
Resursive deterministic models

Prof. George McCandless
UCEMA

Spring 2007

1 Recursive deterministic models

Recursive deterministic models

� What is a recursive problem

� Nature of the problem is the same independent of the period

1. Same maximization problem

2. Same budget constraints

3. Initial values can be di¤erent

� Example

1. A household maximizes its discounted utility stream subject to a
budget constraint

2. If each period the utility function is the same

3. The form of the budget constraints are the same

�The values in the budget constraint can change
�Wealth can be di¤erent in di¤erent periods

States and controls

� Three types of variables

1. State variables

2. Control variables

3. Other (jump) variables

� States variables are those predetermined at the beginning of a period

1

1. Capital in a Solow growth model (came from previous period)

2. Shock to technology (determined by nature)

3. Money stock carried over from previous period

� Control variables are those chosen to maximize some objective function

1. Investment in the period

2. Labor supplied in the period

3. Consumption in the period

4. Capital to be carried over to the next period

5. Money holding to be carried over to the next period

� Other variables: those determined by the states and the choices for the
values of the controls

1. Output is determined by capital (normally a state) and by labor
supply (normally a control)

2. If output is determined and investment is a control, consumption is
determimed from budget constraints

Policy Function

� The solution we look for is called a Policy Function

� A policy function gives

�The optimizing values for the time t Controls

�As a function of the values of the time t States

�A policy function tells what to do based on what is happening

� was developed in the 1950�s
� separately in the US and in the Soviet Union
� countries needed controls for their rockets

In�nite horizon problem with states and controls

Robinson Crusoe want to maximize the discounted utility

max
1X
i=0

�iu(ct+i);

subject to the budget restrictions,
[5cm]
5cm

kt+1 = (1� �)kt + it;
5cm

yt = f(kt) = ct + it:

2

kt is the state variable

possible choices of controls

kt+1 (choosing kt+1 determines the required it and, from the second budget
constraint, ct

ct (choosing ct determines it and this determines kt+1

it (choosing it determines ct from one budget constraint and kt+1 from the
other

As the problem is written, ct is the control
Writing the problem with capital as the control

� Use the budget constraint to write

ct = f(kt) + (1� �)kt � kt+1

� Substitute this into the utility function to get

max
1X
i=0

�iu [f(kt+i) + (1� �)kt+i � kt+i+1]

� In this case, kt+i+1 is a control in period t+ i

� kt+i is the state in that period

The value function

De�nition 1 For given values of the state variables at time t, the value function
gives the value of the discounted objective function when that objective function
is being maximized.

The value function is a function of the state variables

The discounted objective function is being optimized

Example:

V (kt) = max
fksg1s=t+1

1X
i=0

�iu(f(kt+i)� kt+1+i + (1� �)kt+i)

The value function

� Let xt be the state variables.

� V (xt) is the value of
1X
i=0

�iu(f(kt+i)� kt+1+i + (1� �)kt+i)

3

� When the sequence of fksg1s=t+1 has been chosen to maximize it

� V (xt) is a function of the state variables and its value changes when the
value of the state variables change (in this case, k0)

Recursive problems

� The time t problem

V (kt) = max
fksg1s=t+1

1X
i=0

�iu(f(kt+i)� kt+1+i + (1� �)kt+i)

is recursive

� In time t+ 1, Robinson Crusoe is solving

V (kt+1) = max
fksg1s=t+2

1X
i=0

�iu(f(kt+1+i)� kt+2+i + (1� �)kt+1+i)

Decomposing the time t problem
The time t problem

V (kt) = max
fksg1s=t+1

1X
i=0

�iu(f(kt+i)� kt+1+i + (1� �)kt+i)

can be written as

V (kt) = max
kt+1

[u(f(kt)� kt+1 + (1� �)kt)

+� max
fksg1s=t+2

1X
i=0

�iu(f(kt+1+i)� kt+2+i + (1� �)kt+1+i)
#

or as
V (kt) = max

kt+1
[u(f(kt)� kt+1 + (1� �)kt) + �V (kt+1)]

The Bellman equation

� The recursive equation

V (kt) = max
kt+1

[u(f(kt)� kt+1 + (1� �)kt) + �V (kt+1)]

is called a Bellman equation

� It is recursive because V (kt) dependes on the value of the same function
V (�) but evaluated at kt+1

� It is a one period problem

4

�One only chooses the value of kt+1
�Notice that all future utility is captured in V (kt+1)

�Choice of kt+1 will change the value of V (kt+1)

� Lots of systems work this way

� riding a bicycle, driving a car, �ying a glider

First order conditions

� Take the derivative of V (kt) with respect to kt+1

� Get
0 = �u0(f(kt)� kt+1 + (1� �)kt) + �V 0(kt+1)

