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1 Hansen’s RBC model
Hansen’s RBC model
e First RBC model was Kydland and Prescott

— (1982) "Time to build and aggregate fluctuations," Econometrica
— Complicated
* lagged cumulative investment

* strange utility function
* Lots added to look for presistence

e Hansen’s model much simpler
— (1985) "Indivisible labor and the business cycle," Journal of Monetary
Economics
— Simple

— Added indivisible labor to gain persistence and covariance with out-
put

— Set rules for RBC game

* Match second moments
* Newer rule: match impulse response functions

Hansen’s basic model
e Robinson Crusoe maximizes the discounted utility function

maxz Bru(cs, 1)

t=0



e The specific utility functions
u(er, 1 —hy) =lne, + Aln(l — hy)
with A > 0.
e The production function is
Fy oy he) = Nkl =°
e )\; is a random technology variable that follows the process
A1 = YA + €441
for 0 < v < 1. & iid, positive, bounded above, Fe; = 1 — 7.
— = F M\ is 1 and A\¢41 > 0.
Hansen’s basic model (continued)
e Capital accumulation follows the process
ki1 = (1—0)ke + ¢
e The feasibility constraint is
JO ke, he) > e+ iy
Bellmans equation
The basic Bellmans equation

V(kjt, >\t) = Imax [ln ¢t + Aln(l — ht) + ﬂEt [V(kt+17 )\t+1) | )\t]]

Ct, Nt

subject to
MkIR T > e+,
Aty1 = YA¢ + 41, and
kt+1 = (1_5)kt+zt
Simpler to write as
V(ki, ) = max [ (\ekfhy =% + (1 — 6)ke — kegr)
t+1,/0t

+AIn(1 — hy) + BEL [V (kis1, A1) | Adl]

ki1 and hy are control variables
First order conditions



e First order conditions are

OV (ki Ne) 0— 1
Okt 11 AMkOhi=0 4 (1 = 0)ky — kypa
+BE; Vi (k15 A1) | Ad]
and
OV (ke, A 1 _
Wi d) g1 ) — (AekZhy )
8ht )\tkt h‘t + (1 — 5)kt — kt+1
1
—A
1—hy

e The Benveniste-Scheinkman envelope theorem condition is

OV (ki M) 1

= ONECT IR0+ (1—6
Ok, MR+ (1= 0kt — kg (Bhdke™ R+ =3)

Simplifying the first order conditions

e First order conditions can be written as
1
MNkERETO 4 (1 — 8)ky — kyyn
A1k hy ] + (1= 6)
' A1k hi) + (1= 0)ke1 — kigeo

= BE

| At
and
(1=0) (1= hy) (Mek{h ) = ANk hi ™ + (1= 6)ky — kiya)

e In equilibrium,

Ct = )\tk?hiie + (1 — (5)]675 — kt+1

Simplifying the first order conditions (continued)

Factor markets give

re = Ok hy 0

and

wy = (1 —0) \kIh?

First order conditions are simply

Tep1 + (1 —0)

| Ae
Cet+1

1
~ =BE,
Ct

and

(1 — ht) Wy = ACt

Stationary states



e Stationary state value of h = h; = hy41 is

1

A B850 ’
L+ iy |1 - =hi )

E:

e Stationary state value of k = ky = kiy1 = kiyo is

I B S
ol

How to study dynamics
1. Find the approximate Value function and Plan
(a) These will describe the dynamics within the precision of the approx-
imation
(b) Can be complicated to find
i. Especially if the domain of stochastic variable is large
(¢) Can be impossible
i. If the model is not single agent
ii. If the model can not be approximated by social planner

2. Alternative approachs

(a) Log linear approximation of the model

i. After the optimization has been done
ii. After equilibrium conditions have been imposed

(b) Quadratic linear appoximation of the problem
Log-linearization techniques

e Consider a function of the form

F(a) =
e Taking logs of both side gives
In(F(z:)) = In(G(zy)) — In(H(x))

e The first order Taylor series expansion

— around the stationary state values T



mww»+§gﬂm—w wlﬂﬂ)ﬂfigm—m
~hn(H@) - G - 7)

