Working capital

$\begin{array}{c} {\rm George~McCandless} \\ {\rm UCEMA} \end{array}$

November 20, 2007

1 Working capital models

Initial comments

- Model with neither staggered prices nor wages
- Add financial intermediaries
- Several ways to do it
 - Working capital
 - * Capital used to finance in period production
 - * In our case: the wage bill
 - * could be other parts of production costs as well
 - Agency costs
 - * Loans need collateral
 - * Firm owners use their own wealth
 - * and borrow from bank
 - * Aggregate risk
 - * Somewhat more complicated

Model with working capital

• Households max

$$E_t \sum_{t=0}^{\infty} \beta^t u(c_t^i, 1 - h_t^i)$$

• subject to a cash-in-advance constraint

$$P_t c_t^i \le m_{t-1}^i - N_t^i$$

• the budget constraint

$$\frac{m_t^i}{P_t} + k_{t+1}^i = w_t h_t^i + r_t k_t^i + (1 - \delta) k_t^i + \frac{r_t^n N_t^i}{P_t}$$

- N_t^i = nominal deposits in a financial intermediary
- $r_t^n = \text{gross interest rate on deposits}$

Model with working capital

- Competitive firms
- production function

$$Y_t = \lambda_t K_t^{\theta} H_t^{1-\theta}$$

• the representative firm maximizes profits subject to the budget constraint

$$Y_t = r_t^f w_t H_t + r_t K_t$$

• $r_t^f = \text{gross interest rate on borrowing funds from FI}$

Model with working capital

- Financial intermediaries
- The budget constraints for the financial intermediary (a zero profit condition)

$$r_t^f (N_t + (g_t - 1) M_{t-1}) = \int_0^1 r_t^n N_t^i di = r_t^n N_t$$

- \bullet g_t is the gross growth rate of money in period t
- FI's receive money transfers from government (important)
- equilibrium condition for the financial market

$$(N_t + (g_t - 1) M_{t-1}) = P_t w_t H_t$$

Full model

• FOCs of household

$$\frac{B}{w_t} = -\beta \frac{P_t}{E_t P_{t+1} C_{t+1}}$$

$$\frac{1}{w_t} = \beta E_t \frac{r_{t+1} + 1 - \delta}{w_{t+1}}$$

$$r_t^n = -\frac{w_t}{BC_t} = \frac{E_t P_{t+1} C_{t+1}}{\beta P_t C_t}$$

• cash in advance constraint for household consumption

$$P_t C_t = M_{t-1} - N_t$$

• the real flow budget constraint

$$\frac{M_t}{P_t} + K_{t+1} = w_t H_t + r_t K_t + (1 - \delta) K_t + \frac{r_t^n N_t}{P_t}$$

• factor market conditions

$$r_t^f w_t = (1 - \theta) \lambda_t K_t^{\theta} H_t^{-\theta}$$
$$r_t = \theta \lambda_t K_t^{\theta - 1} H_t^{1 - \theta}$$

• The production function

$$Y_t = \lambda_t K_t^{\theta} H_t^{1-\theta}$$

• FI's zero profit condition

$$r_t^f (N_t + (g_t - 1) M_{t-1}) = r_t^n N_t$$

• Clearing of the credit market

$$(N_t + (g_t - 1) M_{t-1}) = P_t w_t H_t$$

• money growth rule

$$M_t = g_t M_{t-1}$$

Stationary state

$$\overline{r} = 1/\beta - 1 + \delta$$
 and $\overline{r}^n = \overline{\pi}/\beta = \overline{g}/\beta$

• Solve nuemerically five equations for $\overline{M/P},\,\overline{N/P},\,\overline{r}^f,\,\overline{C},$ and \overline{H}

$$\begin{split} \overline{r}^f &= -\frac{\beta \left(1-\theta\right) \left(\frac{\theta}{\overline{r}}\right)^{\frac{\theta}{1-\theta}}}{\overline{C}\overline{g}B} \\ \left[\overline{r}^n - \overline{r}^f\right] \overline{N/P} &= \overline{r}^f \left[1 - \frac{1}{\overline{g}}\right] \overline{M/P} \\ &- \frac{\overline{C}\overline{g}B}{\beta} \overline{H} = \overline{N/P} + \left[1 - \frac{1}{\overline{g}}\right] \overline{M/P} \\ \overline{C} &= \frac{\overline{M/P}}{\overline{g}} - \overline{N/P} \\ \overline{M/P} &= \frac{\overline{g}}{\beta} \overline{N/P} + \left[(\overline{r} - \delta) \left[\frac{\theta}{\overline{r}}\right]^{\frac{1-\theta}{1-\theta}} - \frac{\overline{C}\overline{g}B}{\beta}\right] \overline{H} \end{split}$$

