1 Linear quadratic models
Linear-quadratic methods
e Alternative way to approximate models
e Results in linear approximation of a policy function
e Approximation is done when setting up the problem
e The objective of the Bellman equation is quadratic
The linear quadratic problem
e discounted quadratic objective function we are looking for is of the form
o0
> B [w} Ry + ) Sys + 2y, W]
t=0
e subject to the linear budget constraints

Tiy1 = Azy + By,
e where

— x; is the n x 1 vector of state variables,
— y; is a m x 1 vector of control variables,
— R and A are n X n matrices,

— S is an m X m matrix,

— and W and B are m X n matrices.
Second order Taylor approximations

Theorem 1 Suppose that f is a function with domain D in RP and range
i R, and suppose that f has continuous partial derivatives of order m in a
neighborhood of every point on a line segment joining two points w, v in D.
Then there exists a point u on this line segment such that

f@) = f)+ 3 DF@) — )+ 5D ()0~ u)?
IS @ _1 1)!Dn—1f(u)(v — u)”—l + %an(ﬂ)(v —u)".

Second order Taylor approximations: example

e For the discounted utility function of the form

Zb’tu(ct7 ht) = Zﬁt lne; + Aln(1 — hy)]
t=0 t=0



e the objective function is

In ¢t + Aln(l — ht)

e the first derivative of the objective function is the vector,

e the second derivative is the matrix,

_CLQ 0
t A .
0 (1—hy)?

Second order Taylor approximations: example

e Taylor expansion (round ¢ and h) is

ulenhy) ~ e+ Aln(l—h)+ [ & _&H;_”
1
1 = T &= 0 ¢t —C
gla-e mh]l 0 <f%2][mh}

e How to arrange this result so that it looks like

xRy + vy Sye + 2y, W

Method of Kydland and Prescott (General version)

e A general version is to maximize
o0
Z t
ﬂ F(xtayt)
t=0

e subject to the linear budget constraint

Ti4+1 = G(!Et, yt) = A%t + Byt

e where x; are the period t state variables and y; are the period t control
variables.
e The second order Taylor expansion of the function F(x¢,y:) is
— — — Ty —T
Ploww) ~ F@)+] B@n B ][ 27 ]
Fméf ) Fay(37) ] { Ty —T }

Y
2
Fy.(Z,79) Fyy (%,79) Ye — Y

2 2




Method of Kydland and Prescott (General version)

e define a vector z;

1
Zt = Tt
L Yt
e its value in the stationary state
[ 1
zZ= |
L ¥

e vector x; is of length &

e the vector y; of length [,

e the vector z; is of length 1 + &k + 1

Method of Kydland and Prescott (General version)
e Consider the (14 k+1) x (14 k4 1) matrix

mi1 MMi2 Mi13
M= ma1 mo2 mo3
m31 M32 M33

e The matrix mqq is 1 X 1, mog is k X k, mgs3z is [ X [, and the rest of the
matrices conform to make M square.

e The product

2tMz, = my1+ (mig 4+ myy )z + (mas + ma;)ye

+xymosts + xy(Mag + My s + Yymasy:.

Method of Kydland and Prescott (General version)

e Put all the constant components of the Taylor expansion into

mi1 = F(fv y) - Fx(fa y)f - F‘y(fv y)y
Fo.(%,7)7> F,,(Z,9)7?
+ uc( 5 y) + ny(i,y)fy+ yy( . y)y
" Defne Fy(5.5) - 7Fs0(2.5) - JFoy(@.0)
z\T, — XL g\ T, - zy\T,
mig = m/21 = Y 2 Y AL
and

/ Fy(Z,9) —TFy(T,7) — 95y, (T,7)
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e These last two equations include all the linear components of the Taylor
expansion in M and M a symmetric matrix

