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1 Hansen�s RBC model

Hansen�s RBC model

� First RBC model was Kydland and Prescott

� (1982) "Time to build and aggregate �uctuations," Econometrica

�Complicated

� lagged cumulative investment
� strange utility function
� Lots added to look for presistence

� Hansen�s model much simpler

� (1985) "Indivisible labor and the business cycle," Journal of Monetary
Economics

� Simple

�Added indivisible labor to gain persistence and covariance with out-
put

� Set rules for RBC game

� Match second moments
� Newer rule: match impulse response functions

Hansen�s basic model

� Robinson Crusoe maximizes the discounted utility function

max
1X
t=0

�tu(ct; lt)
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� The speci�c utility functions

u(ct; 1� ht) = ln ct +A ln(1� ht)

with A > 0.

� The production function is

f(�t; kt; ht) = �tk
�
t h

1��
t

� �t is a random technology variable that follows the process

�t+1 = �t + "t+1

for 0 <  < 1. "t iid, positive, bounded above, E"t = 1� .

�=) E �t is 1 and �t+1 > 0.

Hansen�s basic model (continued)

� Capital accumulation follows the process

kt+1 = (1� �)kt + it

� The feasibility constraint is

f(�t; kt; ht) � ct + it

Bellmans equation

The basic Bellmans equation

V (kt; �t) = max
ct;ht

[ln ct +A ln(1� ht) + �Et [V (kt+1; �t+1) j �t]]

subject to

�tk
�
t h

1��
t � ct + it;

�t+1 = �t + "t+1; and

kt+1 = (1� �)kt + it:

Simpler to write as

V (kt; �t) = max
kt+1;ht

�
ln
�
�tk

�
t h

1��
t + (1� �)kt � kt+1

�
+A ln(1� ht) + �Et [V (kt+1; �t+1) j �t]]

kt+1 and ht are control variables
First order conditions
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� First order conditions are
@V (kt; �t)

@kt+1
= 0 = � 1

�tk�t h
1��
t + (1� �)kt � kt+1

+�Et [Vk(kt+1; �t+1) j �t]

and

@V (kt; �t)

@ht
= 0 = (1� �) 1

�tk�t h
1��
t + (1� �)kt � kt+1

�
�tk

�
t h

��
t

�
�A 1

1� ht

� The Benveniste-Scheinkman envelope theorem condition is

@V (kt; �t)

@kt
=

1

�tk�t h
1��
t + (1� �)kt � kt+1

�
��tk

��1
t h1��t + (1� �)

�
Simplifying the �rst order conditions

� First order conditions can be written as
1

�tk�t h
1��
t + (1� �)kt � kt+1

= �Et

"
��t+1k

��1
t+1 h

1��
t+1 + (1� �)

�t+1k�t+1h
1��
t+1 + (1� �)kt+1 � kt+2

j �t

#
and

(1� �) (1� ht)
�
�tk

�
t h

��
t

�
= A

�
�tk

�
t h

1��
t + (1� �)kt � kt+1

�
� In equilibrium,

ct = �tk
�
t h

1��
t + (1� �)kt � kt+1

Simplifying the �rst order conditions (continued)

Factor markets give
rt = ��tk

��1
t h1��t

and
wt = (1� �)�tk�t h��t

First order conditions are simply

1

ct
= �Et

�
rt+1 + (1� �)

ct+1
j �t
�

and
(1� ht)wt = Act

Stationary states
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� Stationary state value of h = ht = ht+1 is

h =
1

1 + A
(1��)

h
1� ���

1��(1��)

i ;
� Stationary state value of k = kt = kt+1 = kt+2 is

k = h

"
��

1
� � (1� �)

# 1
1��

:

How to study dynamics

1. Find the approximate Value function and Plan

(a) These will describe the dynamics within the precision of the approx-
imation

(b) Can be complicated to �nd

i. Especially if the domain of stochastic variable is large

(c) Can be impossible

i. If the model is not single agent
ii. If the model can not be approximated by social planner

