 (A11) ; 

while on average, for a Cournot oligopoly, it will hold that: 

P
HHI

cP 


         (A12) . 

 Once again, all these equations can be nested into a general model for which it will 

hold that: 

PcP 



          (A13) ; 

where θ is a conduct parameter whose value is “θ = 0” under perfect competition, “θ = 1” 

under monopoly, and “θ = HHI” under Cournot oligopoly. In the logarithmic-demand model 

shown on section 3, the conduct parameter θ was estimated by coefficient c(10), while the 

elasticity parameter α was estimated by coefficient c(4). 

 Let us now assume that this industry has two main firms (1 and 2) that operate in a 

context of product differentiation, and that their demands are:  



)1(1211 
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  QYPPBQ  (A14) ; 

where P1 and P2 are prices, Q1 and Q2 are quantities, Q1(-1) and Q2(-1) are lagged quantities 

(i.e., the quantities corresponding to the previous period), and A, B, α, β, γ, δ and ρ are 

parameters.22 Given that, the corresponding logarithmic transformations are: 

)log()/log()/log()log()log( )1(1211  QYPYPAQ        (A15) ; 

)log()/log()/log()log()log( )1(2212  QYPYPBQ        (A16) ; 

and, in a long-run steady-state context where “Q1 = Q1(-1)” and “Q2 = Q2(-1)”, it will hold that: 
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22 For an alternative derivation of this, using linear demands instead of power functions, see Davis and Garcés 

(2010), chapter 6. 
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  If this market operates under perfect competition, then each firm will maximize 

profits taking prices as given, and their corresponding first-order conditions will be: 
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Conversely, if each firm chooses its price, taking the other firm’s price as given 

(Bertrand competition), it will hold that: 
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 Another possible type of competition is Cournot oligopoly with differentiated 

products, in which each firm chooses its quantity, taking the other firm’s quantity as given. 

In order to model this, it is necessary to transform the demand functions into demand price 

functions, which in this case will be something like the following:  
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and the corresponding first-order conditions will imply: 
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 If we introduce symmetry restrictions into the system specification, one possible 

alternative is to define a substitution elasticity parameter (σ) whose relationship with the 

other parameters is the following: 

2s          ;    1s       (A26) ; 

where s1 and s2 are the revenue market shares of firms 1 and 2. This implies that equations 

A24 and A25 now become: 
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 A last type of strategic interaction between firms is the one that supposes the existence 
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of collusion, that can be modeled as a situation in which both firms maximize their joint 

profits. This implies the following first-order conditions: 
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 The four models described can in turn be nested into a single model that can be written 

in the following way: 

2111 PPcP BA     ;  1222 PPcP DC     (A30) ; 

and each of the competing hypothesis become: 

Perfect competition:         0A  ;       0B  ;     0C  ;    0D   (A31) ; 

Bertrand competition:   
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Cournot competition:   
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Collusion:     
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 If we discard collusion as a possible outcome (e.g., because the estimated coefficients 

for θB and θD are both negative instead of positive), then the three remaining hypotheses can 

be tested using a more simplified model of this type:    

111 PcP A     ;    222 PcP C     (A35) ; 
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under which the alternative hypotheses can be written as: 

Perfect competition:         0A  ;         0C     (A36) ; 

Bertrand competition:     
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Cournot competition:  
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These are actually the models that we have tested in section 4, both as nested 

hypotheses and also as non-nested ones. In that section, parameter α was estimated by 

coefficient c(4), parameter σ was estimated by coefficient c(5), parameter ρ was estimated by 

coefficient c(6), and parameter δ was estimated by coefficient c(14). Conduct parameters θA, 

θB, θC and θD, in turn, were estimated by coefficients c(34), c(35), c(44) and c(45). 
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Appendix 2. Complete estimation results 

 
System: LINEARDEMAND   
Estimation Method: Three-Stage Least Squares 
Date: 05/12/24   Time: 00:26  
Sample: 1 48    
Included observations: 48   
Total system (balanced) observations 96  
Iterate coefficients after one-step weighting matrix 
Convergence achieved after: 1 weight matrix, 6 total coef iterations 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(1) 1064613. 155255.9 6.857146 0.0000 

