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1 Stochastic Recursive Models
Probability
e A probability space is a triplet:
(Q,F,P)
e Where

— ) is a set of all states of nature that can occur
— F is a collection of subsets of €2, each subset is an "event"

— P is a probability measure over F
Probability for finite states of nature

e Suppose that 2 is a finite set

e We can sometimes impose the probability measure directly on 2

— if each state of nature can be considered an event

Define p; = probability that event A; will occur

If the probabilities are independent
— p(Ai, Aj) = pi +p;
e We can have non-independent events

— B = (A1, As)
— Ey = (Ag, As)
— Then p(Ey U Ez) = p1 + p2 +p3 < p(E1) + p(E2)

Probability for finite states of nature



Let Q = {A;, A}
Then the largest possible F is
- []7 [Al]v [AQ]a [AlaAQ}

A possible probability measure is

—p(()=0,p([A]) =P, p([A2]) =1 =P, and p ([Ay, A2]) = 1

Another possible is

= p([]) =p1, p([A1]) =D, p([A2]) = 1—-p1—p, and p ([A1, A]) = 1 -y

Probability for continuous states of nature

Let © = [0, 300], all the points on the line from 0 to 300 (inclusive)

Let F be all measureable sets of )

P assigns probabilities to these measurable sets

p([45,46.1]) is the probability of the value falling between 45 and 46.1

p (m,4) is the probability of the value falling between 7 and 4

In general, p (x) = 0, where z is a specific number

— Not always the case

* p(x), where z is the daily rainfall in Buenos Aries

x p(0) is the probability it won’t rain
* p(0) >0

A simple stochastic model

Robinson Crusoe model with stochastic technology

Production function
ye = A'f k),
with the technology A! determined by

At — Ay with probability py
| As with probability po

and we assume that A; > A, and that po =1 —p;

RC’s utility function is

subject to the budget constraint
kt+1 = Atf(kt) + (]. — 5)]{)15 — C¢.



This is an expected utility function: that is what Ey means

Stochastic Value function

The value of discounted expected utility at time O when the observed
technology shock is Ay is

Vko, 1) = mex Ey Y Bu(cr),
Hh=o0 4=0

subject to the budget constraint for ¢ = 0,
k1 = A1 f(ko) + (1 — 6)ko — co,
and those for t > 1,
kiyr = AUf (k) + (1 — 0)ky — c,
and the independent realizations of A® = [A, As] with probabilities [p1, ps]

There is a similar expression for V(kg, A2)

Stochastic Value function: recursive format

The value function is

V(ko, AY) = max u(co) + BEGV (k1, A")
subject to the budget constraint
ky = A°f(ko) + (1 — 8)ko — co.
Here we are taking ¢y as the control

The states are kg and A°

Notice the expectations operator

— In the second part of the value function

— This is because we do not know the realization of A!

Stochastic Value function: with k.41 as control

The value function is

V(ky, AY) = maxu(A' f(ke) + (1 — 0)ke — k1) + BEV (kygr, AT

kig1

and the budget constraint is

kt+1 = G(wt,yt) = k‘t+1



e The control at time ¢ is the state at time ¢ + 1
We solve for a plan, a function such that
ki1 = H(ks, AY)
A plan solves (without maximization)

V(kt, At) = U(Atf(k}t) + (1 — 6)k‘t — H(kt7At))
+BE,V (H(ky, A"), A1)

General version of the problem

o Write the value function as

o0

V(ze,z) = max By Y B 'F(24,ys, 2),

Ysss=t s—t

subject to
Tst1 = G(xs,ys, 25) for s > ¢

e 1, is the set of "regular" state variables

e 2, is the set of state variables determined by nature
— these are the stochastic state variables.

e y, are the control variables

e Both F(zs,ys,2s) and G(zs, ys, zs) can contain the stochastic state vari-
ables.
General version of the problem

The recrusive version of this problem is

Vi(ze, z¢) = n;ax [F(2e, s, 2¢) + BEV (Te41, Ze41)]

subject to
Typ1 = G(T4, Yt 2t)

A solution is a plan,
yr = H (w4, 2)

where

V(xtvzt) = F(-Tt»H(xtazt)th)
+BEV (G (24, H(t, 20), 2t), 2t41)

