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1 Recursive deterministic models
Recursive deterministic models

e What is a recursive problem

e Nature of the problem is the same independent of the period

1. Same maximization problem
2. Same budget constraints

3. Initial values can be different
e Example

1. A household maximizes its discounted utility stream subject to a
budget constraint
2. If each period the utility function is the same

3. The form of the budget constraints are the same

— The values in the budget constraint can change
— Wealth can be different in different periods

States and controls
e Three types of variables

1. State variables
2. Control variables

3. Other (jump) variables

e States variables are those predetermined at the beginning of a period



1. Capital in a Solow growth model (came from previous period)
2. Shock to technology (determined by nature)

3. Money stock carried over from previous period
e Control variables are those chosen to maximize some objective function

Investment in the period
Labor supplied in the period
Consumption in the period

Capital to be carried over to the next period

O W

Money holding to be carried over to the next period

e Other variables: those determined by the states and the choices for the
values of the controls

1. Output is determined by capital (normally a state) and by labor
supply (normally a control)
2. If output is determined and investment is a control, consumption is
determimed from budget constraints
Policy Function
e The solution we look for is called a Policy Function

e A policy function gives

— The optimizing values for the time ¢ Controls
— As a function of the values of the time t States
— A policy function tells what to do based on what is happening

* was developed in the 1950’s
x separately in the US and in the Soviet Union
* countries needed controls for their rockets

Infinite horizon problem with states and controls

Robinson Crusoe want to maximize the discounted utility

oo
max Z Bru(ct+i),
i=0
subject to the budget restrictions,
[5em]
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ki1 = (1 —0)ke + iy,
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ye = fke) = ¢ + iy



k; is the state variable
possible choices of controls

kiv1  (choosing ki11 determines the required i; and, from the second budget
constraint, ¢;

¢t (choosing ¢; determines 4; and this determines k11

it (choosing i; determines ¢; from one budget constraint and k;y; from the
other

As the problem is written, ¢; is the control
Writing the problem with capital as the control

e Use the budget constraint to write
Ct = f(k’t) + (1 - 5)k’t - kt+1

e Substitute this into the utility function to get
maxz Bru[f (kegi) + (1= kg — kigisa]

e In this case, kiy;41 is a control in period ¢ + 4
— k¢4 is the state in that period
The value function

Definition 1 For given values of the state variables at time t, the value function
gives the value of the discounted objective function when that objective function
1s being mazimized.

The value function is a function of the state variables
The discounted objective function is being optimized

Example:

V(k) = max Zﬁ w(f (Bei) = Feprvi + (1 = 0)keyi)

s t+1 i=0

The value function

e Let z; be the state variables.

o V(z,) is the value of

Z/B u(f(kevi) = kev1vi + (1= 6)keyi)



e When the sequence of {ks}zitﬂ has been chosen to maximize it

e V(x;) is a function of the state variables and its value changes when the
value of the state variables change (in this case, ko)

Recursive problems
e The time ¢ problem
V(ky) = max Zﬁ uw(f(kiti) = Feprgs + (1 — 0) ki)
ko}tiZem i=0
is recursive
e In time ¢ + 1, Robinson Crusoe is solving

V(kis1) = {kH}laX Zﬁ w(f(Kig14i) — krgogi + (1 = 0)kig144)
s=t+2 j_

Decomposing the time t problem
The time ¢t problem

V (k) max Zﬁ u(f (Kei) = Ferrvi + (1 = 0)keys)
ks}32 t+1 5,0
can be written as

Vik) = max[u(f(k) — kisr + (1= 0)kt)

kty1

{kn}laX 25 u(f(ktr14i) = kepari + (1 = 6)kir144)
s=t+2 ;_

or as

V(kt) = max [u(f (k) — kev1 + (1= 6)ke) + BV (kit1)]

kt+1

The Bellman equation

e The recursive equation

V (ki) = max [u(f(ki) — ki1 + (1= 0)ke) + BV (kiy1)]

kig1
is called a Bellman equation

e It is recursive because V(k;) dependes on the value of the same function
V(-) but evaluated at ki1

e It is a one period problem



— One only chooses the value of k1
— Notice that all future utility is captured in V (k1)
— Choice of k;y1 will change the value of V(ki41)

e Lots of systems work this way
— riding a bicycle, driving a car, flying a glider
First order conditions

o Take the derivative of V(k;) with respect to ki1

o Get
0= —v'(f(ke) = k1 + (1 = 0)ke) + BV (ke1)

e Problem is that we do not know the function V(ki1+1) nor its derivative
V' (k1)