2. Alternative approachs

(a) Log linear approximation of the model

i. After the optimization has been done
ii. After equilibrium conditions have been imposed

(b) Quadratic linear appoximation of the problem

Log-linearization techniques

� Consider a function of the form

F (xt) =
G(xt)

H(xt)

� Taking logs of both side gives

ln(F (xt)) = ln(G(xt))� ln(H(xt))

� The �rst order Taylor series expansion

� around the stationary state values x
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� gives

ln(F (x)) +
F 0(x)

F (x)
(xt � x) � ln(G(x)) +

G0(x)

G(x)
(xt � x)

� ln(H(x))� H
0(x)

H(x)
(xt � x)

Log-linearization techniques (direct method)

� In the stationary state

ln(F (x)) = ln(G(x))� ln(H(x)))

� So the �rst order Taylor expansion can be written as

F 0(x)

F (x)
(xt � x) �

G0(x)

G(x)
(xt � x)�

H 0(x)

H(x)
(xt � x)

� Remember that this holds only near x

An example using a Cobb-Douglas production function

Yt = �tK
�
tH

1��
t

� Take logs
lnYt = ln�t + � lnKt + (1� �) lnHt

� �rst order Taylor expansion gives

lnY +
1

Y

�
Yt � Y

�
� ln�+

1

�

�
�t � �

�
+ � lnK +

�

K

�
Kt �K

�
+(1� �) lnH +

(1� �)
H

�
Ht �H

�

� Since in a stationary state

lnY = ln�+ � lnK + (1� �) lnH

� get

1

Y

�
Yt � Y

�
� 1

�

�
�t � �

�
+
�

K

�
Kt �K

�
+
(1� �)
H

�
Ht �H

�
� That reduces to

Yt

Y
+ 1 � �t

�
+
�Kt

K
+
(1� �)Ht

H
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Log-linearization techniques (Uhlig�s method)

� Write the original variable as

Xt = Xe
fXt

or eXt = lnXt � lnX
� bring together all the exponential terms that you can

AtB
�
t

C�t
=
Ae

eAtB
�
e�

eBt

C
�
e� eCt

becomes
AB

�

C
�
e
eAt+� eBt�� eCt

Reference:Uhlig, Harald, (1999) "A toolkit for analysing nonlinear dy-
namic stochastic models easily", in Ramon Marimon and Andrew Scott,
Eds., Computational Methods for the Study of Dynamic Economies, Ox-
ford University Press, Oxford, p.30-61.

Log-linearization techniques (Uhlig�s method)

� The Taylor series expansion (linear) gives

e
eAt+� eBt�� eCt � e

eA+� eB�� eC + e eA+� eB�� eC � eAt � eA�
+�e

eA+� eB�� eC � eBt � eB�� �e eA+� eB�� eC � eCt � eC�
= 1 + eAt + � eBt � � eCt;

� So
e
eAt+� eBt�� eCt � 1 + eAt + � eBt � � eCt

� The approximation is

AtB
�
t

C�t
� AB

�

C
�

�
1 + eAt + � eBt � � eCt�

Log-linearization techniques (Uhlig�s method)

� Some rules from Uhlig

e
eXt+aeYt � 1 + eXt + aeYt;eXt eYt � 0;

Et

h
ae

eXt+1

i
� a+ aEt

h eXt+1i
Et [Xt+1] = X

�
1 + Et

h eXt+1i�
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Log linear version of Hansen�s model

� The �ve equations of the Hansen model are (adjusted)

1 = �Et

�
Ct
Ct+1

(rt+1 + (1� �))
�

ACt = (1� �) (1�Ht)
Yt
Ht

Ct = Yt + (1� �)Kt �Kt+1

Yt = �tK
�
tH

1��
t

rt = �
Yt
Kt

� We will do the log-linearization equation by equation

Log linear version of Hansen�s model

� First equation
1 = �Et

�
Ct
Ct+1

(rt+1 + (1� �))
�

1 = �Et

"
Ce

eCt
Ce eCt+1 reert+1 + (1� �)