� Problem is that we do not know the function V (kt+1) nor its derivative
V 0(kt+1)

Benveniste - Scheinkman envelope theorem conditions

� Benveniste - Scheinkman give conditions under which one can �nd V 0(�)

� Take derivative of

V (kt) = max
kt+1

[u(f(kt)� kt+1 + (1� �)kt) + �V (kt+1)]

with respect to kt

� Get
V 0(kt) = u

0(f(kt)� kt+1 + (1� �)kt) (f 0(kt) + (1� �))

which we can evaluate at kt+1

� The result is called an envelope theorem

First order and B-S envelope conditions

� Combine �rst order and envelope conditions

� Get the Euler equation

u0(ct)

u0(ct+1)
= � (f 0(kt+1) + (1� �)) :

� In a stationary state, where ct = ct+1, this is

1

�
� (1� �) = f 0(k):

5

General version of problem

Let xt be the state variables and yt the controls

We want solve

V (xt) = max
fysg1s=t

1X
s=t

�s�tF (xs; ys)

subject to the set of budget constraints

xs+1 = G(xs; ys):

The functions, F (�; �) and G(�; �), are the same for all periods
Both time t state variables and control variables can be in the objective function
and the budget constraints at time t.

This can be written as a Bellman equation,

V (xt) = max
yt
[F (xt; yt) + �V (xt+1)] ;

subject to the budget constraints

xt+1 = G(xt; yt);

General version of problem

The Bellman equation can be written as

V (xt) = max
yt
[F (xt; yt) + �V (G(xt; yt))]

We solve for a policy function of the form

yt = H(xt)

The time t controls are functions of the time t state variables

Notice that the problem is a functional equation and that the solution is the
function yt = H(xt)
General version of problem: the �rst order conditions

� Taking the derivative of the Bellman equation gives

0 = Fy(xt; yt) + �V
0(G(xt; yt))Gy(xt; yt)

� As before we can �nd the Benveniste-Scheinkman envelope theorem

V 0(xt) = Fx(xt; yt) + �V
0(G(xt; yt))Gx(xt; yt)

� If Gx(xt; yt) = 0

�The envelope condition is simply V 0(xt) = Fx(xt; yt)

6

�The solution can be written as the Euler equation

0 = Fy(xt; yt) + �Fx(G(xt; yt); yt+1)Gy(xt; yt)

� If the function, Fx(G(xt; yt); yt+1), is independent of yt+1,

�This equation can be solved for, yt = H(xt)

�Normally, explicit solutions cannot be found

Conditions for the envelope theorem (from Benveniste-Scheinkman)

� Conditions are (for our form of the model)

� xt 2 X where X is convex and with non-empty interior

� yt 2 Y where Y is convex and with non-empty interior

�F (xt; yt) is continuous and di¤erentiable

�G(xt; yt) is continuous and di¤erentiable and invertible in yt

� This gives enough structure so the envelope theorem holds

Newer, more general results in Milgrom and Segel
Approximation of the value function

What happens if Gx(xt; yt) 6= 0 ?
One can approximate the value function numerically

Great contribution of Bellman

Choose some initial function V0(xt)

Most any function will do

a good one is V0(xt) = c

where c is a constant (0, for example)

Find (approximately) the function V1(xt)

V1(xt) = max
yt
[F (xt; yt) + �V0(G(xt; yt))]

over a dense set of values from the domain of xt

One now has the function V1(xt)
Approximation of the value function (continued)

� Using this function V1(xt), �nd

V2(xt) = max
yt
[F (xt; yt) + �V1(G(xt; yt))]

over a dense set of values from the domain of xt

� one will need to interpolate the function V1(xt)

7

�when the needed G(xt; yt) is not part of the dense set of xt
� linear interpolation is normally good enough

� Using V2(xt) repreat the process

� Get a sequence fVi(xt)g1i=0
� Bellman showed that fVi(xt)g1i=0 �! V (xt)

� Once you have V (xt) �nding yt = H(xt) is easy

�Actually, one �nds a sequence fHi(xt)g1i=0 �! H(xt)

�while �nding fVi(xt)g1i=0 �! V (xt)

� Why does this work? Answer = �

Problems of dimensionality
How well do we choose to approximate the function
How many points in the domain of xt
If xt 2 R1 we can choose lots of points, M points
As dimensionality of xt grows (say to RN)

number of points needed is MN which can be very large
Comparing example economy to general problem 1: using B-S

The objective function is

F (xt; yt) = u(f(kt)� kt+1 + (1� �)kt)