Method of Kydland and Prescott (General version)

e The quadratic components of the Taylor expansion are found in

wa jai
moo = 7(2 y)
Foy(Z,y
o mgﬂ _ y( 7)
and F, (z.7)
z,
mgy = Y

e The quadratic discounted dynamic programming problem to be solved is

o0

ZﬂtzéMzt

t=0
with zft:[ 1z ], subject to the budget constraints

.’Et+1 = AiL't + Byt

Method of Kydland and Prescott (Hansens model)

e A specific example of the problem to be solved is

Z Buler, he)
t=0
subject to the budget constraint
Ct = f(kt, ht) —|— (1 — 6)]€t — ]€H_1.

e This budget constraint is not linear, rewrite problem as
maxz ﬁtu(f(k:t, ht) + (]. — 5)]{315 — kt+1, ht),
t=0

subject to the linear budget constraint
ki1 = ki1
e The controls are ki1 and hy

Method of Kydland and Prescott (Hansens model)



e The exact problem is

maxth o (kYR =% + (1 = 8)ks — kuy1) + Aln(1l — hy)]
t=0

subject to the linear budget constraint: ki1 = k¢4
e The quadratic Taylor expansion of the objective function is

u(-) ~ In(f(k,h)—0dk)+ Aln(l — h)
1

ch 1-h
(k=% 7' [an a2 ais (ke — k)
+ | (k1 — k) a1 a2 G23 (key1 — k)
(ht — h) asy Gz G33 (he — h)

Method of Kydland and Prescott (Hansens model)

e where )
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Method of Kydland and Prescott (Hansens model)

e Define the four element vector z; = [ 1 ke ki1 e ]/.

e The 4 x 4 matrix M is

mi1 M1z M1z Mig
m a a a
M= 21 11 12 13
m31  G21 G2 Q23
m41 @31 az2  G33



e mq; contains all the constants,

my1 = In(f(k,h) —6k) + Aln(1 — h)
1[5 _ 1y A
—— =+ (1-96)-1|k—|(1=-0)==———=|h
| ra-o-afi-lo-ogf- 5
E1 [an ain ais k
+ |k az aze a3 k|,
h a3 as2 as3 h
Method of Kydland and Prescott (Hansens model)
e All the linear parts are in
1775 o [ a11
m12m21[9+(15)}[l€ k h] a1
clk | a31
L arz |
m13:m31:*%*[k k h] a2
asz |
and
15 A I
m14m41[(19)cz 1_h:|[k§ k h] ass

Method of Kydland and Prescott (Hansens model)

e The model can now be written as

oo

Z B2 Mz

t=0
e subject to the budget constraint

1 1 kit
=A +B
PR P

10 0 0
owherehere,A{O O}andB[1 O}

Solving the Quadratic Bellman equation

e Use z; = [ it } . let the first element of x; be the constant 1.
t



e one wants to maximize -
Z B2 Mz
t=0
subject to the linear budget constraint,

Tiy1 = Azy + By

e The objective function is of the form

/ R W x
=[] g 0]

where x; is a 1 xn vector, y; is a 1 X m vector, z; is therefore a 1 x (n + m)
vector. The matrix Risn xn, Q is m x m, and W is m X n.

Solving the Quadratic Bellman equation
e Since W'y, = y, Wz, this objective function can be written as

Ty Rxy + v, Qu + 2y, Wy

e Based on this objective function, we look for a value function matrix P
such that
2y Pry = max [z, Mz, + B}, Priy1]
Yt

subject to the linear budget constraints
.’Et+1 = Ai[,'t + Byt
e This Bellman equation can be written as

xyPxy = max [} Rzs + y,Qye + 2y, Wy + B (Azy + By,) P (Az, + By)]

Solving the Quadratic Bellman equation
e The first order conditions from the maximization problem are
[Q + BB'PBy; = — [W + BB PA] x4,
which gives the policy function (matrix), F,
ye = Fa, = — [Q + BB'PB]” ' [W + BB'PA] x,.
e P is still undefined.

e Substitute this policy function into the Bellman equation in place of y;
and get the equation