General version of the problem: first order conditions



e The first order conditions are
0= Fy(xt,yt, z¢) + BE: Vi (G (24, yt, 21), Zt+1)Gy(xt,yt, 2]
The Benveniste-Scheinkman envelope theorem condition is
Vi@, 2) = Fulwe, yo, 20) + BE [Vao(G(@e, Y1, 21), 2041) G (T4, Y, 24)]
If we can choose the controls so that G (x4, yt, 2:) = 0, this becomes
Vi@, 2t) = Fu (@4, Y, 2t)
One can write the stochastic Euler equation as

0= Fy(xe,ys, 2¢) + BE [Fo(G(xt, Y, 2t), Yet1, 2e41) Gy (T, Yty 2t)]

Solving for the value function
e One can find an approximation of the value function from

Vigi(xe, 2¢) = max [F'(e, Yt 2t) + BEV(G(we, 91, 26), 2e41)]

e Beginning with some function V(-) (usually a constant)

e Need to solve over dense set of X x Z

— where X is the domain of the state variables, x;

— Z is the domain of the states of nature, z;
Problem of dimensionality
e Problem of dimensionality is worse than in the deterministic case
e In the deterministic case is based on

— the number of state variables

— the size of the dense subset of each state variable we use
e In the stochastic state

— these two problems continue
— add
* the dimension of the shocks (if finite)

* the dense subset of the shocks (if continuous)

Finding the value function for our simple economy



e In the growth economy, the technology level can be [A1, As)

e This gives two values functions of the form

Vi(ki, A1) = kalaXU(Alf(/ft) + (1 =0k — ki)
t+1

+B[p1V (kty1, A1) + p2V (kig1, Az)]

and

V(I{it,Ag) = r’?axu(Agf(kt) + (1 — 5)]% — kt+1)

t+1

+8[p1V (ktg1, A1) + p2V (key1, A2)]

e Notice how the probabilities enter
e We need to find two functions, V(-, A1) and V (-, As)
The recursive approximation
e Same recursive approximation as before
e Difference is that we need to find two equations at each iteration
o Given Vj(+, A1) and Vy(-, Az), we find

Vi(ke, A1) = I,gfifu(Alf(kt) + (1= 6)kt — kiy1)

+B8[p1Vo (keg1, A1) + p2Vo (key1, A2)],

and

Vi(ke, A2)

I]glaXU(AQf(kt) + (1 — 5)kt — kt+1)

t+1

+6 [p1 Vo (kt1, A1) + p2Vo (kig1, A2)],

e Repeat, finding Vy (-, A1) and Vy(-, A2) until sufficiently close
Example

e Usedd=.1, =.98, Ay = 1.75, p1 = .8, Ay = .75,

e and py = .2, V(-, A1) = 20 and Vj(+, A2) = 20

e Graph of iterations

The two policy functions (the plans)
A simulation of the economy
What do I do if my probability space is large?

e Suppose the space is {41, Asg, ....., Ax } with probabilities {p1,p2,....., DN}



ik, Al

Figure 1: Iterations on the

kt+1

25
o

value function

HIL7S)

Hikt, 75) p

Figure 2:

The plans



Kkt

0 L L L L L L L L L
0 50 100 150 200 230 300 350 400 450 500
firne:

Figure 3: A simulated time path

e [ just need to have N value functions and continue as above

e What do I do if my probability space is continuous?

— Take a dense finite subset of the probability space
— This is OK since nature chooses the draw from the probability space

— Don’t have the interpelation problems of a choice variable

Markov chains

The above simulation shows little persistence

Markov chains are a way of adding persistence to the shocks

— Note that the presistence is in the stochastic part

— The economic model is not generating this persistence

Structure of a Markov chain

— The probabilities at time ¢ of the time t + 1 states of nature

— depend on the state of nature at time ¢

e Consider our example with two states of nature [A4;, As]

Let the probabilities be

pP= [ P11 P12 }
P21 P22

where p;; is the probability of going to state j given you are in state %



Probabilities in Markov chains

e These are conditional probabilities

e If one is in state of nature 1 at time ¢

— The probabilities for time ¢t + 1 are
[ P11 P12 }
e If one is in state of nature 2 at time ¢
— The probabilities for time ¢t + 1 are
[ P21 P22 |
e Example
p_ { .?17 ..093 }