C(2) 9666.681 9025.509 1.071040 0.2871 
C(3) 805810.5 90562.21 8.897867 0.0000 
C(4) -1968.481 645.2246 -3.050846 0.0030 
C(5) 49.51725 13.62422 3.634500 0.0005 
C(7) -202.7624 18.62655 -10.88567 0.0000 
C(8) 0.245525 0.181288 1.354337 0.1791 
C(9) 2.871870 0.218144 13.16504 0.0000 

C(10) 0.041255 0.032599 1.265555 0.2091 
     
     Determinant residual covariance 1.27E+14   
     
          

Equation: QTOTAL = C(1) +C(2)*TREND +C(3)*WINTER +C(4) 
        *PTOTAL +C(5)*YNOM    
Instruments: TREND WINTER YNOM IPCHOC IPLACT C 
Observations: 48   

R-squared 0.736759     Mean dependent var 1421096. 
Adjusted R-squared 0.712272     S.D. dependent var 573262.6 
S.E. of regression 307499.9     Sum squared resid 4.07E+12 
Durbin-Watson stat 1.326545    

     
Equation: PTOTAL = C(7) +C(8)*IPCHOC +C(9)*IPLACT -C(10)/C(4) 
        *QTOTAL    
Instruments: TREND WINTER YNOM IPCHOC IPLACT C 
Observations: 48   

R-squared 0.998016     Mean dependent var 1789.028 
Adjusted R-squared 0.997831     S.D. dependent var 910.5934 
S.E. of regression 42.40627     Sum squared resid 77326.55 
Durbin-Watson stat 0.818759    
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System: LOGDEMAND   
Estimation Method: Three-Stage Least Squares 
Date: 05/14/24   Time: 19:10  
Sample: 1 48    
Included observations: 48   
Total system (balanced) observations 96  
Iterate coefficients after one-step weighting matrix 
Convergence achieved after: 1 weight matrix, 5 total coef iterations 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(1) 5.118936 1.910314 2.679631 0.0088 

C(2) 0.003635 0.003079 1.180609 0.2409 
C(3) 0.565893 0.068238 8.292909 0.0000 
C(4) -2.408260 0.542196 -4.441674 0.0000 
C(7) -161.2958 18.02152 -8.950175 0.0000 
C(8) 0.107897 0.143147 0.753749 0.4530 
C(9) 2.492638 0.244852 10.18016 0.0000 

C(10) 0.427758 0.191383 2.235082 0.0279 
     
     Determinant residual covariance 54.08093   
     
          

Equation: LOG(QTOTAL) = C(1) +C(2)*TREND +C(3)*WINTER +C(4) 
        *LOG(PTOTAL/YNOM)    
Instruments: TREND WINTER LOG(YNOM) IPCHOC IPLACT C 
Observations: 48   

R-squared 0.701003     Mean dependent var 14.08666 
Adjusted R-squared 0.680617     S.D. dependent var 0.409506 
S.E. of regression 0.231428     Sum squared resid 2.356594 
Durbin-Watson stat 1.146428    

     
Equation: PTOTAL = C(7) +C(8)*IPCHOC +C(9)*IPLACT -C(10)/C(4) 
        *PTHAT    
Instruments: TREND WINTER LOG(YNOM) IPCHOC IPLACT C 
Observations: 48   

R-squared 0.998639     Mean dependent var 1789.028 
Adjusted R-squared 0.998512     S.D. dependent var 910.5934 
S.E. of regression 35.12547     Sum squared resid 53053.33 
Durbin-Watson stat 1.074771    
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System: GENERALMODEL1   
Estimation Method: Three-Stage Least Squares 
Date: 05/15/24   Time: 13:51  
Sample: 2 48    
Included observations: 47   
Total system (balanced) observations 235  
Linear estimation after one-step weighting matrix 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(1) 4.435454 1.108856 4.000026 0.0001 