P=R+BAPA—(BAPB+W')[Q+ BB PB] ' (BB'PA+W)



e P can be found, given some initial Py, as the limit from iterating on the
matrix Ricotti equation

Pji1 = R+ BAPA— (BA'P;B+W')[Q+ 8B'P;B]”' (3B'P;A+ W)
Matrix derivatives

e The rules for taking matrix derivatives are

Oz’ Ax

el (A+ Az
Oy’ Bx
= Bz
dy
0y’ Bx
oz 4

Finding the value matrix for Hansen’s basic model
e The first step is to choose the parameter values
e From previous models, these are 8 = .99, § = .025, # = .36, and A = 1.72.

e The stationary state values are h = .3335, k = 12.6695, 7 = 1.2353, and
¢ =.9186

The resulting a matrix is

—0.6056 0.5986  —1.3823
a= 0.5986 —0.5926  1.4048
—1.3823 14048 —6.6590

—1.6374 1.0996 —1.0886 1.9361
1.0996 —0.6056 0.5986 —1.3823

—1.0886 0.5986 —0.5926  1.4048
1.9361 —1.3823 1.4048 —6.6590

M =

Partitioning the M matrix

R W

.M:|:W 0

} , so using earlier M matrix gives

R [ —16374 1099
~ | 1.0996 —0.6056

0= —0.5926  1.4048
B 1.4048 —6.6590

—1.0886  0.5986 }

W:{ 1.9361 —1.3823



Finding the value function
e The initial Py is

1
-

e Use the matrix Ricotti equation and get

= O
[

p [ —7515 9987
L= 1 9987 —0.4545

p, _ [ —16909 8247
27| 8247 —0.1924

Results for Hansen’s economy

o After 200 iterations

P [ —96.3615  .8779 }

8779 —0.0259

e The matrix policy function is

o 0.5869  0.9537
~ | 0.4146 —0.0064 |-

Results for Hansen’s economy in a stationary state

e Checking results in a stationary state

1
v [ 12.6695 }

e Applying F gives

y:F*x:[0.5869 0.9537“ 1 }_[12.6698]

0.4146 —0.0064 12.6695 |~ | 0.3335

e To find the z;,1 want

Ty41 = Azx+ By=Az+ BFzx

_ [r o], [0 0][o05860 09537
= 1o o|” 1 0 || 04146 —0.0064 |*

1
12.6698

Adding stochastic shocks



e Add stochastic shocks through the budget constraints
Tyl = AiEt + Byt + C€t+1

where €; is an independent and identically distributed random variable
with Fy(ei41) = 6), a finite, diagonal variance matrix, 3, and C' a matrix
that is m x n where m is the number of state variables and n is the length
of the vector of shocks, €;41.

Adding stochastic shocks
e Proceed as before, looking for solution to
o0
By 5% Mz,
t=0
subject to the linear budget constraints

Ti41 = AZI?t + Byt + C€t+1.

e Look for value function of the form

a2y Py + ¢ = nax Eoy Y B2 Mz,

Ysis=t s=t

e The constant is possible because of the expectations operator
Adding stochastic shocks
e The Bellman equation is

Ty Pxy + ¢ = max {ziM 2z + BEo [y 1 Pxi1 + |},

subject to
Ti41 = AiCt + Byt + C€t+1.

e This can be written as
Ty Pry+c = max [2iM 2z + Bx; A’ P Az, + By, B'PBy;
+BEy [g,,,C"PCey1] + Bc] .
Adding stochastic shocks

e Define G = [g;x] = C'PC
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e then

Ey [e141C"PCera] = ZZEt {Ei-&-lgjkgw];—l} = Zgijt |:Ei+15i+1:|
Jj k J

because F; [sfﬂsgﬂ} =0, when k # j

But }; g;; = trace (C"PC)