Unconditional probabilites

e What is the probability that one will be in state of nature j at some far
distant date

e Does this depend on the current state of nature
e Given the state at time 0, the distributiion for period 1 is py = [ Po1 Do2 ]

e Then the distribution for period 2 is

P11 D12 }

poP = po1 poz | [pm .

e The distribution for period 3 is

P11 P12 P11 P12
PP =
po [p(n bo2 ] [le P22 ] |:p21 P22 }

e The distribution for period N is

pOPN—l

Tree diagrams of the probabilities
Converge to an unconditional probability

e What happens as N gets large

e Use our example probability matrix (leave py out for the moment)



state 1 | /.

a
k=
\g:\

e
state 2 ':'T‘“.’ Y

e Start with

97 .03
p= TG

e PP=P2%is

p2_ 97 .03 97 .03 | | 0.9439 0.0561
19 .9 | | 01870 0.8130

Using a doubling algorythm

pt_ p2p2 _ 0.944 0.056 0.944 0.056 | _ | 0.901 0.099
0.187 0.813 0.187 0.813 0.328 0.672

pS _ pipt _ [ 0.8450 0.1550 ]

0.5168 0.4832

0.7941 0.2059
0.6864 0.3136

0.7719 0.2281 }

P16 _ P8P8 _ |:
32 _ pl6pl6 __
P =pPrPT = [ 0.7603 0.2397

64 _ p32p32 | 0.7693  0.2307
Pr=Fp _[0.7691 0.2309

0.7692 0.2308
Why the initial distribution does not matter

L8 _ pbap6a _ { 0.7692  0.2308 ]

o Notice the rows of P18,

198 poapes | 0.7692  0.2308
pe=rr _[0.7692 0.2308
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e They are identical
e Let po = po1 Ppoz ]
e Then

0.7692 0.2308
128 _
poP = [po po2 || o792 02308

= [ 0.7692 0.2308 ]
e Initial distribution does not matter in the long run
— for the unconditional distribution
Value functions with markov chains
e The value functions for our economy can be written as
Vike, Ar) = max [u(Axf(ke) + (L= 6)ke — Keya)
+B[p11V (b1, A1) + p12V (key1, A2)]]

and
V(kt,Ag) = Imnax [U(Agf(k't) + (1 - (S)kit — k}t+1)

ktt1

+8[p21V (key1, A1) + p22V (kigr, A2)]],
e Note the probabilities in each equation
e These can be solved recursively

— beginning with some Vy(-, A1) and Vy(-, As)

— just need to keep track of which probabilities to use
Example economy
[5em]

5cm

e We use a markov chain of

6cm

e Unconditional probabilities
o | 8 2
=5 s
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Figure 4: The plans with Markov chains
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Figure 5: A simulation with Markov chains
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e Get the plans of (similar but not identical to the last problem)
Simulated economy with markov chain (same shocks as in other)
e Note the increased presistence

Computer program for Markov chains
global vlastl vlast2 beta delta theta kO kt At pl p2
hold off
hold all
vlast1=20*ones(1,40);
vlast2=vlasti;
k0=0.4:0.4:16;
kt11=k0;
kt12=kO0;
beta=.98;
delta=.1;
theta=.36;
A1=1.75;
pli1=.9;
pl2=1-pi1;
p21=.4;
p22=1-p21;
A2=.75;
numits=250;
for k=1:numits
for j=1:40
kt=k0(j);
At=A1;
pl=pl1;
p2=p12;
z=fminbnd (@valfunsto,.41,15.99);
v1(j)=-valfunsto(z);
kt11(j)=z;
At=A2;
pl=p21;
p2=p22;
z=fminbnd (@valfunsto,.41,15.99);
v2(j)=-valfunsto(z);
kt12(j)=z;
end
if k/50==round(k/50)
plot(k0,v1,k0,v2)
drawnow
end
vlasti=vli;
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vlast2=v2;
end
hold off
%plot (k0,kt11,k0,kt12)
Subroutine valfunsto
Note that interpolation of the previous value function is linear.
function val=valfunsto2(x)
global vlastl vlast2 beta delta theta kO kt At pl p2
k=x;
gl=interpl(k0,vlastl,k,’linear’);
g2=interpl(k0,vlast2,k,’linear’);
kk=At*kt theta-k+(1-delta)*kt;
val=log(kk)+beta* (pl*gl+p2*xg2) ;
val=-val;
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