C(2) 0.003393 0.002381 1.424676 0.1557 
C(3) 0.302506 0.040712 7.430290 0.0000 
C(4) -0.595416 0.259084 -2.298153 0.0225 
C(5) 0.268706 0.090559 2.967188 0.0033 
C(6) 0.529766 0.052426 10.10502 0.0000 

C(11) 3.178972 0.950312 3.345187 0.0010 
C(12) 0.002189 0.002030 1.078583 0.2820 
C(14) -0.946998 0.236711 -4.000645 0.0001 
C(21) 3.046394 0.826068 3.687825 0.0003 
C(22) 0.003403 0.002784 1.222218 0.2230 
C(24) -0.912576 0.244244 -3.736325 0.0002 
C(31) -207.0325 39.57768 -5.231042 0.0000 
C(32) 0.659737 0.274674 2.401893 0.0172 
C(33) 2.162377 0.359502 6.014927 0.0000 
C(34) 0.755413 0.093161 8.108651 0.0000 
C(35) -0.624775 0.093524 -6.680375 0.0000 
C(41) -207.4006 30.44894 -6.811423 0.0000 
C(44) 0.402993 0.111814 3.604139 0.0004 
C(45) -0.266293 0.084315 -3.158298 0.0018 

     
     Determinant residual covariance 6.410445   
     
          

Equation: LOG(QMOND) = C(1) +C(2)*TREND +C(3)*WINTER +C(4) 
        *LOG(PMOND/YNOM) +C(5)*LOG(PARCOR/YNOM)*SARCOR  
        +C(5)*LOG(POTROS/YNOM)*SOTROS +C(6)*LOG(QMOND(-1))  
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.780549     Mean dependent var 12.73075 
Adjusted R-squared 0.753786     S.D. dependent var 0.422652 
S.E. of regression 0.209719     Sum squared resid 1.803272 
Durbin-Watson stat 0.928286    

     
Equation: LOG(QARCOR) = C(11) +C(12)*TREND +C(3)* WINTER  
        +C(5)*LOG(PMOND/YNOM)*SMOND +C(14)*LOG(PARCOR 
        /YNOM) +C(5)*LOG(POTROS/YNOM)*SOTROS +C(6) 
        *LOG(QARCOR(-1))    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.817000     Mean dependent var 13.54470 
Adjusted R-squared 0.794683     S.D. dependent var 0.375930 
S.E. of regression 0.170341     Sum squared resid 1.189662 
Durbin-Watson stat 1.249317    
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Equation: LOG(QOTROS) = C(21) +C(22)*TREND +C(3)*WINTER  
        +C(5)*LOG(PMOND/YNOM)*SMOND +C(5)*LOG(PARCOR 
        /YNOM)*SARCOR +C(24)*LOG(POTROS/YNOM) +C(6) 
        *LOG(QOTROS(-1))    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.941155     Mean dependent var 12.25063 
Adjusted R-squared 0.933978     S.D. dependent var 0.613384 
S.E. of regression 0.157607     Sum squared resid 1.018437 
Durbin-Watson stat 1.288143    

     
Equation: PMOND = C(31) +C(32)*IPCHOC +C(33)*IPLACT +C(34) 
        *PMHAT +C(35)*PARCOR   
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.992067     Mean dependent var 2150.733 
Adjusted R-squared 0.991311     S.D. dependent var 1101.750 
S.E. of regression 102.6975     Sum squared resid 442965.0 
Durbin-Watson stat 0.796040    

     
Equation: PARCOR = C(41) +C(32)*IPCHOC +C(33)*IPLACT +C(44) 
        *PAHAT +C(45)*PMOND   
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.996303     Mean dependent var 1737.188 
Adjusted R-squared 0.995951     S.D. dependent var 904.6201 
S.E. of regression 57.56048     Sum squared resid 139154.8 
Durbin-Watson stat 0.953911    
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System: GENERALMODEL2   
Estimation Method: Three-Stage Least Squares 
Date: 05/15/24   Time: 13:52  
Sample: 2 48    
Included observations: 47   
Total system (balanced) observations 235  
Linear estimation after one-step weighting matrix 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(1) 3.119514 0.969652 3.217147 0.0015 