Log-linearization techniques (direct method)

e In the stationary state
In(F(@)) = In(G(7)) — In(H ()))

e So the first order Taylor expansion can be written as
F'(z)
F(z)

@)z L@, 3
G(T)(xt ) H(f)(t )

(zt —7) ~

e Remember that this holds only near =
An example using a Cobb-Douglas production function
Y, = KV H}?

e Take logs
InY;=InA\+60lnK;+(1—60)InH,;

first order Taylor expansion gives

-, 1 - <1 - — 0 —
1nY+?(Yt—Y) s ln)\—l—i(/\t—)\)—&—ﬁlnl(—&—?(l(t—[()

— (1-9)
+(1-0)InH + i

(m, - )

Since in a stationary state

Y =InA+0InK+(1—-60)InH

e get
1 — 1 _ -9
S (=T % 2 =N+ (K- B) + 20 (- )
e That reduces to
LN QLY
Y A K H



Log-linearization techniques (Uhlig’s method)
e Write the original variable as
Xt = YCXNt

or " L
Xt = h'lXt —InX

e bring together all the exponential terms that you can
ABf AeA BB
o C’esC

becomes o

AB_ F,+aB,-6C,
—4

C

Reference:Uhlig, Harald, (1999) "A toolkit for analysing nonlinear dy-
namic stochastic models easily", in Ramon Marimon and Andrew Scott,
Eds., Computational Methods for the Study of Dynamic Economies, Ox-
ford University Press, Oxford, p.30-61.

Log-linearization techniques (Uhlig’s method)
e The Taylor series expansion (linear) gives
pAi+aBi—6C: o ,A+aB-sC n pA+aB-5C (gt _ g)
+ae§+a§—55 (Et _ g) _ §eAtaB-sC (ét _ 5«)
= 1+ A;+aB; —6C,,

e So L _ _ B
ehrtaBi0C 14 Ay + By — 6C,
e The approximation is

ABe  AB . -~ o~ o~
s (14 A +aB, - 6C,)

Log-linearization techniques (Uhlig’s method)
e Some rules from Uhlig
XY & 14X, +aY,
)}ti;t ~ 07
FE, [aexf“} ~ a+akb,; {X’H_l]

E[Xip] = X (1 + Ey [jzt+1}>



Log linear version of Hansen’s model

e The five equations of the Hansen model are (adjusted)

1 = BB |5 — (rep1 +(1-9))
t+1
Y
AC = (1=0)(1—H) 7=
Ct - Y; + (1 - J)Kt - Kt+1
Y, = MK{HT?
Y;
Tt = 9?2

e We will do the log-linearization equation by equation
Log linear version of Hansen’s model

e First equation

1= 6: | (e + (1= )

665ﬁ
CeCrn

66@
CeCi

6Et [Feét_ét+1+Ft+1 =+ (1 _ (5) eét_6t+1i|

1 = BE T 4+ (1 —6)

Q

3 (m [1 +C,—Crr + ml} +(1-4) [1 +Cy— (ZH])
= E [1 +C—Cri + ﬂ??tﬂ] :
or (after cancelling the 1’s and cleaning up the expections)
0~ ét - Etét-i-l + BTE T 41
Log linear version of Hansen’s model

e Second equation
Y,
AC = (1-0)(1—H) 5

ACeCr = (1 - 9) %e?ﬁﬁt —(1-6)Ye"

A€(1+(7t) ~ (1—0) (1+}7t—flt)—(1—9)?(1+}7t)

|~

Y -~
Yt_(l_e)ﬁHt

—~

(1-6)




e given that in the stationary state

_ 1-H)Y
H
Log linear version of Hansen’s model
e This becomes
o -0 _  _ 7
s s e
(1-19) =
® SO ~
~ H
0=C,—-Y: + L
1-H