Ce
eCt

Ce eCt+1
#

= �Et

h
re

eCt� eCt+1+ert+1 + (1� �) e eCt� eCt+1i
� �

�
rEt

h
1 + eCt � eCt+1 + ert+1i+ (1� �) h1 + eCt � eCt+1i�

= Et

h
1 + eCt � eCt+1 + �rert+1i ;

or (after cancelling the 1�s and cleaning up the expections)

0 � eCt � Et eCt+1 + �rEtert+1
Log linear version of Hansen�s model

� Second equation
ACt = (1� �) (1�Ht)

Yt
Ht

ACe
eCt = (1� �) Y

H
e
eYt� eHt � (1� �)Y eeYt

AC
�
1 + eCt� � (1� �) Y

H

�
1 + eYt � eHt�� (1� �)Y �1 + eYt�

AC eCt � "(1� �) �1�H�Y
H

# eYt � (1� �) Y
H
eHt
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� given that in the stationary state

AC = (1� �)
�
1�H

�
Y

H

Log linear version of Hansen�s model

� This becomes

eCt � eYt � (1� �) Y
H

(1� �) (1�H)Y
H

eHt = eYt � eHt
1�H

� so
0 = eCt � eYt + eHt

1�H

Log linear version of Hansen�s model

� The next three equations (in their Log-linear form) are

0 � Y eYt � C eCt +K h(1� �) eKt � eKt+1

i
0 � e�t + � eKt + (1� �) eHt � eYt

0 � eYt � eKt � ert
� where r = �Y =K

Log linear version of Hansen�s model

� The stochastic process is

�t+1 = �t + "t+1

� putting in the log di¤erence of the ��s

�e
e�t+1 = �ee�t + "t+1

� the linerar approximation is

�
�
1 + e�t+1� = ��1 + e�t�+ "t+1

� So the simple version is

e�t+1 = e�t + �t+1
The log-linear version of the model
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� The equations of the full log-linear model are

0 = eCt � Et eCt+1 + �rEtert+1
0 = eCt � eYt + eHt

1�H
0 = Y eYt � C eCt +K h(1� �) eKt � eKt+1

i
0 = e�t + � eKt + (1� �) eHt � eYt
0 = eYt � eKt � ert

and e�t+1 = e�t + �t+1
Solving the log-linear version of the model

� The variables of the model are
n eKt+1

eYt eCt eHt ert o plus the sto-
chastic variables �t

� De�ne the state variables as

xt =
h eKt

i
� De�ne the "jump" variables as

yt =

2664
Yt
Ct
Ht
rt

3775
� De�ne the stochastic variable as

zt = [�t]

Solving the log-linear version of the model

� The model can be written as

0 = Axt +Bxt�1 + Cyt +Dzt;

0 = Et [Fxt+1 +Gxt +Hxt�1 + Jyt+1 +Kyt + Lzt+1 +Mzt] ;

zt+1 = Nzt + "t+1, Et("t+1) = 0:

Where

A =

2664
0
�K
0
0

3775 B =

2664
0

K (�� + 1)
�
�1

3775
9



C =

2664
1 �1 � 1

1�H 0

Y �C 0 0
�1 0 1� � 0
1 0 0 �1

3775
Solving the linear version of the model

D =

2664
0
0
1
0

3775
F = [0] ; G = [0] ; H = [0] ;

J =
�
0 �1 0 �r

�
;

K =
�
0 1 0 0

�
;

L = [0]

M = [0]

N = []

Solving the linear version of the model

� We look for a solution of the form

xt = Pxt�1 +Qzt

yt = Rxt�1 + Szt

� Note that here C is of full rank and has a well de�ned inverse C�1

� The solutions can be found from

0 = (F � JC�1A)P 2 � (JC�1B �G+KC�1A)P �KC�1B +H
R = �C�1(AP +B);

�
N 0 
 (F � JC�1A) + Ik 
 (JR+ FP +G�KC�1A)

�
vec(Q)