Stationary states

$Annual \\ inflation$	-4%	0	10%	100%	400%
\overline{g}	.99	1	1.024	1.19	1.41
\overline{r}	.035101	.035101	.035101	.035101	.035101
\overline{r}^n	1.0000	1.0101	1.0343	1.2020	1.4242
\overline{r}^f	1.0221	1.0101	0.9824	0.8259	0.6820
$\frac{\frac{M_t}{P_t} = \overline{M/P}}{\frac{N_t}{P_t} = \overline{N/P}}$	1.6557	1.6675	1.6960	1.8896	2.1395
$\frac{N_t}{P_t} = \overline{N/P}$.7736	.76715	0.7523	0.6626	0.5716
\overline{C}	.8988	.90038	0.9040	0.9253	0.9458
$\overline{\overline{Y}}$	1.2087	1.2108	1.2158	1.2444	1.2720
\overline{w}	2.3193	2.3469	2.4130	2.8702	3.4762
\overline{H}	.3263	.32688	0.3282	0.3360	0.3434
\overline{K}	12.3967	12.418	12.4690	12.7627	13.0454
utility	-0.9488	-0.9485	-0.9479	-0.9445	-0.9418

A Phillips curve (for stationary states)

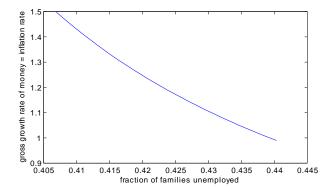


Figure 1: Stationary state Phillips curve

Log-linear version of the model

$$0 = \widetilde{w}_{t} + \widetilde{P}_{t} - E_{t}\widetilde{P}_{t+1} - E_{t}\widetilde{C}_{t+1},$$

$$0 = \widetilde{w}_{t} - E_{t}\widetilde{w}_{t+1} + \beta \overline{r}E_{t}\widetilde{r}_{t+1},$$

$$0 = \widetilde{r}_{t}^{n} - \widetilde{w}_{t} + \widetilde{C}_{t},$$

$$0 = \overline{C} \left[\widetilde{P}_{t} + \widetilde{C}_{t} \right] - \frac{\overline{M/P}}{\overline{g}} \widetilde{M}_{t-1} + \overline{N/P} \widetilde{N}_{t},$$

$$0 = \overline{M/P} \widetilde{M}_{t} + \left[\overline{r}^{n} \overline{N/P} - \overline{M/P} \right] \widetilde{P}_{t} + \overline{K} \widetilde{K}_{t+1} - \overline{w} \overline{H} (\widetilde{w}_{t} + \widetilde{H}_{t}) - \overline{r} \overline{K} \widetilde{r}_{t} - (\overline{r} + 1 - \delta) \overline{K} \widetilde{K}_{t} - \overline{r}^{n} \overline{N/P} \widetilde{N}_{t} - \overline{r}^{n} \overline{N/P} \widetilde{r}_{t}^{n},$$

$$0 = \widetilde{w}_{t} + \widetilde{r}_{t}^{f} - \widetilde{\lambda}_{t} - \theta \widetilde{K}_{t} + \theta \widetilde{H}_{t},$$

$$0 = \widetilde{r}_{t} - \widetilde{\lambda}_{t} - (\theta - 1) \widetilde{K}_{t} - (1 - \theta) \widetilde{H}_{t},$$

$$0 = \widetilde{Y}_{t} - \widetilde{\lambda}_{t} - \theta \widetilde{K}_{t} - (1 - \theta) \widetilde{H}_{t},$$

Log-linear version of the model (continued)

$$0 = \overline{r}^{f} \left[\overline{N/P} + \overline{M/P} \left(1 - \frac{1}{\overline{g}} \right) \right] \widetilde{r}_{t}^{f} + \left(\overline{r}^{f} - \overline{r}^{n} \right) \overline{N/P} \widetilde{N}_{t}$$

$$- \left[\left(\overline{r}^{f} - \overline{r}^{n} \right) \overline{N/P} + \overline{r}^{f} \overline{M/P} \left(1 - \frac{1}{\overline{g}} \right) \right] \widetilde{P}_{t}$$

$$+ \overline{r}^{f} \overline{M/P} \widetilde{g}_{t} + \overline{r}^{f} \overline{M/P} \left(1 - \frac{1}{\overline{g}} \right) \widetilde{M}_{t-1} - \overline{r}^{n} \overline{N/P} \widetilde{r}_{t}^{n},$$