® So

TyPry+c = max [2M 2 + By A'PAxy + By, B'PBy;
—l—ﬁtrace [C'PCY] + Bc]

e ¢ = ftrace [C'PCY] /(1 - p)
Adding stochastic shocks
e Using this value of c, get
x,Pry = max [z M2z + Bz A'P Az + By, B’ PBy;)
= max [, Rry + v, Quy + 2y, Wy + By, A’ PAx, + By, B' P By,
e First order conditions give
(Q + BB'PB)y; = — [W + BB'PA| ,

or

y, = Fa, = —[Q+ BB'PB]” ' [W + BB'PA] x,

e Exactly the same first order condition (and therefore policy matrix) as in
the deterministic case

e Find time path using
Ti4+1 = [A + BF] Ty + C8t+1.

The basic Hansen example economy
e Agents max

max » " [In (B{h{ ™ + (1= 0)k — kug1) + Aln(1 = he)]
t=0

subject to the linear budget constrainta:
kit1 = ki

and
)\t+1 = (]. — ’Y) + 'Y>\t + €41,

11



e Define the state variables as

and the controls as

The basic Hansen example economy
e The budget constraint can be written as

Tip1 = Azy + By, + Cer

or as
1 1 00 1 0 0 L 0
ke | = 0 0 0 ke |+ 1 0 { ﬁ1}+ 0 | g1
Aty1 1—v 0 ~ A 0 0 ¢ 1

The basic Hansen example economy

e The second order taylor series expansion of the objective function is (note
a parameters)

w() ~ (AR~ 0F) + Aln(1 - B)

1| 75 —
+= {ek +(1— 5)} (ki — k)
m — 1
+% (Ae—2X) — = (keyr — k)
17 A
11— =2 2 |\ -"n
+h )% 1—h}(t )
(ke — k) "Tan d1n a1 a1 (ke — k)
(A= A) Gxi G\ Gx2 dxs (A —A)
(ktr1 — k) a1 G2n a3z G32 (kty1 — k)
(hy — h) as1  asx Qz2  as3 (he —h)

The basic Hansen example economy

e Get an M matrix for quadratic optimization problem

oo
maXE zy Mz,
{yt} =0

subject to the budget constraints

Tep1 = Az + By + Cegya.
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The 5x5 matrix M in the quadratic version of the objective function is

mi1 MMi2 M1z Mig Mi5
m21 Al aix a12 a3
M= | m31 axi axx ax2 ax3

~

mg41  G21 a2\ 22 a23
ms51  a31 a3z a32 as33

The m;;’s are described in detail the book
The basic Hansen example economy

e Calibration and solution
e Only addition is v = .95 (as before, based on estimates from US)
e Solve

Pyoyr = R+ BA'PLA— (BA'P.B+W')[Q+ BB P.B] " (BB'P,A+ W)

e to find the matrix P

—124.0532 1.0657 15.6762
P = 1.0657 —0.0259 —0.1878
15.6762  —0.1878 —1.9963

e and then use
Yo = Fa, = —[Q + BB'PB]” ' [W + BB'PA] x,
e to find the policy function F),

—0.8470 0.9537 1.4340

F= 0.1789  —0.0064 0.2357 |~

The basic Hansen example economy

e Given this F' and the budget constraint, get

1 1 0 0 1
kt-‘,—l = O O 0 kt
P 05 0 .95 A
n (1) 8 —0.8470 0.9537 1.4340 kl
0.1789  —0.0064 0.2357 i
L0 0 by
[0
+ 0 Et41,
| 1
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Figure 1: Impulse responses given in levels

e the laws of motion is

1 1 0 0 1 0
ki1 | = | —0.8470 0.9537 1.4340 ke |+ 0 | e
As1 05 0 95 e 1

The basic Hansen example economy
e Impulse response in levels

The basic Hansen example economy
e Impulse response in log differences
The basic Hansen example economy

e Comparing impulse response of linear quadratic to first method
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Figure 2: Responses found using linear quadratic solution method
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Figure 3: Comparing the two solution techniques using Hansen’s model
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