Log linear version of Hansen’s model
e The next three equations (in their Log-linear form) are
0~YY,—CC,+ K |[(1 - 0K, — fg“]
0~ A +0K,+ (1—0)H, — Y,
0~ )N’t - INQ — 7
e where 7 = 0Y /K
Log linear version of Hansen’s model

e The stochastic process is

At41 = YA + €1
e putting in the log difference of the \’s

Xexf“ = 'yXeX‘ + Et41
e the linerar approximation is
by (1 + Xt-{—l) = yX (1 + Xt) + €441

e So the simple version is

Xt = e + Hepr

The log-linear version of the model



e The equations of the full log-linear model are

0 = ét_Etét-H + BTE T 41
-~ H
0 = C—Y,+——
1-H

O - ?ﬁ*éét +F|:(1*§)I?t *I?t—&-l
0 = M+0K,+(1-60)H, ~Y,
O - E*kt*’ff\'ft

and _ _
At41 = YAt + fygq

Solving the log-linear version of the model

e The variables of the model are { ]N(tﬂ Y, C, H, 7 } plus the sto-

chastic variables \;

e Define the state variables as

e Define the "jump" variables as

Y;
Cy
Yt = Ht
Tt
e Define the stochastic variable as
Zt = [)\f]

Solving the log-linear version of the model

e The model can be written as

0 = A(Et—FBCUt_l +Cyt +D2’t,
0 = E[Fry+Goy+Hep o+ Jy + Kyp + Lz + Mz,
Zt+1 = NZt + Et+1, Et(6t+1) = 0
Where
0 0
| =K | K(=64+1)
A=1 B = 6
0 —1
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C:

L [0]
M = [0]
N (]

Solving the linear version of the model
e We look for a solution of the form

e = Pz +Qxn
yr = Rxy 1+ Sz
e Note that here C is of full rank and has a well defined inverse C !

e The solutions can be found from

0 = (F-JC'A)P?—(JC'B-G+KC'AP-KC'B+H
R = —-C AP+ B),

(N@(F—JC'A)+ I, ® (JR+ FP+ G — KC'A)) vec(Q)
= wec(JCT'D—-L)N+KC™'D— M)

and

S=-CYAQ + D)
Explaining the solution

e We look for the laws of motion of the model

¢ = Pz 4+ Qz,
Yy = Rxyq+Sz.

10



e We begin by substituting the laws of motion into the two equations of the
model

e Reduce each equation to one in which there are only two variables:

Ti—1 and z;.

e Use the stochastic process in the expectational equation to replace

241 = Nzg + €41

e Taking expectations, the ;11 = 0 disappear
Explaining the solution
e Begin with the model
0 = Azy+ Bxy_1+Cys+ Dz
0 = Ei[Fzig1+Gay+ Hryq + Jyper + Kyr + Lzer + M2z
e Substitute in
ry = Pz + Qz,
Yyt = Rz 1+ Sz.
e In the first equation this gives

0=A4 [P:L'tfl + ta] + B:L'tfl + C [R.’Et71 + Szt] + th

Explaining the solution
e In the second equation

0 = E[F[Pxi+ Qz41)+G[Pri1+ Qz| + Hryy
+J [Rmt + Sth] + K [R-thl + Szt] + Lz + Mzt]

e Substitute one more time in the second equation
0 = Ei[F[P[Pri1+Qz]+Q[Nz +erpa]] + G[Pri1 + Q2]
+Hxi 1+ J[R[Pxi—1+ Qz] + S [Nzt + e41]]
+K [R!’Et,1 + Szt] + L [NZt + €t+1] + MZt]

e This simplifies to (because Eie;41 = 0) and we remove the expectations
operator

0 = F [P [P:I}t_l + ta] + QNZt} + G[Pilft_l + ta]
—‘rH(Etf] + J [R [Pl't,1 + ta] + SNZt]
+K [th,1 + Szt] + LNZt + MZt

11



Explaining the solution
e The two equations can be rearranged to give
0=[AP+ B+ CR]zi—1 +[AQ + CS + D] z,
and
0 = [FPP+GP+H+JRP+ KR]x1
+[FPQ+ FQN +GQ+ JRQ + JSN + KS + LN + M] z.

e Since these equations need to hold for all x;_1 and z;, it must be that

0 = AP+B+CR
0 = AQ+CS+D

0 = FPP+GP+H+JRP+KR

0 FPQ+ FQN +GQ+ JRQ+ JSN + KS + LN + M

Explaining the solution
e The third equation is
0=FP°+GP+ JRP+H+ KR
and the first is (if the inverse of C' exists)