C(2) 0.001678 0.002333 0.719113 0.4728 
C(3) 0.287247 0.041282 6.958223 0.0000 
C(4) -1.009664 0.217727 -4.637292 0.0000 
C(5) 0.278797 0.087983 3.168756 0.0018 
C(6) 0.526567 0.052650 10.00124 0.0000 

C(11) 2.015282 0.914068 2.204739 0.0285 
C(12) 0.000796 0.002007 0.396668 0.6920 
C(14) -1.292262 0.222240 -5.814718 0.0000 
C(21) 2.613759 0.820498 3.185576 0.0017 
C(22) 0.001258 0.002764 0.454966 0.6496 
C(24) -1.065365 0.242240 -4.397965 0.0000 
C(31) -84.37206 36.44034 -2.315348 0.0215 
C(32) 0.491678 0.215038 2.286474 0.0232 
C(33) 0.967015 0.295036 3.277615 0.0012 
C(34) 0.598987 0.073187 8.184364 0.0000 
C(41) -113.5237 31.08714 -3.651789 0.0003 
C(44) 0.520856 0.087661 5.941736 0.0000 

     
     Determinant residual covariance 13.61257   
     
          

Equation: LOG(QMOND) = C(1) +C(2)*TREND +C(3)*WINTER +C(4) 
        *LOG(PMOND/YNOM) +C(5)*LOG(PARCOR/YNOM)*SARCOR  
        +C(5)*LOG(POTROS/YNOM)*SOTROS +C(6)*LOG(QMOND(-1))  
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.766295     Mean dependent var 12.73075 
Adjusted R-squared 0.737795     S.D. dependent var 0.422652 
S.E. of regression 0.216423     Sum squared resid 1.920396 
Durbin-Watson stat 0.824448    

     
Equation: LOG(QARCOR) = C(11) +C(12)*TREND +C(3)*WINTER  
        +C(5)*LOG(PMOND/YNOM)*SMOND +C(14)*LOG(PARCOR 
        /YNOM) +C(5)*LOG(POTROS/YNOM)*SOTROS +C(6) 
        *LOG(QARCOR(-1))    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.829225     Mean dependent var 13.54470 
Adjusted R-squared 0.808399     S.D. dependent var 0.375930 
S.E. of regression 0.164553     Sum squared resid 1.110186 
Durbin-Watson stat 1.219561    
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Equation: LOG(QOTROS) = C(21) +C(22)*TREND +C(3)*WINTER  
        +C(5)*LOG(PMOND/YNOM)*SMOND +C(5)*LOG(PARCOR 
        /YNOM)*SARCOR +C(24)*LOG(POTROS/YNOM) +C(6) 
        *LOG(QOTROS(-1))    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.943921     Mean dependent var 12.25063 
Adjusted R-squared 0.937082     S.D. dependent var 0.613384 
S.E. of regression 0.153858     Sum squared resid 0.970563 
Durbin-Watson stat 1.259514    

     
Equation: PMOND = C(31) +C(32)*IPCHOC +C(33)*IPLACT +C(34) 
        *PMHAT    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.991646     Mean dependent var 2150.733 
Adjusted R-squared 0.991064     S.D. dependent var 1101.750 
S.E. of regression 104.1510     Sum squared resid 466439.8 
Durbin-Watson stat 0.596214    

     
Equation: PARCOR = C(41) +C(32)*IPCHOC +C(33)*IPLACT +C(44) 
        *PAHAT    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.994915     Mean dependent var 1737.188 
Adjusted R-squared 0.994560     S.D. dependent var 904.6201 
S.E. of regression 66.72305     Sum squared resid 191434.5 
Durbin-Watson stat 0.670573    
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System: BERTRANDMODEL   
Estimation Method: Three-Stage Least Squares 
Date: 05/15/24   Time: 13:55  
Sample: 2 48    
Included observations: 47   
Total system (balanced) observations 235  
Iterate coefficients after one-step weighting matrix 
Convergence achieved after: 1 weight matrix, 9 total coef iterations 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(1) 3.702003 0.624062 5.932110 0.0000 

