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1 Stochastic Recursive Models

Probability

� A probability space is a triplet:

(
;F ; P )

� Where

�
 is a set of all states of nature that can occur

�F is a collection of subsets of 
, each subset is an "event"

�P is a probability measure over F

Probability for �nite states of nature

� Suppose that 
 is a �nite set

� We can sometimes impose the probability measure directly on 


� if each state of nature can be considered an event

� De�ne pi = probability that event Ai will occur

� If the probabilities are independent

� p (Ai; Aj) = pi + pj

� We can have non-independent events

�E1 = (A1; A2)

�E2 = (A2; A3)

�Then p(E1 [ E2) = p1 + p2 + p3 < p(E1) + p(E2)

Probability for �nite states of nature
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� Let 
 = fA1; A2g

� Then the largest possible F is

� [], [A1], [A2], [A1; A2]

� A possible probability measure is

� p ([]) = 0, p ([A1]) = p, p ([A2]) = 1� p, and p ([A1; A2]) = 1

� Another possible is

� p ([]) = bp1, p ([A1]) = p, p ([A2]) = 1�bp1�p, and p ([A1; A2]) = 1�bp1
Probability for continuous states of nature

� Let 
 = [0; 300], all the points on the line from 0 to 300 (inclusive)

� Let F be all measureable sets of 


� P assigns probabilities to these measurable sets

� p([45; 46:1]) is the probability of the value falling between 45 and 46:1

� p (�; 4) is the probability of the value falling between � and 4

� In general, p (x) = 0, where x is a speci�c number

�Not always the case

� p (x), where x is the daily rainfall in Buenos Aries
� p (0) is the probability it won�t rain
� p (0) > 0

A simple stochastic model

� Robinson Crusoe model with stochastic technology

� Production function
yt = A

tf(kt);

with the technology At determined by

At =

�
A1 with probability p1
A2 with probability p2

and we assume that A1 > A2 and that p2 = 1� p1
� RC�s utility function is

E0

1X
t=0

�tu(ct)

subject to the budget constraint

kt+1 = A
tf(kt) + (1� �)kt � ct:
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� This is an expected utility function: that is what E0 means

Stochastic Value function

� The value of discounted expected utility at time 0 when the observed
technology shock is A1 is

V (k0; A1) = max
fctg1t=0

E0

1X
t=0

�tu(ct);

subject to the budget constraint for t = 0,

k1 = A1f(k0) + (1� �)k0 � c0;

and those for t � 1;

kt+1 = A
tf(kt) + (1� �)kt � ct;

and the independent realizations of At = [A1; A2] with probabilities [p1; p2]

� There is a similar expression for V (k0; A2)

Stochastic Value function: recursive format

� The value function is

V (k0; A
0) = max

c0
u(c0) + �E0V

�
k1; A

1
�

subject to the budget constraint

k1 = A
0f(k0) + (1� �)k0 � c0:

� Here we are taking c0 as the control

� The states are k0 and A0

� Notice the expectations operator

� In the second part of the value function

�This is because we do not know the realization of A1

Stochastic Value function: with kt+1 as control

� The value function is

V (kt; A
t) = max

kt+1
u(Atf(kt) + (1� �)kt � kt+1) + �EtV

�
kt+1; A

t+1
�

and the budget constraint is

kt+1 = G(xt; yt) = kt+1
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� The control at time t is the state at time t+ 1

We solve for a plan, a function such that

kt+1 = H(kt; A
t)

A plan solves (without maximization)

V (kt; A
t) = u(Atf(kt) + (1� �)kt �H(kt; At))

+�EtV
�
H(kt; A

t); At+1
�

General version of the problem

� Write the value function as

V (xt; zt) = max
fysg1s=t

Et

1X
s=t

�s�tF (xs; ys; zs);

subject to
xs+1 = G(xs; ys; zs) for s � t

� xt is the set of "regular" state variables

� zt is the set of state variables determined by nature

� these are the stochastic state variables.

� yt are the control variables

� Both F (xs; ys; zs) and G(xs; ys; zs) can contain the stochastic state vari-
ables.