R=-C'AP-C7'B

e Combining these one gets
0 = FP’+GP-J[CT'"AP+C'B|P
+H - K[CT'AP+C'B|
0 = FP?—JC 'AP?+GP—JC 'AP?> - JC™'BP
+H - KC™'AP - KC™'B
0 = [F-JC'A]P?—[JCT'B+KC'A-G]P
~-KC'B+H

Explaining the solution
e Here Fis a 1 x 1 matrix (a scalar)
e Finding the solution to the quadratic equation

0 = [F-JC A P?—[JCT'B+KC'A-G]P
~-KC™'B+H

can be done using
0=aP?+bP+c

12



e The solution to this equation is found from

p_ —b+ Vb% — 4ac
- 2a

e There are usually two different solutions to this problem. We use |P| < 1
in order to choose the stable root.

e Once P is known, finding R is simple using

R=-C'AP-C™'B

Explaining the solution
e Finding @ (with P and R already known, from above)
e Use the equations
0= FPQ+ FQN + GQ + JRQ + JSN + KS + LN + M

and
0=AQ+CS+ D

e S can be written as
S=-C1tAQ-C™'D

Substitute this into the first equation

0 = FPQ+FQN +GQ+JRQ—JC 'AQN — JC 'DN
—-KC'AQ-KC'D+LN+M

e Rearrange to get
[FP+G+ JR—KC'AlQ+ [F—JC 'A]QN
= JCT'DN+KC'D—LN+M
Explaining the solution
e This equation

[FP+G+ JR—KC 'A|Q+ [F—JC'A]QN
= JC'DN+KC™'D—-LN+M

has @ in two different places on the left hand side

— @ in the final position in [FP +G+JR— KC'_lA] Q
— @ in the second to the last position in [F — JC’_lA] QN

13



e Need to use a theorem from advanced matrix algebra

Theorem 1 Let A, B, and C be matrices whose dimensions are such that the
product ABC exists. Then

vec(ABC) = (C' ® A) - vec(B)
where the symbol ® denotes the Kronecker product.
Explaining the solution
e Think of

[FP+G+ JR—KC'A]Q+ [F—JC'A] QN
= JC'DN+KC™'D—-LN+M

as
WQI+XQN =Z

(notice that we added I) where

W = FP+G+JR-KC'A
X = F-JC'A
Z = JC'DN+KC'D-LN+M

e Take vec of both sides of the equation, so
vec (WQI) + vec(XQN) = vec(Z)
e This equals
(I' @ W)vec(Q) + (N' @ X)vec(Q) = vec(Z)

or
(I'@W + N'® X)vec(Q) = vec(Z)

o If (I'®@W + N'® X) is invertible
vee (Q) = (I' @ W + N' ® X) ™ vec(Z)
Explaining the solution

e What are vec and ® (the Kronecker product)

14



e First vec
aix a2 ais _
vec =
a21 a22 a23

e the columns are made into a vector
Explaining the solution

e The Kronecker product is

a1
a1
a12
a22
a13
a23

- b1 b2
B
A®B = ML WM2 oy by | = [ @
| a21 a2 b b az B
31 032
[ a11bi1 a1ibie  aizbin aiabio
a11b21  a11bay  ai2ba1  aq2ban
_ a11b31  aiibsa  ai2bszi  ai2b32
a21b11  a21biz  agebii  az2bia
a21bar  a21baz  agabar  a22b22
| a21b31  a21b32  a22bar  a22b30
Calibration
e Solution to model is numerical
e Need values for parameters
e Some we borrow from literature (quarterly)
— 5 =.99
—6=.025
—6=.36
e Need a value for A
— Choose A so that H =1/3
— Use stationary state equation for H
— 1
H= A 356
L+ (1-0) 1- 1—,6(1—6)]

— A=1.72 for H = .3335

e K = 12.6695 and using the production function, ¥ = 1.2353

15
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e 7=1/8=10101

e From data for US use v = .95

Matices for Calibrated model

A=

C:

Matices for Calibrated model

0 0
~12.670 B | 12:353
0 | 036
0 -1
1 -1 —15004 0
1.2353 —0.9186 0 0
-1 0 64 0
1 0 0o -1
0
0
b=11
0
F = [0]
G = [0
H = [0]
J=[0 -1 0 .0348 ]

K=[0 10 0]

L
M
N

Numerical solution for model

[
=

e The quadratic equation gives the solutions

e The stable value is

e The value for @ is

P =1.0592 and P = 0.9537

P =0.9537

Q =0.1132

16



e The matrices R and S are

R =

0.204 5
0.5691
—0.243

—0.7955

Numerical solution for model

e The laws of motion are

and

1.4523

S:

0.392

0.706 7
1.4523

0.9537K; + 0.1132),,
0.2045K, + 1.4523),,
0.5691K; + 0.3920,
—0.2430K; + 0.7067 )\,
—0.7955K, + 1.4523),.

e Recall that Xt follows the process

Two ways of finding the variances of the variables of the model

e Simulations

Xt = .95Xt,1 + My

— Run lots of simulated economies

— Calculate the variances from this "data"

e Calculate variances from laws of motion

— See book for detains

e Need to calibrate var(y,) so that var(V;) = 1.76%

— gets standard error of u, = .0032

Tables of second moments

e Standard errors as fraction of output

}/t Ct Ht Ft It
Standard error | 5.4840. | 4.0650. | 1.6400. | 3.4920. | 11.7420.
As % of output | 100% | 74.12% | 29.90% | 63.67% | 214.1%
e Standard errors from the data
Y Cy Hy Iy
As % of output | 100% | 73.30% | 94.32% | 488.64%

17




e Does well for consumption

e Badly for hours worked and investment

% stationary state values are found in another program
A=[0 -kbar 0 0]’;
B=[0 (1-delta)*kbar theta -1]7;
C=[1 -1 -1/(1-hbar) 0
ybar -cbar 0 0
-1 0 1-theta O

100 -1];
D=[0 0 1 0]°;
F=[0];
G=F;
H=F;
J=[0 -1 0 betax*rbar];
K=[0 1 0 0];
L=F;
M=F;
N=[.95];

Cinv=inv(C);

a=F-J*Cinvx*A;
b=-(J*Cinv*B-G+K*Cinv*A) ;
c=—-K*xCinv*B+H;
P1=(-b+sqrt(b"2-4xax*c))/(2%a);
P2=(-b-sqrt (b"2-4xax*c))/(2%a) ;
if abs(P1)<1

P=P1;

else

P=P2;

end
R=-Cinv* (A*P+B) ;

Q=(J*Cinv*D-L) *N+K*Cinv*D-M;
QD=kron(N’, (F-J*Cinv*A) )+ (J*R+F*P+G-K*Cinv*A) ;
Q=Q/QD;

S=-Cinv* (A*Q+D) ;
Hansen’s model with indivisible labor

e Objective: increase variance of hours worked

e Make labor indivisible
— one works X hours per week or not at all
e Add unemployment

— since some fraction of the population will not be working

18



goods
consumption

EN.

wage

Problem of non-convexity of consumption set

e In general, maximization is only valid over convex sets

e Def of a convex set
— straight lines between any two points in set are also in set
e Example of a non-convex set
How non-convexity is fixed in Hansen’s model
e The problem is the jump in income
— between working and not working

e Hansen invented an "unemployment insurance"

e Lump sum transfers that make income equal for all

solves non-convexity problem

consumption increases smoothly with wage

since all receive same income (based on wages)

solve problem of too much heterogenity
Household problem

e maximize

o0
max Z 5tu(ct, o)
t=0
subject to
et + 1y = wehy + ik

¢ = probability in time ¢ of supplying hg units of labor

19



e Expected utility

Aln(l1 —h
u(cy, o) = lnCt+ht¥
0
Aln(l - h
u(er, o) = lnCtJthy
0

Household problem

e Maximization problem becomes

maxZﬂt [Inc; + Bhy]
t=0

with
- Aln(l — ho)