C(2) 0.001548 0.002315 0.668679 0.5044 
C(3) 0.288663 0.041008 7.039271 0.0000 
C(4) -0.744017 0.109995 -6.764076 0.0000 
C(5) 0.179616 0.105776 1.698074 0.0909 
C(6) 0.533075 0.053607 9.944124 0.0000 

C(11) 3.415633 0.663309 5.149385 0.0000 
C(12) 0.000830 0.002098 0.395442 0.6929 
C(14) -0.841805 0.147145 -5.720928 0.0000 
C(21) 2.327810 0.805949 2.888285 0.0043 
C(22) 0.002012 0.002792 0.720442 0.4720 
C(24) -1.034171 0.248359 -4.164019 0.0000 
C(31) -74.12201 36.56317 -2.027231 0.0439 
C(32) 0.512437 0.224924 2.278267 0.0237 
C(33) 0.831548 0.301973 2.753717 0.0064 
C(41) -100.4885 31.07180 -3.234075 0.0014 

     
     Determinant residual covariance 23.05681   
     
          

Equation: LOG(QMOND) = C(1) +C(2)*TREND +C(3)*WINTER +C(4) 
        *LOG(PMOND/YNOM) +C(5)*LOG(PARCOR/YNOM)*SARCOR  
        +C(5)*LOG(POTROS/YNOM)*SOTROS +C(6)*LOG(QMOND(-1))  
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.771569     Mean dependent var 12.73075 
Adjusted R-squared 0.743712     S.D. dependent var 0.422652 
S.E. of regression 0.213967     Sum squared resid 1.877058 
Durbin-Watson stat 0.857252    

     
Equation: LOG(QARCOR) = C(11) +C(12)*TREND +C(3)*WINTER  
        +C(5)*LOG(PMOND/YNOM)*SMOND +C(14)*LOG(PARCOR 
        /YNOM) +C(5)*LOG(POTROS/YNOM)*SOTROS +C(6) 
        *LOG(QARCOR(-1))    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.811698     Mean dependent var 13.54470 
Adjusted R-squared 0.788734     S.D. dependent var 0.375930 
S.E. of regression 0.172791     Sum squared resid 1.224133 
Durbin-Watson stat 1.226593    
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Equation: LOG(QOTROS) = C(21) +C(22)*TREND +C(3)*WINTER  
        +C(5)*LOG(PMOND/YNOM)*SMOND +C(5)*LOG(PARCOR 
        /YNOM)*SARCOR +C(24)*LOG(POTROS/YNOM) +C(6) 
        *LOG(QOTROS(-1))    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.944758     Mean dependent var 12.25063 
Adjusted R-squared 0.938021     S.D. dependent var 0.613384 
S.E. of regression 0.152705     Sum squared resid 0.956072 
Durbin-Watson stat 1.293175    

     
Equation: PMOND = C(31) +C(32)*IPCHOC +C(33)*IPLACT -(1-C(6)) 
        /C(4)*PMHAT    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.991848     Mean dependent var 2150.733 
Adjusted R-squared 0.991072     S.D. dependent var 1101.750 
S.E. of regression 104.1048     Sum squared resid 455188.0 
Durbin-Watson stat 0.617429    

     
Equation: PARCOR = C(41) +C(32)*IPCHOC +C(33)*IPLACT -(1-C(6)) 
        /C(14)*PAHAT    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.994646     Mean dependent var 1737.188 
Adjusted R-squared 0.994137     S.D. dependent var 904.6201 
S.E. of regression 69.26896     Sum squared resid 201523.9 
Durbin-Watson stat 0.670460    
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System: COURNOTMODEL   
Estimation Method: Three-Stage Least Squares 
Date: 05/15/24   Time: 13:55  
Sample: 2 48    
Included observations: 47   
Total system (balanced) observations 235  
Iterate coefficients after one-step weighting matrix 
Convergence achieved after: 1 weight matrix, 11 total coef iterations 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(1) 3.624524 0.612443 5.918135 0.0000 

C(2) 0.001461 0.002328 0.627300 0.5311 
C(3) 0.287046 0.040940 7.011379 0.0000 
C(4) -0.747809 0.111718 -6.693721 0.0000 
C(5) 0.170198 0.108220 1.572698 0.1172 
C(6) 0.536448 0.053664 9.996499 0.0000 