General version of the problem

The recrusive version of this problem is

V (xt; zt) = max
yt
[F (xt; yt; zt) + �EtV (xt+1; zt+1)]

subject to
xt+1 = G(xt; yt; zt)

A solution is a plan,
yt = H(xt; zt)

where

V (xt; zt) = F (xt;H(xt; zt); zt)

+�EtV (G(xt;H(xt; zt); zt); zt+1)

General version of the problem: �rst order conditions
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� The �rst order conditions are

0 = Fy(xt; yt; zt) + �Et [Vx(G(xt; yt; zt); zt+1)Gy(xt; yt; zt)]

The Benveniste-Scheinkman envelope theorem condition is

Vx(xt; zt) = Fx(xt; yt; zt) + �Et [Vx(G(xt; yt; zt); zt+1)Gx(xt; yt; zt)]

If we can choose the controls so that Gx(xt; yt; zt) = 0, this becomes

Vx(xt; zt) = Fx(xt; yt; zt)

One can write the stochastic Euler equation as

0 = Fy(xt; yt; zt) + �Et [Fx(G(xt; yt; zt); yt+1; zt+1)Gy(xt; yt; zt)]

Solving for the value function

� One can �nd an approximation of the value function from

Vj+1(xt; zt) = max
yt
[F (xt; yt; zt) + �EtVj(G(xt; yt; zt); zt+1)]

� Beginning with some function V0(�) (usually a constant)

� Need to solve over dense set of X � Z

�where X is the domain of the state variables, xt

�Z is the domain of the states of nature, zt

Problem of dimensionality

� Problem of dimensionality is worse than in the deterministic case

� In the deterministic case is based on

� the number of state variables

� the size of the dense subset of each state variable we use

� In the stochastic state

� these two problems continue

� add

� the dimension of the shocks (if �nite)
� the dense subset of the shocks (if continuous)

Finding the value function for our simple economy
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� In the growth economy, the technology level can be [A1; A2]

� This gives two values functions of the form

V (kt; A1) = max
kt+1

u(A1f(kt) + (1� �)kt � kt+1)

+� [p1V (kt+1; A1) + p2V (kt+1; A2)]

and

V (kt; A2) = max
kt+1

u(A2f(kt) + (1� �)kt � kt+1)

+� [p1V (kt+1; A1) + p2V (kt+1; A2)]

� Notice how the probabilities enter

� We need to �nd two functions, V (�; A1) and V (�; A2)

The recursive approximation

� Same recursive approximation as before

� Di¤erence is that we need to �nd two equations at each iteration

� Given V0(�; A1) and V0(�; A2), we �nd

V1(kt; A1) = max
kt+1

u(A1f(kt) + (1� �)kt � kt+1)

+� [p1V0 (kt+1; A1) + p2V0 (kt+1; A2)] ;

and

V1(kt; A2) = max
kt+1

u(A2f(kt) + (1� �)kt � kt+1)

+� [p1V0 (kt+1; A1) + p2V0 (kt+1; A2)] ;

� Repeat, �nding VN (�; A1) and VN (�; A2) until su¢ ciently close

Example

� Used � = :1, � = :98, A1 = 1:75, p1 = :8, A2 = :75,

� and p2 = :2, V0(�; A1) = 20 and V0(�; A2) = 20

� Graph of iterations

The two policy functions (the plans)
A simulation of the economy
What do I do if my probability space is large?

� Suppose the space is fA1; A2; :::::; ANg with probabilities fp1; p2; :::::; pNg
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Figure 1: Iterations on the value function

Figure 2: The plans
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Figure 3: A simulated time path

� I just need to have N value functions and continue as above

� What do I do if my probability space is continuous?

�Take a dense �nite subset of the probability space

�This is OK since nature chooses the draw from the probability space

�Don�t have the interpelation problems of a choice variable

Markov chains

� The above simulation shows little persistence

� Markov chains are a way of adding persistence to the shocks

�Note that the presistence is in the stochastic part

�The economic model is not generating this persistence

� Structure of a Markov chain

�The probabilities at time t of the time t+ 1 states of nature

� depend on the state of nature at time t

� Consider our example with two states of nature [A1; A2]

� Let the probabilities be

P =

�
p11 p12
p21 p22

�
where pij is the probability of going to state j given you are in state i
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Probabilities in Markov chains

� These are conditional probabilities

� If one is in state of nature 1 at time t

�The probabilities for time t+ 1 are�
p11 p12

�
� If one is in state of nature 2 at time t

�The probabilities for time t+ 1 are�
p21 p22

�
� Example

P =

�
:97 :03
:1 :9

�
Unconditional probabilites

� What is the probability that one will be in state of nature j at some far
distant date