= vec
�
JC�1D � L)N +KC�1D �M

�
and

S = �C�1(AQ+D)

Explaining the solution

� We look for the laws of motion of the model

xt = Pxt�1 +Qzt;

yt = Rxt�1 + Szt:
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� We begin by substituting the laws of motion into the two equations of the
model

� Reduce each equation to one in which there are only two variables:

xt�1 and zt:

� Use the stochastic process in the expectational equation to replace

zt+1 = Nzt + "t+1

� Taking expectations, the "t+1 = 0 disappear

Explaining the solution

� Begin with the model

0 = Axt +Bxt�1 + Cyt +Dzt

0 = Et [Fxt+1 +Gxt +Hxt�1 + Jyt+1 +Kyt + Lzt+1 +Mzt]

� Substitute in

xt = Pxt�1 +Qzt;

yt = Rxt�1 + Szt:

� In the �rst equation this gives

0 = A [Pxt�1 +Qzt] +Bxt�1 + C [Rxt�1 + Szt] +Dzt

Explaining the solution

� In the second equation

0 = Et [F [Pxt +Qzt+1] +G [Pxt�1 +Qzt] +Hxt�1

+J [Rxt + Szt+1] +K [Rxt�1 + Szt] + Lzt+1 +Mzt]

� Substitute one more time in the second equation

0 = Et [F [P [Pxt�1 +Qzt] +Q [Nzt + "t+1]] +G [Pxt�1 +Qzt]

+Hxt�1 + J [R [Pxt�1 +Qzt] + S [Nzt + "t+1]]

+K [Rxt�1 + Szt] + L [Nzt + "t+1] +Mzt]

� This simpli�es to (because Et"t+1 = 0) and we remove the expectations
operator

0 = F [P [Pxt�1 +Qzt] +QNzt] +G [Pxt�1 +Qzt]

+Hxt�1 + J [R [Pxt�1 +Qzt] + SNzt]

+K [Rxt�1 + Szt] + LNzt +Mzt
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Explaining the solution

� The two equations can be rearranged to give

0 = [AP +B + CR]xt�1 + [AQ+ CS +D] zt;

and

0 = [FPP +GP +H + JRP +KR]xt�1

+ [FPQ+ FQN +GQ+ JRQ+ JSN +KS + LN +M ] zt:

� Since these equations need to hold for all xt�1 and zt, it must be that

0 = AP +B + CR

0 = AQ+ CS +D

0 = FPP +GP +H + JRP +KR

0 = FPQ+ FQN +GQ+ JRQ+ JSN +KS + LN +M

Explaining the solution

� The third equation is

0 = FP 2 +GP + JRP +H +KR

and the �rst is (if the inverse of C exists)

R = �C�1AP � C�1B

� Combining these one gets

0 = FP 2 +GP � J
�
C�1AP + C�1B

�
P

+H �K
�
C�1AP + C�1B

�
0 = FP 2 � JC�1AP 2 +GP � JC�1AP 2 � JC�1BP

+H �KC�1AP �KC�1B
0 =

�
F � JC�1A

�
P 2 �

�
JC�1B +KC�1A�G

�
P

�KC�1B +H

Explaining the solution

� Here F is a 1� 1 matrix (a scalar)

� Finding the solution to the quadratic equation

0 =
�
F � JC�1A

�
P 2 �

�
JC�1B +KC�1A�G

�
P

�KC�1B +H

can be done using
0 = aP 2 + bP + c
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� The solution to this equation is found from

P =
�b�

p
b2 � 4ac
2a

� There are usually two di¤erent solutions to this problem. We use jP j < 1
in order to choose the stable root.