C(11) 3.336834 0.655288 5.092165 0.0000 
C(12) 0.000707 0.002106 0.335722 0.7374 
C(14) -0.847750 0.149387 -5.674860 0.0000 
C(21) 2.290292 0.810349 2.826303 0.0051 
C(22) 0.002049 0.002823 0.725854 0.4687 
C(24) -1.025251 0.251239 -4.080777 0.0001 
C(31) -74.49661 36.57054 -2.037066 0.0428 
C(32) 0.520855 0.224747 2.317518 0.0214 
C(33) 0.833341 0.302389 2.755857 0.0063 
C(41) -100.8452 31.13293 -3.239180 0.0014 

     
     Determinant residual covariance 24.10472   
     
          

Equation: LOG(QMOND) = C(1) +C(2)*TREND +C(3)*WINTER +C(4) 
        *LOG(PMOND/YNOM) +C(5)*LOG(PARCOR/YNOM)*SARCOR  
        +C(5)*LOG(POTROS/YNOM)*SOTROS +C(6)*LOG(QMOND(-1))  
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.771228     Mean dependent var 12.73075 
Adjusted R-squared 0.743329     S.D. dependent var 0.422652 
S.E. of regression 0.214127     Sum squared resid 1.879859 
Durbin-Watson stat 0.854255    

     
Equation: LOG(QARCOR) = C(11) +C(12)*TREND +C(3)*WINTER  
        +C(5)*LOG(PMOND/YNOM)*SMOND +C(14)*LOG(PARCOR 
        /YNOM) +C(5)*LOG(POTROS/YNOM)*SOTROS +C(6) 
        *LOG(QARCOR(-1))    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.812209     Mean dependent var 13.54470 
Adjusted R-squared 0.789308     S.D. dependent var 0.375930 
S.E. of regression 0.172556     Sum squared resid 1.220805 
Durbin-Watson stat 1.228922    
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Equation: LOG(QOTROS) = C(21) +C(22)*TREND +C(3)*WINTER  
        +C(5)*LOG(PMOND/YNOM)*SMOND +C(5)*LOG(PARCOR 
        /YNOM)*SARCOR +C(24)*LOG(POTROS/YNOM) +C(6) 
        *LOG(QOTROS(-1))    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.944770     Mean dependent var 12.25063 
Adjusted R-squared 0.938034     S.D. dependent var 0.613384 
S.E. of regression 0.152689     Sum squared resid 0.955872 
Durbin-Watson stat 1.293870    

     
Equation: PMOND = C(31) +C(32)*IPCHOC +C(33)*IPLACT -C(14)*(1 
        -C(6))/(C(4)*C(14)-C(5)^2*0.164251)*PMHAT  
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.991837     Mean dependent var 2150.733 
Adjusted R-squared 0.990612     S.D. dependent var 1101.750 
S.E. of regression 106.7498     Sum squared resid 455820.7 
Durbin-Watson stat 0.615914    

     
Equation: PARCOR = C(41) +C(32)*IPCHOC +C(33)*IPLACT -C(4)*(1 
        -C(6))/(C(4)*C(14)-C(5)^2*0.164251)*PAHAT  
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.994660     Mean dependent var 1737.188 
Adjusted R-squared 0.993859     S.D. dependent var 904.6201 
S.E. of regression 70.89117     Sum squared resid 201022.3 
Durbin-Watson stat 0.667456    
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System: BERTRANDVSCOURNOT   
Estimation Method: Three-Stage Least Squares 
Date: 05/15/24   Time: 19:52  
Sample: 2 48    
Included observations: 47   
Total system (balanced) observations 235  
Iterate coefficients after one-step weighting matrix 
Convergence achieved after: 1 weight matrix, 10 total coef iterations 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(1) 3.142102 0.639410 4.914063 0.0000 