$$0 = \overline{N/P} \widetilde{N}_{t} + \overline{M/P} \left(1 - \frac{1}{\overline{g}} \right) \widetilde{M}_{t-1} - \left[\overline{N/P} + \overline{M/P} \left(1 - \frac{1}{\overline{g}} \right) \right] \widetilde{P}_{t}$$

$$+ \overline{M/P} \widetilde{g}_{t} - \overline{w} \overline{H} \widetilde{w}_{t} - \overline{w} \overline{H} \widetilde{H}_{t}$$

$$0 = \widetilde{M}_{t} - \widetilde{g}_{t} - \widetilde{M}_{t-1}.$$

Solving the model

- state variables $x_t = \left[\widetilde{K}_{t+1}, \widetilde{M}_t, \widetilde{P}_t\right]'$
- jump variables $y_t = \left[\widetilde{r}_t, \widetilde{w}_t, \widetilde{Y}_t, \widetilde{C}_t, \widetilde{H}_t, \widetilde{N}_t, \widehat{r}_t^n, \widetilde{r}_t^f\right]'$
- stochastic variables $z_t = \left[\widetilde{\lambda}_t, \widetilde{g}_t\right]'$
- the system can be written as

$$0 = Ax_{t} + Bx_{t-1} + Cy_{t} + Dz_{t},$$

$$0 = E_{t} [Fx_{t+1} + Gx_{t} + Hx_{t-1} + Jy_{t+1} + Ky_{t} + Lz_{t+1} + Mz_{t}],$$

$$z_{t+1} = Nz_{t} + \varepsilon_{t+1},$$

• see book for matrices

Policy functions

• For the policy functions

$$x_{t+1} = Px_t + Qz_t$$
$$y_t = Rx_t + Sz_t$$

ullet The matrices P and Q are

$$P = \left[\begin{array}{rrr} 0.9430 & 0 & 0 \\ 0 & 1 & 0 \\ -0.3340 & 1 & 0 \end{array} \right]$$

$$Q = \left[\begin{array}{ccc} 0.1490 & 0.2020 \\ 0 & 1 \\ -1.0337 & 0.6287 \end{array} \right]$$

• The matrices R and S are

$$R = \begin{bmatrix} -0.9236 & 0 & 0 \\ 0.5315 & 0 & 0 \\ 0.0764 & 0 & 0 \\ 0.5434 & 0 & 0 \\ -0.4432 & 0 & 0 \\ -0.2457 & 1 & 0 \\ -0.0119 & 0 & 0 \\ -0.0119 & 0 & 0 \end{bmatrix}$$

$$S = \begin{bmatrix} 1.8309 & 1.2411 \\ 0.4701 & 0.1791 \\ 1.8309 & 1.2411 \\ 0.4077 & -1.1172 \\ 1.2982 & 1.9392 \\ 0.7347 & 0.5734 \\ 0.0625 & 1.2964 \\ 0.0625 & -0.8772 \end{bmatrix}$$

Impulse response functions: real variables to a technology shock Impulse response functions: real variables to a money growth shock Impulse response functions: nominal variables to a technology shock Impulse response functions: nominal variables to a money growth shock

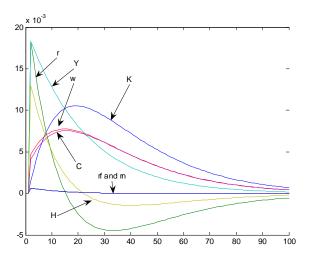


Figure 2: Responses of real variables to a technology shock

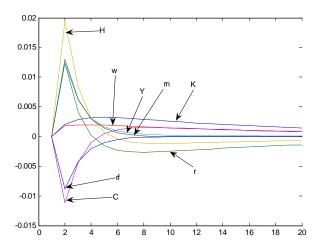


Figure 3: Response of real variables to a money growth shock

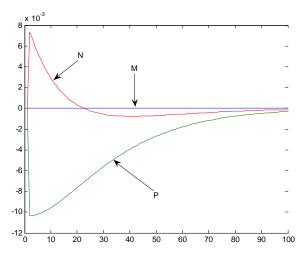


Figure 4: Response of nominal variables to a technology shock

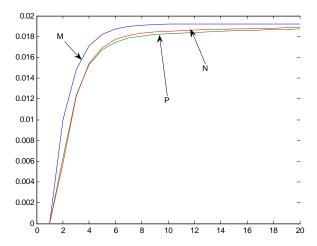


Figure 5: Response of nominal variables to a money growth shock