� Once P is known, �nding R is simple using

R = �C�1AP � C�1B

Explaining the solution

� Finding Q (with P and R already known, from above)

� Use the equations

0 = FPQ+ FQN +GQ+ JRQ+ JSN +KS + LN +M

and
0 = AQ+ CS +D

� S can be written as
S = �C�1AQ� C�1D

� Substitute this into the �rst equation

0 = FPQ+ FQN +GQ+ JRQ� JC�1AQN � JC�1DN
�KC�1AQ�KC�1D + LN +M

� Rearrange to get�
FP +G+ JR�KC�1A

�
Q+

�
F � JC�1A

�
QN

= JC�1DN +KC�1D � LN +M

Explaining the solution

� This equation �
FP +G+ JR�KC�1A

�
Q+

�
F � JC�1A

�
QN

= JC�1DN +KC�1D � LN +M

has Q in two di¤erent places on the left hand side

�Q in the �nal position in
�
FP +G+ JR�KC�1A

�
Q

�Q in the second to the last position in
�
F � JC�1A

�
QN
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� Need to use a theorem from advanced matrix algebra

Theorem 1 Let A, B, and C be matrices whose dimensions are such that the
product ABC exists. Then

vec(ABC) = (C0 
A) � vec(B)

where the symbol 
 denotes the Kronecker product.

Explaining the solution

� Think of �
FP +G+ JR�KC�1A

�
Q+

�
F � JC�1A

�
QN

= JC�1DN +KC�1D � LN +M

as
WQI +XQN = Z

(notice that we added I) where

W = FP +G+ JR�KC�1A
X = F � JC�1A
Z = JC�1DN +KC�1D � LN +M

� Take vec of both sides of the equation, so

vec (WQI) + vec (XQN) = vec (Z)

� This equals

(I 0 
W ) vec (Q) + (N 0 
X) vec (Q) = vec (Z)

or
(I 0 
W +N 0 
X) vec (Q) = vec (Z)

� If (I 0 
W +N 0 
X) is invertible

vec (Q) = (I 0 
W +N 0 
X)�1 vec (Z)

Explaining the solution

� What are vec and 
 (the Kronecker product)
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� First vec

vec

��
a11 a12 a13
a21 a22 a23

��
=

26666664
a11
a21
a12
a22
a13
a23

37777775 :

� the columns are made into a vector

Explaining the solution

� The Kronecker product is

A
B =

�
a11 a12
a21 a22

�



24 b11 b12
b21 b22
b31 b32

35 = � a11B a12B
a21B a22B

�

=

26666664
a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a11b31 a11b32 a12b31 a12b32
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22
a21b31 a21b32 a22b31 a22b32

37777775 :

Calibration

� Solution to model is numerical

� Need values for parameters

� Some we borrow from literature (quarterly)

� � = :99

� � = :025

� � = :36

� Need a value for A

�Choose A so that H = 1=3

�Use stationary state equation for H

H =
1

1 + A
(1��)

h
1� ���

1��(1��)

i
�A = 1:72 for H = :3335

� K = 12:6695 and using the production function, Y = 1:2353
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� r = 1=� = 1:0101

� From data for US use  = :95

Matices for Calibrated model

A =

2664
0

�12: 670
0
0

3775 B =

2664
0

12: 353
0:36
�1

3775

C =

2664
1 �1 �1:5004 0

1:2353 �0:9186 0 0
�1 0 :64 0
1 0 0 �1

3775

D =

2664
0
0
1
0

3775
Matices for Calibrated model

F = [0]

G = [0]

H = [0]

J =
�
0 �1 0 :0348

�
K =

�
0 1 0 0

�
L = [0]

M = [0]

N = [:95]

Numerical solution for model

� The quadratic equation gives the solutions

P = 1:0592 and P = 0:9537

� The stable value is
P = 0:9537

� The value for Q is
Q = 0:1132
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� The matrices R and S are

R =

2664
0:204 5
0:569 1
�0:243
�0:795 5

3775 and S =

2664
1: 452 3
0:392
0:706 7
1: 452 3

3775
Numerical solution for model

� The laws of motion are

eKt+1 = 0:9537 eKt + 0:1132e�t;eYt = 0:2045 eKt + 1:4523e�t;eCt = 0:5691 eKt + 0:3920e�t;eHt = �0:2430 eKt + 0:7067e�t;ert = �0:7955 eKt + 1:4523e�t:
� Recall that e�t follows the processe�t = :95e�t�1 + �t
Two ways of �nding the variances of the variables of the model

