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Learning

e How do people form expectations about the future

e Many economists are uneasy with rational expectations

Especially for individual decisions
— Demands a lot of knowledge
— More knowledge than most people might have

— How much processing ability do individuals have

Bounded Rationality are an alternative

What does Bounded Rationality mean

people are only partly rational in their decisions?

people don’t have full information when making their decisions?

— decisions are too hard to make rationally (too much processing and
too much information)

people only preceive the world with errors

people use learning processes to try to improve their forecasting
Learning processes
e Bayesian updating
— use new information mixed with priors to get new forecasts
e Kalman filter

— Have underlying state space model

— use available data to estimate model



— update with each new observation
e Least squares learning (a special case of Kalman filtering)

— Use a linear model and estimate coefficients by least squares
— can be done recursively as new data is added
— can have fixed or decreasing gain

% can can be thought of as the weight given to new data

* decreasing gain like OLS

* constant gain is like OLS with forgetting (older data is less rele-
vant)

x Forgetting is good in models with regime changes
Least squares learning

e Assume that people behave as if they have an OLS model for forecasting

Expectation variables are forecast with this model

e Model is build on old and current data
— For parameter estimates

e Model is updated each period when new data arrives

IMPORTANT RESULT: in many cases least squares learning converges
to rational expectations

— Marcet and Sargent (1988)

— They use a continuous approximation of the descrete model
Least squares learning

e Assume that the world works as if
Yt = Typy + €y,
e where

— y; is a vector of endogenous variables,

— a4 is the history up to moment ¢ of the exogenous variables (that
could include past values of y;)

— ¢, is the estimate of the coefficients of the model using data up to
time ¢t — 1 and &; is a vector of error terms.

e Define Xt = [xt,xt—1»'~-,$0]/ and Y—t = [yt,ytfla"'ayoy



e Ordinary least squares estimate of the coefficients, ¢,, is
-1
Pt = (Xz{Xt) Xt/Yt-

e For forecasting, the Y; variables need to be one step ahead of the X;
variables

e For doing a model, we want a recursive way of doing OLS
Recursive Least Squares

e One can write the history vectors as

X, — [ Xi1 }
T
e and
Y, — [ Yio1 } _
Yt
e Then
’ X — /
XiXe=[ X,y ] [ ;tl } =X, 1 X1 + 7h
e and
’ Yﬁ 7
XYe=[ X,y ] [ tytl } =X, Vi1 + 3y

Recursive Least Squares

e OLS can be written as
’ -1 ’
by = ( Xy Xe1 + $2$t> (Xt—ly;ﬁ—l + xéyt)
e Problem is how to find a useful (for recursive) expression of
’ ’ -1
( thlthl + Z’tl't>

Useful trick (1)
e When d'b is a rank one matrix
— this happens when a and b are vectors
e The inverse of the matrix I 4+ a’b can be written as
I+ a'b]fl =1+ca'd
where c is the scalar .
T l+obd



Useful trick (2)

e multiply [ + ab’ ]_1 by a non-singluar matrix B~! to get

1

B '[I+db) ' =[I+ab B =[B+dbB] ",

Using the formula above
B 'I+db =B '[I+cdb]=B'+cBdb.

Combine

[B+dbB]"' =B ' +¢B 'd'b.

Define the vector as f = bB, and substitute
B+df] ' =B ' +c¢B ' fB!

where the scalar ¢ is now

1
1+ fB 1

c=

For OLS
e The inverse of the X’X matrix is

(thletfl + x;xt) -t

— (X X)) e (X X)) e (X X )

where
1

- 14+ Tt (XéilXt_l)il LE%

C =

e Put this into the OLS equation
’ =1 s
o = (XiXy)  XiYe
—1 ’
= (Xé—lXt—l + :z:;xt) (Xt—1Yt—1 + 53;%)

e after some algebra get

(X1 X 1) 2]
= _ + — X —
Pr = Pr-1 1+ 2, (Xé,lXt71)_l$£ (yt tP¢ 1)

Recursive OLS (decreasing gain)

e Define P, = (X} X,) ",



e write above equation as

’
Ptfllljt

Y =1+ 1+ 2Pz, (ye — zeps_1)
e with the updating rule for P; of
Pt_1$;
P=|l—-—""""—x| P_
t 1+ SEtPthCth t—1

e This is the decreasing gain recursive OLS formula

e Begin with some Fy and ¢, and update using this formula and the data
x; and y; in each period

e Here Py and ¢, are like "priors"
Putting this into the Hansen model

e Hansen’s basic model is

0 = as*Etét-H + BTETi4+1
~ f]t ~

0 = Y- — —
O t

0 = ?g—65t+f (1—5)I?t—l?t+1
= MHOK +(1+0)H Y,
= Y- K -7
}\Vt = ’}/F)\vt_l +gt

e We assume that the expected variables EtC~’t+1 and E;ry 1 are found using
current data, or