C(2) 0.001677 0.002314 0.724965 0.4693 
C(3) 0.286855 0.041053 6.987403 0.0000 
C(4) -0.999173 0.125854 -7.939131 0.0000 
C(5) 0.276389 0.088850 3.110746 0.0021 
C(6) 0.527165 0.052054 10.12718 0.0000 

C(11) 1.988276 0.921030 2.158752 0.0320 
C(12) 0.000768 0.002009 0.382182 0.7027 
C(14) -1.296611 0.222434 -5.829183 0.0000 
C(21) 2.610824 0.816973 3.195726 0.0016 
C(22) 0.001288 0.002760 0.466589 0.6413 
C(24) -1.062009 0.241485 -4.397832 0.0000 
C(31) -100.4067 33.43527 -3.003018 0.0030 
C(32) 0.839354 0.274467 3.058126 0.0025 
C(33) 1.047677 0.269222 3.891502 0.0001 
C(36) -41.61307 29.94673 -1.389570 0.1661 
C(41) -128.9149 27.45235 -4.695953 0.0000 

     
     Determinant residual covariance 13.80829   
     
          

Equation: LOG(QMOND) = C(1) +C(2)*TREND +C(3)*WINTER +C(4) 
        *LOG(PMOND/YNOM) +C(5)*LOG(PARCOR/YNOM)*SARCOR  
        +C(5)*LOG(POTROS/YNOM)*SOTROS +C(6)*LOG(QMOND(-1))  
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.766695     Mean dependent var 12.73075 
Adjusted R-squared 0.738243     S.D. dependent var 0.422652 
S.E. of regression 0.216238     Sum squared resid 1.917113 
Durbin-Watson stat 0.825301    

     
Equation: LOG(QARCOR) = C(11) +C(12)*TREND +C(3)*WINTER  
        +C(5)*LOG(PMOND/YNOM)*SMOND +C(14)*LOG(PARCOR 
        /YNOM) +C(5)*LOG(POTROS/YNOM)*SOTROS +C(6) 
        *LOG(QARCOR(-1))    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.829378     Mean dependent var 13.54470 
Adjusted R-squared 0.808571     S.D. dependent var 0.375930 
S.E. of regression 0.164479     Sum squared resid 1.109191 
Durbin-Watson stat 1.220125    
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Equation: LOG(QOTROS) = C(21) +C(22)*TREND +C(3)*WINTER  
        +C(5)*LOG(PMOND/YNOM)*SMOND +C(5)*LOG(PARCOR 
        /YNOM)*SARCOR +C(24)*LOG(POTROS/YNOM) +C(6) 
        *LOG(QOTROS(-1))    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.943893     Mean dependent var 12.25063 
Adjusted R-squared 0.937051     S.D. dependent var 0.613384 
S.E. of regression 0.153896     Sum squared resid 0.971043 
Durbin-Watson stat 1.258942    

     
Equation: PMOND = C(31) +C(32)*IPCHOC +C(33)*IPLACT -(1-C(6)) 
        /C(4)*PMHAT +C(36)*(PMCFIT-PMBFIT)  
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.991639     Mean dependent var 2150.733 
Adjusted R-squared 0.990619     S.D. dependent var 1101.750 
S.E. of regression 106.7099     Sum squared resid 466866.7 
Durbin-Watson stat 0.595510    

     
Equation: PARCOR = C(41) +C(32)*IPCHOC +C(33)*IPLACT -(1-C(6)) 
        /C(14)*PAHAT +C(36)*(PACFIT-PABFIT)  
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.994924     Mean dependent var 1737.188 
Adjusted R-squared 0.994305     S.D. dependent var 904.6201 
S.E. of regression 68.26668     Sum squared resid 191073.9 
Durbin-Watson stat 0.671157    
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System: COURNOTVSBERTRAND   
Estimation Method: Three-Stage Least Squares 
Date: 05/15/24   Time: 19:56  
Sample: 2 48    
Included observations: 47   
Total system (balanced) observations 235  
Iterate coefficients after one-step weighting matrix 
Convergence achieved after: 1 weight matrix, 10 total coef iterations 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(1) 3.129531 0.634395 4.933096 0.0000 