� Simulations

�Run lots of simulated economies

�Calculate the variances from this "data"

� Calculate variances from laws of motion

� See book for detains

� Need to calibrate var(�t) so that var(eYt) = 1:76%
� gets standard error of �t = :0032

Tables of second moments

� Standard errors as fraction of outputeYt eCt eHt ert eIt
Standard error 5:484�" 4:065�" 1:640�" 3:492�" 11:742�"
As % of output 100% 74:1 2% 29:9 0% 63:6 7% 214:1%

� Standard errors from the dataeYt eCt eHt eIt
As % of output 100% 73:30% 94:3 2% 4 88:6 4%
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� Does well for consumption

� Badly for hours worked and investment

% stationary state values are found in another program
A=[0 -kbar 0 0]�;
B=[0 (1-delta)*kbar theta -1]�;
C=[1 -1 -1/(1-hbar) 0
ybar -cbar 0 0
-1 0 1-theta 0
1 0 0 -1];
D=[0 0 1 0]�;
F=[0];
G=F;
H=F;
J=[0 -1 0 beta*rbar];
K=[0 1 0 0];
L=F;
M=F;
N=[.95];
Cinv=inv(C);
a=F-J*Cinv*A;
b=-(J*Cinv*B-G+K*Cinv*A);
c=-K*Cinv*B+H;
P1=(-b+sqrt(b^2-4*a*c))/(2*a);
P2=(-b-sqrt(b^2-4*a*c))/(2*a);
if abs(P1)<1
P=P1;
else
P=P2;
end
R=-Cinv*(A*P+B);
Q=(J*Cinv*D-L)*N+K*Cinv*D-M;
QD=kron(N�,(F-J*Cinv*A))+(J*R+F*P+G-K*Cinv*A);
Q=Q/QD;
S=-Cinv*(A*Q+D);
Hansen�s model with indivisible labor

� Objective: increase variance of hours worked

� Make labor indivisible

� one works X hours per week or not at all

� Add unemployment

� since some fraction of the population will not be working

18



Problem of non-convexity of consumption set

� In general, maximization is only valid over convex sets

� Def of a convex set

� straight lines between any two points in set are also in set

� Example of a non-convex set

How non-convexity is �xed in Hansen�s model

� The problem is the jump in income

� between working and not working

� Hansen invented an "unemployment insurance"

� Lump sum transfers that make income equal for all

� solves non-convexity problem

� consumption increases smoothly with wage

� since all receive same income (based on wages)

� solve problem of too much heterogenity

Household problem

� maximize
max

1X
t=0

�tu(ct; �t)

subject to
ct + it = wtht + rtkt

�t = probability in time t of supplying h0 units of labor
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� Expected utility

u(ct; �t) = ln ct + ht
A ln(1� h0)

h0
+A(1� ht

h0
) ln(1)

u(ct; �t) = ln ct + ht
A ln(1� h0)

h0

Household problem

� Maximization problem becomes

max
1X
t=0

�t [ln ct +Bht]

with

B =
A ln(1� h0)

h0

� subject to constraints

�tk
�
t h

1��
t = ct + kt+1 � (1� �)kt

and
ln�t+1 =  ln�t + "t+1

Household problem

� First order conditions

0 =
1

ct

�
(1� �)�tk�t h��t

�
+B;

0 = � 1
ct
+ Et

�
1

ct+1
��t+1k

��1
t h1��t + (1� �)

�
� With equilibrium condition, these simplify to

1 = �Et

�
Ct
Ct+1

(rt+1 + (1� �))
�
;

Ct = � (1� �)Yt
BHt

:

Full model

1 = �Et

�
Ct
Ct+1

(rt+1 + (1� �))
�

Ct = � (1� �)Yt
BHt
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Ct +Kt+1 = Yt + (1� �)Kt

rt = ��tK
��1
t H1��

t

Yt = �tK
�
tH

1��
t

Stationary state

� Equations

1

�
= r + (1� �)

