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Learning

� How do people form expectations about the future

� Many economists are uneasy with rational expectations

�Especially for individual decisions

�Demands a lot of knowledge

�More knowledge than most people might have

�How much processing ability do individuals have

� Bounded Rationality are an alternative

� What does Bounded Rationality mean

� people are only partly rational in their decisions?

� people don�t have full information when making their decisions?

� decisions are too hard to make rationally (too much processing and
too much information)

� people only preceive the world with errors

� people use learning processes to try to improve their forecasting

Learning processes

� Bayesian updating

� use new information mixed with priors to get new forecasts

� Kalman �lter

�Have underlying state space model

� use available data to estimate model
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� update with each new observation

� Least squares learning (a special case of Kalman �ltering)

�Use a linear model and estimate coe¢ cients by least squares

� can be done recursively as new data is added

� can have �xed or decreasing gain

� can can be thought of as the weight given to new data
� decreasing gain like OLS
� constant gain is like OLS with forgetting (older data is less rele-
vant)

� Forgetting is good in models with regime changes

Least squares learning

� Assume that people behave as if they have an OLS model for forecasting

� Expectation variables are forecast with this model

� Model is build on old and current data

�For parameter estimates

� Model is updated each period when new data arrives

� IMPORTANT RESULT: in many cases least squares learning converges
to rational expectations

�Marcet and Sargent (1988)

�They use a continuous approximation of the descrete model

Least squares learning

� Assume that the world works as if

yt = xt't + "t;

� where

� yt is a vector of endogenous variables,

� xt is the history up to moment t of the exogenous variables (that
could include past values of yt)

�'t is the estimate of the coe¢ cients of the model using data up to
time t� 1 and "t is a vector of error terms.

� De�ne Xt = [xt; xt�1; :::; x0]0 and Yt = [yt; yt�1; :::; y0]0
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� Ordinary least squares estimate of the coe¢ cients, 't, is

't = (X
0
tXt)

�1
X 0
tYt:

� For forecasting, the Yt variables need to be one step ahead of the Xt
variables

� For doing a model, we want a recursive way of doing OLS

Recursive Least Squares

� One can write the history vectors as

Xt =

�
Xt�1
xt

�
� and

Yt =

�
Yt�1
yt

�
:

� Then
X 0
tXt =

�
X

0

t�1 x0t
� � Xt�1

xt

�
= X

0

t�1Xt�1 + x
0
txt

� and
X 0
tYt =

�
X

0

t�1 x0t
� � Yt�1

yt

�
= X

0

t�1Yt�1 + x
0
tyt

Recursive Least Squares

� OLS can be written as

't =
�
X

0

t�1Xt�1 + x
0
txt

��1 �
X

0

t�1Yt�1 + x
0
tyt

�
� Problem is how to �nd a useful (for recursive) expression of�

X
0

t�1Xt�1 + x
0
txt

��1
Useful trick (1)

� When a0b is a rank one matrix

� this happens when a and b are vectors

� The inverse of the matrix I + a0b can be written as

[I + a0b]
�1
= I + ca0b

where c is the scalar
c = � 1

1 + ba0

3



Useful trick (2)

� multiply [I + ab0]�1 by a non-singluar matrix B�1 to get

B�1 [I + a0b]
�1
= [[I + a0b]B]

�1
= [B + a0bB]

�1
:

Using the formula above

B�1 [I + a0b]
�1
= B�1 [I + ca0b] = B�1 + cB�1a0b:

Combine
[B + a0bB]

�1
= B�1 + cB�1a0b:

De�ne the vector as f = bB, and substitute

[B + a0f ]
�1
= B�1 + cB�1a0fB�1

where the scalar c is now

c= � 1

1 + fB�1a0

For OLS

� The inverse of the X�X matrix is�
X 0
t�1Xt�1 + x

0
txt
��1

=
�
X 0
t�1Xt�1

��1
+ c

�
X 0
t�1Xt�1

��1
x0txt

�
X 0
t�1Xt�1

��1
where

c = � 1

1 + xt
�
X 0
t�1Xt�1

��1
x0t

� Put this into the OLS equation

't = (X 0
tXt)

�1
X 0
tYt

=
�
X 0
t�1Xt�1 + x

0
txt
��1 �

X
0

t�1Yt�1 + x
0
tyt

�
� after some algebra get

't = 't�1 +

�
X 0
t�1Xt�1

��1
x0t

1 + xt
�
X 0
t�1Xt�1

��1
x0t

�
yt � xt't�1

�
Recursive OLS (decreasing gain)

� De�ne Pt = (X 0
tXt)

�1,
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� write above equation as

't = 't�1 +
Pt�1x

0
t

1 + xtPt�1x0t

�
yt � xt't�1

�
� with the updating rule for Pt of

Pt =

�
I � Pt�1x

0
t

1 + xtPt�1x0t
xt

�
Pt�1

� This is the decreasing gain recursive OLS formula

� Begin with some P0 and '0 and update using this formula and the data
xt and yt in each period

� Here P0 and '0 are like "priors"

Putting this into the Hansen model

� Hansen�s basic model is

0 = eCt � Et eCt+1 + �rEtert+1
0 = eYt � eHt

1�H
� eCt

0 = Y eYt � C eCt +K h(1� �) eKt � eKt+1

i
0 = e�t + � eKt + (1 + �) eHt � eYt
0 = eYt � eKt � erte�t = 
e�t�1 + e"t:

� We assume that the expected variables Et eCt+1 and Etert+1 are found using
current data, or�

Et eCt+1
Etert+1

�
=
�
't�1

� " eKt+1eYt
#
=

�
'111 '112
'121 '122

�" eKt+1eYt
#
;