Benveniste - Scheinkman envelope theorem conditions
e Benveniste - Scheinkman give conditions under which one can find V'(+)

e Take derivative of

V (ki) = max [u(f (ki) — kiv1 + (1 = 0)ky) + BV (key1)]

kg1
with respect to k;

o Get
V' (k) = u' (f(ke) = ke + (1= 8)ke) (f' (ki) + (1 = 0))

which we can evaluate at k1
e The result is called an envelope theorem
First order and B-S envelope conditions
e Combine first order and envelope conditions

e Get the Euler equation

u'(ct)
u/(Cr41)

= B(f (k1) + (1= 0)).

e In a stationary state, where ¢; = c;41, this is

%—a—azf@»



General version of problem
Let x; be the state variables and y; the controls

We want solve

V(x;) = max ZﬁsftF(xsays)

£ et
subject to the set of budget constraints
Ts41 = G(l’s, ys)'

The functions, F(-,-) and G(-,-), are the same for all periods

Both time t state variables and control variables can be in the objective function
and the budget constraints at time .

This can be written as a Bellman equation,
V(zy) = max [F (e, yt) + BV (2e41)] 5
subject to the budget constraints

Tip1 = G(24, Y1),

General version of problem

The Bellman equation can be written as
V() = max [F(2t,yt) + BV (G2t yt))]
We solve for a policy function of the form
Yo = H(z)

The time t controls are functions of the time t state variables

Notice that the problem is a functional equation and that the solution is the
function y; = H(x})
General version of problem: the first order conditions

e Taking the derivative of the Bellman equation gives
0= Fy(@e,y:) + BV (G2, y2)) Gy (20, )
e As before we can find the Benveniste-Scheinkman envelope theorem
V'(24) = Fulwe, ye) + BV (G (21, y¢)) G (4, 1)

— If Gw(l't, yt) = 0
— The envelope condition is simply V' (x:) = Fy(xt, yt)



The solution can be written as the Euler equation
0= Fy(fft»yt) + 6Fx(G(mtayt)ayt+1)Gy(xt7yt)

If the function, F.(G(x¢,yt), yt+1), is independent of y; 1,
This equation can be solved for, y, = H(z;)

Normally, explicit solutions cannot be found

Conditions for the envelope theorem (from Benveniste-Scheinkman)

e Conditions are (for our form of the model)

x¢ € X where X is convex and with non-empty interior
yr € Y where Y is convex and with non-empty interior
F(x4,y¢) is continuous and differentiable

G(x¢,y:) is continuous and differentiable and invertible in y;

e This gives enough structure so the envelope theorem holds

Newer,

more general results in Milgrom and Segel

Approximation of the value function
What happens if G, (24, 9:) #0 ?

One can approximate the value function numerically

Great contribution of Bellman

Choose some initial function Vy(z;)

Most any function will do

a good one is Vp(z¢) = ¢

where ¢ is a constant (0, for example)

Find (approximately) the function V;(z;)

Vi(zy) = myat,x [F(ze,y:) + BVo (G4, y1))]

over a dense set of values from the domain of

One now has the function Vi (z;)
Approximation of the value function (continued)

e Using this function Vi (z;), find

Va(xy) = H.}/?X [F (2, yt) + BVI(G (2t 1))

over a dense set of values from the domain of z;

one will need to interpolate the function Vi (x;)



— when the needed G(x¢,y;) is not part of the dense set of x;

— linear interpolation is normally good enough

Using Va(x;) repreat the process

o0

Get a sequence {Vj(z¢)},—,

Bellman showed that {V;(z¢)};oq — V(z)