C = � (1� �)Y
BH

r = �K
��1
H
1��

Y = K
�
H
1��

C = Y � �K

� solve to give

H = � (1� �)
B
�
1� ���

1��(1��)

� and K =

�
��

1 + �(1� �)

� 1
1��

H

Stationary state
Comparing to basic Hansen model

� To get same stationary state, need H the same in both cases

� Then other variables will be the same

� Old stationary state equation

H =
1

1 + A
(1��)

h
1� ���

1��(1��)

i
� Set the two equal

1

1 + A
(1��)

h
1� ���

1��(1��)

i = � (1� �)
A ln(1�h0)

h0

�
1� ���

1��(1��)

� ;
� We replaced B with A ln(1�h0)

h0

� Need to determine h0 that make the two SS the same
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Stationary state

� Solve to get

h0
ln(1� h0)

= �
A

(1��)

h
1� ���

1��(1��)

i
1 + A

(1��)

h
1� ���

1��(1��)

i = G
� G is a constant

� To �nd h0

� Get h0 = :583, � = :573, and H = :3335

Log-linear model

� Taking the log-linear approximation of the model gives

0 � eCt � Et eCt+1 + �rEtert+1
0 � eCt + eHt � eYt
0 � Y eYt � C eCt + (1� �)K eKt �K eKt+1

0 � eYt � e�t � � eKt � (1� �) eHt
0 � eYt � eKt � ert

Solution method

� Use Uhlig�s method

0 = Axt +Bxt�1 + Cyt +Dzt;

0 = Et [Fxt+1 +Gxt +Hxt�1 + Jyt+1 +Kyt + Lzt+1 +Mzt] ;

zt+1 = Nzt + "t+1, Et("t+1) = 0;

where, xt =
h eKt

i
, yt =

heYt; eCt; eHt; erti0, and zt = he�ti
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� Solve for

xt = Pxt�1 +Qzt

yt = Rxt�1 + Szt

A =

2664
0
�K
0
0

3775 B =

2664
0

K (�� + 1)
�
�1

3775

C =

2664
1 �1 �1 0
Y �C 0 0
�1 0 (1� �) 0
1 0 0 �1

3775 D =

2664
0
0
1
0

3775
F = [0] ; G = [0] ; H = [0]

J =
�
0 �1 0 �r

�
K =

�
0 1 0 0

�
L = [0] ; M = [0] ; and N = [] :

Results

� The linear policy functions are

eKt+1 = :9418 eKt + :1552�t

and
yt = R eKt + S�t

where

R =

2664
0:055
0:531 6
�0:476 6
�0:945

3775 S =

2664
1: 941 8
0:470 3
1: 471 5
1: 941 7

3775
Results

� Using this model, we calculate the variances of the variables

�
eYt eCt eHt ert eIt

Standard errors 6:431�" 4:081�" 3:444�" 4:514�" 15:722�"
As % of output 100% 63:4 6% 53:5 5% 70:1 9% 244:5%

� Increased variance in hours worked

� Slight increase in investment

� Lower variance in consumption (compared to data)
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Impulse response functions

� How does the economy respond to a one time shock to technology

� "t = 0 except "2 = :01 Recall that  = :95

e�t = e�t�1 + "t
� Response of technology (path of e�t)
Impulse response functions

� Then calculate the time path of capital with eK1 = 0 usingeKt+1 = P eKt +Qe�t
� get path of eKt. Use this to �nd path of other variables using

yt = R eKt + S�t

Impulse response functions: Basic Hansen model
Impulse response functions: Hansen with indivisible labor
Comparing impulse responses

� Both models get same impulse

� Put each set of responses on di¤erent axis

� Get

Comparing impulse response

� Rotating so that we don�t see the time axis
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Figure 1: Responses of Hansen�s basic model
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Figure 2: Responses for Hansen�s model with indivisible labor
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Figure 3: Responses for both Hansen models
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Figure 4: Comparing the response of the two models
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