C(2) 0.001681 0.002314 0.726444 0.4683 
C(3) 0.286787 0.041044 6.987301 0.0000 
C(4) -1.002285 0.125976 -7.956143 0.0000 
C(5) 0.276339 0.088785 3.112436 0.0021 
C(6) 0.527292 0.052024 10.13560 0.0000 

C(11) 1.988446 0.920965 2.159089 0.0319 
C(12) 0.000771 0.002010 0.383341 0.7018 
C(14) -1.296061 0.222429 -5.826861 0.0000 
C(21) 2.609844 0.816645 3.195813 0.0016 
C(22) 0.001289 0.002760 0.466892 0.6410 
C(24) -1.061812 0.241461 -4.397444 0.0000 
C(31) -100.1936 33.47906 -2.992725 0.0031 
C(32) 0.830612 0.276279 3.006426 0.0030 
C(33) 1.046493 0.269369 3.884986 0.0001 
C(36) 40.48812 30.28997 1.336684 0.1827 
C(41) -128.5162 27.51350 -4.671022 0.0000 

     
     Determinant residual covariance 13.79874   
     
          

Equation: LOG(QMOND) = C(1) +C(2)*TREND +C(3)*WINTER +C(4) 
        *LOG(PMOND/YNOM) +C(5)*LOG(PARCOR/YNOM)*SARCOR  
        +C(5)*LOG(POTROS/YNOM)*SOTROS +C(6)*LOG(QMOND(-1))  
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.766593     Mean dependent var 12.73075 
Adjusted R-squared 0.738129     S.D. dependent var 0.422652 
S.E. of regression 0.216285     Sum squared resid 1.917946 
Durbin-Watson stat 0.824888    

     
Equation: LOG(QARCOR) = C(11) +C(12)*TREND +C(3)*WINTER  
        +C(5)*LOG(PMOND/YNOM)*SMOND +C(14)*LOG(PARCOR 
        /YNOM) +C(5)*LOG(POTROS/YNOM)*SOTROS +C(6) 
        *LOG(QARCOR(-1))    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.829380     Mean dependent var 13.54470 
Adjusted R-squared 0.808573     S.D. dependent var 0.375930 
S.E. of regression 0.164479     Sum squared resid 1.109181 
Durbin-Watson stat 1.220082    
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Equation: LOG(QOTROS) = C(21) +C(22)*TREND +C(3)*WINTER  
        +C(5)*LOG(PMOND/YNOM)*SMOND +C(5)*LOG(PARCOR 
        /YNOM)*SARCOR +C(24)*LOG(POTROS/YNOM) +C(6) 
        *LOG(QOTROS(-1))    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.943896     Mean dependent var 12.25063 
Adjusted R-squared 0.937054     S.D. dependent var 0.613384 
S.E. of regression 0.153893     Sum squared resid 0.971002 
Durbin-Watson stat 1.258944    

     
Equation: PMOND = C(31) +C(32)*IPCHOC +C(33)*IPLACT -C(14)*(1 
        -C(6))/(C(4)*C(14)-C(5)^2*0.164251)*PMHAT +C(36)*(PMBFIT 
        -PMCFIT)    
Instruments: TREND WINTER LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.991637     Mean dependent var 2150.733 
Adjusted R-squared 0.990136     S.D. dependent var 1101.750 
S.E. of regression 109.4227     Sum squared resid 466959.7 
Durbin-Watson stat 0.595323    

     
Equation: PARCOR = C(41) +C(32)*IPCHOC +C(33)*IPLACT -C(4)*(1 
        -C(6))/(C(4)*C(14)-C(5)^2*0.164251)*PAHAT +C(36)*(PABFIT 
        -PACFIT)    
Instruments: TREND INVIERNO LOG(YNOM) LOG(QMOND(-1)) 
        LOG(QARCOR(-1)) LOG(QOTROS(-1)) IPCHOC IPLACT C 
Observations: 47   

R-squared 0.994927     Mean dependent var 1737.188 
Adjusted R-squared 0.994016     S.D. dependent var 904.6201 
S.E. of regression 69.97538     Sum squared resid 190965.6 
Durbin-Watson stat 0.670851    

     
      

 