B
ho

e subject to constraints

)\tkteh%_a =ct + kt+1 — (1 — 5)kt

and
In >‘t+1 = ")/lIl )\t + Et+1

Household problem

e First order conditions

1

hy

Al

0= — (1 - 0) K/ ?) + B,
t
1 1
0 = ——+E |:9/\t+1kt0_1ht1_9 + (1= 5)]
Ct Ct+1

e With equilibrium condition, these simplify to

Ci
1 = BEt |:C1t+1 (Tt—i-l + (1 - 6))] s

. (1-9Y
C;, = “BH,
Full model
C
1 = pBE; [Ct (Tt+1+(15)):|
t+1
—0)Y,
C, = _w

BH,

20



Ci+ K1 i+ (1-90)K;
re = 9/\th—ng—6
Y, = MNKPH!
Stationary state
e Equations
1
- = T74+(1-9
5 (1-19)
c - _U=0x¥
BH
o= oK H'
vy - 7
C = Y-46K
e solve to give
1
R — R 1-6
By ™ K- |
B (1 - 1-/3(1—5))

Stationary state

Comparing to basic Hansen model

e To get same stationary state, need H the same in both cases

Old stationary state equation

Then other variables will be the same

— 1
H= A 556
1+ 55 [1 17,8(175)}
e Set the two equal
1 - (1-0)
A 56 T Aln(l1—ho) 56 ’
I+ a5g |1 - 145(176)} T (1 - 175(1{6))

We replaced B with M
0

Need to determine hgy that make the two SS the same

21



01

azk

03F

04}t hOAnE-h0)

sk

e

ask

07 r

nslk

nek

Stationary state

e Solve to get

Ag) {1_ 356 }

ho B (- 1-B(1-9)
In(l — hg) A 356 -
nl=ho) 144t {1 - bﬁ(ké)}

e G is a constant

e To find ho

o Get hg = .583, @ = .573, and H = .3335

Log-linear model

e Taking the log-linear approximation of the model gives
Cy — ECis1 + BTE 111

Ciy+Hy - Y,

YY, —CC+ (1 - 8)KK; — KKy 41
Yi =X — 0K, — (1—0) H,

~ f/} - I?t — Ty

Q

Q

o o oo o
l

Solution method

e Use Uhlig’s method

0 = AIt+BSCt_1 +0yt +th7
0 = Ei[Fry+Goy+He o+ Jy + Ky + Lz + Mz,
Zip1 = Nzite,  Eileg) =0,

~ -~ =~ o ! Y
where, z; = {Kt}, Y = [Yt,C't,Ht,?t} ,and z; = [)\t}

22



e Solve for

Results

e The linear policy functions are

and

where

R =

Results

e Using this model, we calculate the variances of the variables

Kip1 = 9418K, + .1552),

Yy = R]?t + SN
0.055 1.9418
0.5316 g 0.4703
—0.476 6 1.4715
—0.945 1.9417

Tt Pri 14+ Qz
ye = Rxi1+ 5%
0 0
-K | K(=641)
0 B = 0
0 -1
-1 —1 0
—C 0
0 (1-0) 0 b=
0 -1

o= OO

Y, Cy H; T Iy
Standard errors | 6.431c. | 4.0810. | 3.4440. | 4.5140. | 15.7220,
As % of output | 100% 63.46% | 53.55% | 70.19% | 244.5%

Increased variance in hours worked

Slight increase in investment

Lower variance in consumption (compared to data)

23
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Impulse response functions

e How does the economy respond to a one time shock to technology

e ¢, = 0 except g5 = .01 Recall that v = .95

Xt = Vthl + &t

e Response of technology (path of ;)
Impulse response functions
e Then calculate the time path of capital with K 1 = 0 using

K1 = PK;: + Q)

e get path of K,. Use this to find path of other variables using

Yy = Rkt + S/\f

Impulse response functions: Basic Hansen model
Impulse response functions: Hansen with indivisible labor
Comparing impulse responses

e Both models get same impulse
e Put each set of responses on different axis

o Get
Comparing impulse response

e Rotating so that we don’t see the time axis

24
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Figure 1: Responses of Hansen’s basic model

Figure 2: Responses for Hansen’s model with indivisible labor

25



00401 0005 ©

Figure 3: Responses for both Hansen models
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Figure 4: Comparing the response of the two models
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