� Does this depend on the current state of nature

� Given the state at time 0, the distributiion for period 1 is p0 =
�
p01 p02

�
� Then the distribution for period 2 is

p0P =
�
p01 p02

� � p11 p12
p21 p22

�
� The distribution for period 3 is

p0PP =
�
p01 p02

� � p11 p12
p21 p22

� �
p11 p12
p21 p22

�
� The distribution for period N is

p0P
N�1

Tree diagrams of the probabilities
Converge to an unconditional probability

� What happens as N gets large

� Use our example probability matrix (leave p0 out for the moment)
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� Start with
P =

�
:97 :03
:1 :9

�
� PP = P 2 is

�
P 2 =

�
:97 :03
:1 :9

� �
:97 :03
:1 :9

�
=

�
0:9439 0:0561
0:1870 0:8130

�
Using a doubling algorythm

P 4 = P 2P 2 =

�
0:944 0:056
0:187 0:813

� �
0:944 0:056
0:187 0:813

�
=

�
0:901 0:099
0:328 0:672

�

P 8 = P 4P 4 =

�
0:8450 0:1550
0:5168 0:4832

�
P 16 = P 8P 8 =

�
0:7941 0:2059
0:6864 0:3136

�
P 32 = P 16P 16 =

�
0:7719 0:2281
0:7603 0:2397

�
P 64 = P 32P 32 =

�
0:7693 0:2307
0:7691 0:2309

�
P 128 = P 64P 64 =

�
0:7692 0:2308
0:7692 0:2308

�
Why the initial distribution does not matter

� Notice the rows of P 128,

P 128 = P 64P 64 =

�
0:7692 0:2308
0:7692 0:2308

�
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� They are identical

� Let p0 =
�
p01 p02

�
� Then

p0P
128 =

�
p01 p02

� � 0:7692 0:2308
0:7692 0:2308

�
=

�
0:7692 0:2308

�
� Initial distribution does not matter in the long run

� for the unconditional distribution

Value functions with markov chains

� The value functions for our economy can be written as

V (kt; A1) = max
kt+1

[u(A1f(kt) + (1� �)kt � kt+1)

+� [p11V (kt+1; A1) + p12V (kt+1; A2)]] ;

and

V (kt; A2) = max
kt+1

[u(A2f(kt) + (1� �)kt � kt+1)

+� [p21V (kt+1; A1) + p22V (kt+1; A2)]] ;

� Note the probabilities in each equation

� These can be solved recursively

� beginning with some V0(�; A1) and V0(�; A2)
� just need to keep track of which probabilities to use

Example economy
[5cm]
5cm

� We use a markov chain of

P =

�
:9 :1
:4 :6

�
6cm

� Unconditional probabilities

P1 =

�
:8 :2
:8 :2

�
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Figure 4: The plans with Markov chains

Figure 5: A simulation with Markov chains
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� Get the plans of (similar but not identical to the last problem)

Simulated economy with markov chain (same shocks as in other)

� Note the increased presistence

Computer program for Markov chains
global vlast1 vlast2 beta delta theta k0 kt At p1 p2
hold off
hold all
vlast1=20*ones(1,40);
vlast2=vlast1;
k0=0.4:0.4:16;
kt11=k0;
kt12=k0;
beta=.98;
delta=.1;
theta=.36;
A1=1.75;
p11=.9;
p12=1-p11;
p21=.4;
p22=1-p21;
A2=.75;
numits=250;
for k=1:numits

for j=1:40
kt=k0(j);
At=A1;
p1=p11;
p2=p12;
z=fminbnd(@valfunsto,.41,15.99);
v1(j)=-valfunsto(z);
kt11(j)=z;
At=A2;
p1=p21;
p2=p22;
z=fminbnd(@valfunsto,.41,15.99);
v2(j)=-valfunsto(z);
kt12(j)=z;

end
if k/50==round(k/50)

plot(k0,v1,k0,v2)
drawnow

end
vlast1=v1;
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vlast2=v2;
end
hold off
%plot(k0,kt11,k0,kt12)
Subroutine valfunsto
Note that interpolation of the previous value function is linear.
function val=valfunsto2(x)
global vlast1 vlast2 beta delta theta k0 kt At p1 p2
k=x;
g1=interp1(k0,vlast1,k,�linear�);
g2=interp1(k0,vlast2,k,�linear�);
kk=At*kt^theta-k+(1-delta)*kt;
val=log(kk)+beta*(p1*g1+p2*g2);
val=-val;
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