{ ECrr ] . [ fcgl 1 _ { ol ol ]

Kt+1
~ 1 1 v
Et’l"t+1 P21 P22

Y:

)

Least square updating
e given some initial values for Py and ¢,
e they are updated using the OLS recursive formula

/
Pt_lmt

Yy =@p_1+ m (yt - xt%—1)
and P ,
_1T
Po= Tyt P
t + 1+$tPt—1$;xt t—1



e The model has two parts

— the linear model to be solved each period

* which is backward looking because the expectations are esti-
mated on past values

— and updating part that uses the data generated by the model to
update the values of P, and ¢,

— the new value of ¢, is used in the next period’s solution of the model

The Hansen model

e Written is a state space version, where

e The state space version of the log-linear model can be written as

Ty =

K
H,
Y;
Cy
Tt

EiCitq
Etftﬂ
At

At (‘Pt—l) T = Bt ((pt_l) Ti—1 + C(—:t

e Only backward looking

The Hansen model

e If A; (¢,_4) is invertible, the model is solved as

e where

Ay

0 0
1

0 17

—K

0 1-6
0 0
_@%1@ - 1) 0
—90%1@ - 1) 0
0 0

= (A (o)) B (i) mor + [A (9r0)] 7 O

_— o oo, O OO




The Hansen model

0 0000000
0 0000O0TO 0O
~1-8K 000000 0
B, - —0 0000O0TO 0O
1 0000O0O0 0
0 0000O0O0 O
0 0000O0TO 0O

I 0 000000 7|

and
c=[0000000 1].

The Hansen model
e The rational expectations parameters for the OLS forecasting equation for
this model are
[ 5130 2614
Y= | —1.007 .9662

e These are found from the linear plans from a rational expectations solution

e A policy function is of the form

zd ] [ d¥ @ ky
x| | eFoed At
e In a rational expectations model, a forecast for the expected variables
Etct+1 and EtFt+1 are

Etét-H _ e
Et?t_,_l Tk T>\

Etfgt-u
Ei)i

The Hansen model

e But Etf(t_H = I?H_l and EtXH_l = ’th so these are found from
YAt 0 v Ao |
e Combining these two give

Et6t+1 B LN Kk A _;E-t
Et’l,:t+1 o T'k 7‘>\ 0 Y >\t



K, . .
=t 1 of states can be calculated from the policy functions

t
B [ Kk R ] K,
TANNT A

the vector

for INQ and 1775 as

i{tj—l
Y,

or, by taking the inverse, as
lf{t]_[kk kk}‘l
|l
The final OLS coefficients come from
R

(o ]=[ 210 S0 1
By rkooph 0 v y oyt Y;

kRN R
P31 Pho e Loy Lyt oy

The Hansen Model

[?,tj'l
Y,

e Marcet and Sargent show that if the coefficients of the OLS forecasting
rule are in a neighborhood of ¢, they converge to ¢.

e In practice, the neighborhood can be pretty big.

e Let the initial coefficients be

e -1

')
')

e Unfortunately, learning with recursive OLS with declining gain can be
very slow

and ) )
b x CINk

The Hansen Model

e After 200,000 periods, the estimates at the end of the 200,000 periods ¢
are equal to
| 0.6803 0.2750
Y= | —1.0058 0.9597
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Figure 1: Parameter values over 200,000 periods: A =1

and the updating matrix P is equal to

p_ .00009069  —.00005938
~ | —.00005938 .00005983

Further adjustments will be slow because the updating matrix is so small

The Hansen Model with memory

see how slowly the coefficients converge

Learning with forgetting

According to Lindoff adding "forgetting" to recursive least squares esti-
mation is simple.

Choose a A where 0 < A < 1 and adjust the updating rule to be

—1 —1 /
Py = AP + @y T

Asymptotically, this is equivalent to a weighted least squares estimation
of the form

t -1/
P, = (Z /\t_kx;xk> (Z )\t_kz;fyk> .

k=1 k=1
The weights are smaller on older data and are relatively large on new data

This kind of updating rule is good if one suspects that there has been a
regime change

Learning with forgetting
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Figure 2: Parameter values over 200,000 periods: A = .999

Adding a forgetting factor of A results in a new updating function of

/
Pt—lxt

ey el

Yy =@p_1+

e and the updating equation for P is

1 Pz

Po== I+t
DY A+ 2, P_iay

!
Ty Pt—1~

Notice that 1/A in the updating equation for P is greater than one
This keeps P from shrinking too fast
Values of A between .999 and .95 are frequently used

Even at the lower end of this range, the model can give weird results

Learning with forgetting

e Run same economy with A = .999

e Coefficients converge faster (and in distribution) to the rational expecta-

tions values
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