Least square updating

� given some initial values for P0 and '0
� they are updated using the OLS recursive formula

't = 't�1 +
Pt�1x

0
t

1 + xtPt�1x0t

�
yt � xt't�1

�
and

Pt =

�
I +

Pt�1x
0
t

1 + xtPt�1x0t
xt

�
Pt�1
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� The model has two parts

� the linear model to be solved each period

� which is backward looking because the expectations are esti-
mated on past values

� and updating part that uses the data generated by the model to
update the values of Pt and 't

� the new value of 't is used in the next period�s solution of the model

The Hansen model

� Written is a state space version, where

xt =

266666666664

Kt+1

Ht
Yt
Ct
rt

Et eCt+1
Etert+1e�t

377777777775
� The state space version of the log-linear model can be written as

At
�
't�1

�
xt = Bt

�
't�1

�
xt�1 + C"t

� Only backward looking

The Hansen model

� If At
�
't�1

�
is invertible, the model is solved as

xt =
�
At
�
't�1

���1
Bt
�
't�1

�
xt�1 +

�
At
�
't�1

���1
C"t

� where

At =

266666666664

0 0 0 1 0 �1 �r 0
0 � 1

1�H 1 �1 0 0 0 0

�K 0 Y �C 0 0 0 0
0 1� � �1 0 0 0 0 1
0 0 1 0 �1 0 0 0

�'111(t� 1) 0 �'112(t� 1) 0 0 1 0 0
�'121(t� 1) 0 �'122(t� 1) 0 0 0 1 0

0 0 0 0 0 0 0 1

377777777775
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The Hansen model

Bt =

266666666664

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

� (1� �)K 0 0 0 0 0 0 0
�� 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 


377777777775
and

C =
�
0 0 0 0 0 0 0 1

�0
:

The Hansen model

� The rational expectations parameters for the OLS forecasting equation for
this model are

' =

�
:5130 :2614
�1:007 :9662

�
� These are found from the linear plans from a rational expectations solution

� A policy function is of the form�
xdt
xet

�
=

�
dk d�

ek e�

� �
kt
�t

�
� In a rational expectations model, a forecast for the expected variables
Et eCt+1 and Etert+1 are�

Et eCt+1
Etert+1

�
=

�
ck c�

rk r�

�"
Et eKt+1

Ete�t+1
#

The Hansen model

� But Et eKt+1 = eKt+1 and Ete�t+1 = 
e�t so these are found from" eKt+1


e�t
#
=

�
kk k�

0 


�" eKte�t
#
:

� Combining these two give�
Et eCt+1
Etert+1

�
=

�
ck c�

rk r�

� �
kk k�

0 


�" eKte�t
#
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� the vector
" eKte�t

#
of states can be calculated from the policy functions

for eKt and eYt as " eKt+1eYt
#
=

�
kk k�

yk y�

�" eKte�t
#

� or, by taking the inverse, as" eKte�t
#
=

�
kk k�

yk y�

��1 " eKt+1eYt
#

� The �nal OLS coe¢ cients come from�
Et eCt+1
Etert+1

�
=

�
ck c�

rk r�

� �
kk k�

0 


� �
kk k�

yk y�

��1 " eKt+1eYt
#

� or �
'111 '112
'121 '122

�
=

�
ck c�

rk r�

� �
kk k�

0 


� �
kk k�

yk y�

��1
The Hansen Model

� Marcet and Sargent show that if the coe¢ cients of the OLS forecasting
rule are in a neighborhood of ', they converge to '.

� In practice, the neighborhood can be pretty big.

� Let the initial coe¢ cients be�
'111(0) '112(0)
'121(0) '122(0)

�
=

�
1 0
0 1

�
and

P =

�
P 111(0) P 112(0)
P 121(0) P 122(0)

�
=

�
1 0
0 1

�
The Hansen Model

� Unfortunately, learning with recursive OLS with declining gain can be
very slow

� After 200,000 periods, the estimates at the end of the 200; 000 periods '
are equal to

' =

�
0:6803 0:2750
�1:0058 0:9597

�
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Figure 1: Parameter values over 200,000 periods: � = 1

� and the updating matrix P is equal to

P =

�
:00009069 �:00005938
�:00005938 :00005983

�
� Further adjustments will be slow because the updating matrix is so small

The Hansen Model with memory

� see how slowly the coe¢ cients converge

Learning with forgetting

� According to Lindo¤ adding "forgetting" to recursive least squares esti-
mation is simple.

� Choose a � where 0 < � < 1 and adjust the updating rule to be

P�1t+1 = �P
�1
t + x0t+1xt+1:

� Asymptotically, this is equivalent to a weighted least squares estimation
of the form

b't =
 

tX
k=1

�t�kx0kxk

!�1 tX
k=1

�t�kx0kyk

!
:

� The weights are smaller on older data and are relatively large on new data

� This kind of updating rule is good if one suspects that there has been a
regime change

Learning with forgetting
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Figure 2: Parameter values over 200,000 periods: � = :999

� Adding a forgetting factor of � results in a new updating function of

't = 't�1 +
Pt�1x

0
t

�+ xtPt�1x0t

�
yt � xt't�1

�
� and the updating equation for P is

Pt =
1

�

�
I +

Pt�1xt
�+ x0tPt�1xt

x0t

�
Pt�1:

� Notice that 1=� in the updating equation for P is greater than one

� This keeps P from shrinking too fast

� Values of � between .999 and .95 are frequently used

� Even at the lower end of this range, the model can give weird results

Learning with forgetting

� Run same economy with � = :999

� Coe¢ cients converge faster (and in distribution) to the rational expecta-
tions values
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