The budget constraint is

kt+1 = xt+1 = G(xt; yt) = yt = kt+1

or
kt+1 = kt+1

The �rst order condition is

0 = Fy(xt; yt) + �V
0(G(xt; yt))Gy(xt; yt)

= �u0(f(kt)� kt+1 + (1� �)kt) + �V 0(G(xt; yt)) � 1

Because @kt+1=@kt = 0, the B-S envelope theorem condition is

V 0(xt) = Fx(xt; yt) = u
0(f(kt)� kt+1 + (1� �)kt) (f 0(kt) + (1� �))

Comparing example economy to general problem 1: using B-S

� Use this V 0(�) in the �rst order conditions to get the Euler equation

0 = �u0(f(kt)� kt+1 + (1� �)kt)
+� [u0(f(kt+1)� kt+2 + (1� �)kt+1) (f 0(kt+1) + (1� �))] :

8

� we can �nd the stationary state where kt = kt+1 = kt+2 = k as

f 0(k) =
1

�
� (1� �)

Comparing example economy to general problem 2

� We can solve the problem a di¤erent way

� Let the objective function be

F (xt; yt) = u(ct)

� The budget constraint is

kt+1 = xt+1 = G(xt; yt) = f(kt) + (1� �)kt � ct

� The Bellman equation is

V (kt) = max
ct
[u(ct) + �V (f(kt) + (1� �)kt � ct)]

�Notice that the budget constraint is already in V (kt+1)

� The derivative of the budget constraint is

@G(xt; yt)

@xt
= f 0(kt) + (1� �) 6= 0

�Can�t use B-S method

Approximation of the Value function

To approximate the value function need explicit functions for u(ct) and f(kt)

Let f(kt) = k�t and u(ct) = ln(ct)

Let � = :1, � = :36, and � = :98 (consistent with annual data for US)

The Bellman equation is

V (kt) = max
kt+1

�
ln(k�t � kt+1 + (1� �)kt) + �V (kt+1)

�
Note: stationary state k = 5:537 (how do you �nd this?)
Approximation of the Value function

� Choose V0(�) = 0 (a constant initial guess for value function)

� Find V1(�) using

V1(kt) = max
kt+1

�
ln(k�t � kt+1 + (1� �)kt) + �V0(kt+1)

�
= max

kt+1

�
ln(k:36t � kt+1 + :9kt) + :98 � 0

�
for a dense set of kt

9

� Find V2(�) using

V2(kt) = max
kt+1

�
ln(k:36t � kt+1 + :9kt) + :98 � V1(kt+1)

�
for a dense set of kt. Use linear interpolation of V1(kt+1) between known
points

� Repeat N times. Get approximate V (kt) function (as close as you want)

Computer program
Main program
global vlast beta delta theta k0 kt
hold off
hold all
%set initial conditions
vlast=zeros(1,100);
k0=0.06:0.06:6;
beta=.98;
delta=.1;
theta=.36;
numits=240;
%begin the recursive calculations
for k=1:numits

for j=1:100
kt=j*.06;
%find the maximum of the value function
ktp1=fminbnd(@valfun,0.01,6.2);
v(j)=-valfun(ktp1);
kt1(j)=ktp1;

end
if k/48==round(k/48)

%plot the steps in finding the value function
plot(k0,v)
drawnow

end
vlast=v;
end
hold off
% plot the final policy function
plot(k0,kt1)
Computer program
Subroutine (valfun.m) to calculate value function
function val=valfun(k)
global vlast beta delta theta k0 kt
%smooth out the previous value function
g=interp1(k0,vlast,k,�linear�);

10

0 1 2 3 4 5 6
­4

­2

0

2

4

6

8

10

12

14

kt

V
(k

t)

%Calculate consumption with given parameters
kk=kt^theta-k+(1-delta)*kt;
if kk <= 0

%to keep values from going negative
val=-888-800*abs(kk);

else
%calculate the value of the value function at k
val=log(kk)+beta*g;

end
%change value to negative since "fminbnd" finds minimum
val=-val;
V (kt) after one iteration
V (kt) after ten iterations
V (kt) after 50 iterations
V (kt) after 100 iterations
V (kt) after 200 iterations
The policy function after 200 interatioins

11

0 1 2 3 4 5 6
­4

­2

0

2

4

6

8

10

12

14

kt

V
(k

t)

0 1 2 3 4 5 6
­4

­2

0

2

4

6

8

10

12

14

kt

V
(k

t)

12

0 1 2 3 4 5 6
­4

­2

0

2

4

6

8

10

12

14

kt

V
(k

t)

0 1 2 3 4 5 6
­4

­2

0

2

4

6

8

10

12

14

kt

V
(k

t)

13

0 1 2 3 4 5 6
0

1

2

3

4

5

6

14