Once you have V(z;) finding y; = H(z;) is easy
— Actually, one finds a sequence {H;(z;)}io, — H(z)
— while finding {Vi(z)}ioy — V()

e Why does this work? Answer = f3

Problems of dimensionality
How well do we choose to approximate the function
How many points in the domain of x;
If £, € R! we can choose lots of points, M points
As dimensionality of z; grows (say to RY)
number of points needed is M~ which can be very large
Comparing example economy to general problem 1: using B-S

The objective function is
F(ze, y) = u(f (k) — ke + (1= 0)ke)
The budget constraint is
kiv1 = 201 = G(Tt, Y1) = Yo = k1

or
kip1 = kit

The first order condition is

0 = Fy(xtvyt) +ﬁV,(G(xtayt))Gy(xt7yt)
= —u(f(ke) = kepr + (1= 0)ke) + BV (G4, y1)) - 1

Because Oki11/0k: = 0, the B-S envelope theorem condition is

V() = Fo(we, ye) = o' (f(ke) — kegr + (1= 6)ky) (f (ke) + (1 —6))

Comparing example economy to general problem 1: using B-S
e Use this V’(-) in the first order conditions to get the Euler equation

0 = —u(f(ke) = kepr + (1= 0)kt)
+6 [t (f(kry1) = kea + (1= 0)keyr) (f (ki) + (1= 9))].



e we can find the stationary state where k; = ki1 = kiyo = k as

FE=5-0-9)

Comparing example economy to general problem 2

e We can solve the problem a different way

Let the objective function be

F(z4,y:) = ulcr)

The budget constraint is
k’t+1 = Ti41 = G(J?t,yt) = f(kit) + (1 — (S)kit — Ct

The Bellman equation is
V(ki) = max [u(er) + BV (f(ke) + (1 = 8)ke — cr)]

— Notice that the budget constraint is already in V(ki41)

The derivative of the budget constraint is

aG(xta yt)
8@}

— Can’t use B-S method

= (k) + (1-8) #0

Approximation of the Value function
To approximate the value function need explicit functions for u(c;) and f(k)
Let f(k;) = kY and u(c;) = In(cy)
Let 6 = .1, 8 = .36, and 8 = .98 (consistent with annual data for US)

The Bellman equation is

V (k) = max [In(k! — ka1 + (1 = 0)ke) + BV (kus1)]

kti1

Note: stationary state k = 5.537 (how do you find this?)
Approximation of the Value function

e Choose Vj(+) = 0 (a constant initial guess for value function)
e Find Vi(-) using
Vi(ky) = max [In(k! — keyr + (1= 0)ke) + BVo(kes1)]

k41
= max [In(k;*® — kyyq +.9k) + .98 0]

kty1

for a dense set of k;



e Find V5(-) using

Vo(ke) = max [In(k;* — ker + .9%) + .98 Vi (kys)]

kg1

for a dense set of k;. Use linear interpolation of Vi (k;y1) between known
points

e Repeat N times. Get approximate V (k;) function (as close as you want)

Computer program

Main program

global vlast beta delta theta kO kt
hold off

hold all

%set initial conditions
vlast=zeros(1,100);

k0=0.06:0.06:6;

beta=.98;
delta=.1;
theta=.36;

numits=240;
Jbegin the recursive calculations
for k=1:numits
for j=1:100
kt=j*.06;
%find the maximum of the value function
ktpl=fminbnd(@valfun,0.01,6.2);
v(j)=-valfun(ktpl);
kt1(j)=ktpi;
end
if k/48==round(k/48)
%plot the steps in finding the value function
plot(k0,v)
drawnow
end
vlast=v;
end
hold off
% plot the final policy function
plot (k0,kt1)
Computer program
Subroutine (valfun.m) to calculate value function
function val=valfun(k)
global vlast beta delta theta kO kt
%smooth out the previous value function
g=interpl(k0,vlast,k,’linear’);

10
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10

%Calculate consumption with given parameters

kk=kt theta-k+(1-delta)*kt;

if kk <=0
%»to keep values from going negative
val=-888-800*abs (kk) ;

else
%calculate the value of the value function at k
val=log(kk)+betaxg;

end

%change value to negative since "fminbnd" finds minimum

val=-val;

V(k,) after one iteration

V(k,) after ten iterations

V(k,) after 50 iterations

V(k,) after 100 iterations

V(k,) after 200 iterations

The policy function after 200 interatioins
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