
A model of learning with idiosyncratic
measurement error

aka: The importance of good public information

Prof. McCandless
UCEMA

November 19, 2010

1 Lecture on Learning paper

Idea

� Start with a very simple model (hansen�s rbc model)

� have households learn about aggregate values of variables with measure-
ment noise

� this measurement noise is idiosyncratic

� Each household estmates forecasting equations from noisy data

� Forecasting parameters are biased

� Find Stationary state with idiosyncratic noise

� �nd dynamic model with idiosyncratic noise

The model (Hansen)

� Households max

Ejt

1X
i=0

�i
�
ln cjt+i +A ln

�
1� hjt+i

��
subject to

kjt+1 = wth
j
t + (rt + 1� �)k

j
t � c

j
t + �

j
t ;

� Production is competitive and the production function is Cobb-Douglas

Yt = �tK
�
tH

1��
t
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� factor markets result in
rt = �

Yt
Kt

The full model

� The Hansen RBC model can be written in terms of the following �ve
equations :

1

�cjt
= Et

rjt+1 + 1� �
cjt+1

;

(1� �) Yt
Ht

=
ACt
1�Ht

;

Kt+1 + Ct = Yt + (1� �)Kt;

Yt = �tK
�
tH

1��
t ;

rt = �
Yt
Kt
:

Forecasting equations (1)

� Households estimate the forecasting equations

cjt+1 = '11k
j
t+1 + '12y

j
t

and
rjt+1 = '21k

j
t+1 + '22y

j
t

� estimated with the noisy data that they have

� Household j has the data history comprised of

kjt+1 = Kt+1 + "
j;k
t

and
yjt = Yt + "

j;y
t :

Forecasting equations (2)

� De�ne

X =
�
kjs yjs�1

�
=
h �
Ks + "

j;k
s

� �
Ys�1 + "

j;y
s�1

� i
� and

Y =
�
cjs rjs

�
=
� �
Cs + "

j;c
s

� �
rs + "

j;r
s

� �
:

� The parameters for the forecasting model are found from

� =

�
'11 '21
'12 '22

�
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� are found from
� = (X 0X)

�1
X 0Y:

Forecasting equations (3)

� This equation can be written as

(X 0X)
�1
X 0Y

=

 " �
Ks + "

j;k
s

��
Ys�1 + "

j;y
s�1

� # h �
Ks + "

j;k
s

� �
Ys�1 + "

j;y
s�1

� i!�1

�
" �

Ks + "
j;k
s

��
Ys�1 + "

j;y
s�1

� # � �Cs + "j;cs � �
rs + "

j;r
s

� �
;

� Because the shocks are independent, this becomes

� = (X 0X)
�1
X 0Y

=

�
K2
s + �

2
"k

KsYs�1
KsYs�1 Y 2s�1 + �

2
"y

��1 �
KsCs Ksrs
Ys�1Cs Ys�1rs

�
:

Forecasting equations (4)

� Since the X 0X matrix is only 2 � 2, it can be inverted exactly and after
a bit of substitution, along with the assumption that the variances are
proportionally the same for all variables, that �2"k = K2�2" and �

2
"y =

Y 2�2", one gets stationary state parameters for the forecasting equations
of

� =

24 C
(2+�2")K

r
(2+�2")K

C
(2+�2")Y

r
(2+�2")Y

35 :
Applying the forecasting equations to the model (1)

� The �rst equation of the model is

1

�cjt
= Et

rjt+1 + 1� �
cjt+1

� Apply the equations for forecasting to get

1

�cjt
= Et

rjt+1 + 1� �
cjt+1

;

=
'21k

j
t+1 + '22y

j
t + 1� �

'11k
j
t+1 + '12y

j
t

1

�cjt
=

'21

�
Kt+1 + "

j;k
t

�
+ '22

�
Yt + "

j;y
t

�
+ 1� �

'11

�
Kt+1 + "

j;k
t

�
+ '12

�
Yt + "

j;y
t

� :
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Applying the forecasting equations to the model (2)

� Both sides of the last equation can be inverted and we get

�cjt =
'11

�
Kt+1 + "

j;k
t

�
+ '12

�
Yt + "

j;y
t

�
'21

�
Kt+1 + "

j;k
t

�
+ '22

�
Yt + "

j;y
t

�
+ 1� �

:

� aggregating the lhs is easy and gives �Ct

� Aggregating the rhs is quite di¢ cult and is done by approximation

Applying the forecasting equations to the model (3)

� Taking a second order Taylor approximation of the rhs gives

�Ct =
ECt+1

Ert+1 + 1� �

+'21
'21ECt+1 � '11 (Ert+1 + 1� �)

(Ert+1 + 1� �)3
�2"k

+'22
'22ECt+1 � '12 (Ert+1 + 1� �)

(Ert+1 + 1� �)3
�2"y :

replacing the parameters of the forecasting equations with what they equal
gives

�C =

2
2+�2"

C

2
2+�2"

r + 1� �
� 2

Cr
(2+�2")

2 (1� �)�
2

2+�2"
r + 1� �

�3�2"
Applying the forecasting equations to the model (4)

� Cancelling out C, gives

� =

2
2+�2"

2
2+�2"

r + 1� �
� 2

r
(2+�2")

2 (1� �)�
2

2+�2"
r + 1� �

�3�2"
� Notice that if �2" = 0; this equation becomes the standard expression for
this �rst order condition.

The stationary state (1)
The �ve equations for the stationary state are

4



� =

2
2+�2"

2
2+�2"

r + 1� �
� 2

r
(2+�2")

2 (1� �)�
2

2+�2"
r + 1� �

�3�2"
(1� �) Y

H
=

AC

1�H
;

C = Y � �K;
Y = K

�
H
1��
;

r = �
Y

K
:

The stationary state (2)

� For the parameter values of � = :99, � = :025, � = :36, and A = 1:72

� The stationary state values when �2" = 0 are the usual

K = 12:6695;

Y = 1:2353;

C = :9186;

H = :3335;
r = :0351:

The stationary states with idiosyncratic measurement error

� The e¤ects of bias in the forecasting estimations

The stationary states with idiosyncratic measurement error

� The e¤ects of bias in the forecasting estimations

The dynamic version of the model

� The log-linear version of the basic model is

0 = ecjt � Etecjt+1 + �rEterjt+1;
0 = eYt � ehjt

1�H
� ecjt ;

0 = Y eYt � C eCt +K h(1� �) eKt � eKt+1

i
;

0 = e�t + � eKt + (1 + �) eHt � eYt;
0 = eYt � eKt � ert;

� and e�t = 
e�t�1 + e"�t :
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Figure 1: Stationary state values for K, Y , and H as a function of the measure-
ment error
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Figure 2: Stationary state values for C, r, ECt+1, and Ert+1 as function of
measurement error
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The dynamic version of the model

� The expectational variables, Etecjt+1 and Eterjt+1 are determined by each
family using an OLS model and using eKt+1 and eYt as explanatory variables

� the equation ish
Et eCt+1 Etert+1 i = � ' (t� 1)11 ' (t� 1)21

' (t� 1)12 ' (t� 1)22

� h eKj
t+1

eY jt i
;

� where the ' (t� 1)11 are estimated using data available up to time t-1

� The OLS estimation is

� =
��
Xj
�0
Xj
��1 �

Xj
�0
Y j

The dynamic version of the model

� Given the measurement error, a bias is introduced into the estimates

� The bias can be seen in

� =

 "
var eK cov eK eY
cov eK eY vareY

#
+

�
�2�K 0

0 �2�Y

�!�1

�
"
cov eK eC cov eKer
coveY eC coveY er

#
:

The dynamic version of the model (solving the model)

� A state space version of the model is used

� the variables are

xt =
h eKt+1

eHt eYt eCt ert Et eCt+1 Etert+1 e�t i
� and the state space formulation of the problem is

At (�t�1)xt = Bt (�t�1)xt�1 + C"t;

� the recursive updating equation for the parameters is�
�t
Pt

�
= G

��
�t�1
Pt�1

�
; xt

�
:

The dynamic version of the model (solving the model)
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� the state space model can be solved directly in each period as

xt = [At (�t�1)]
�1
Bt (�t�1)xt�1 + [At (�t�1)]

�1
C"t:

� where

At =

266666666664

0 0 0 1 0 �1 �r 0
0 � 1

1�H 1 �1 0 0 0 0

�K 0 Y �C 0 0 0 0
0 1 + � �1 0 0 0 0 1
0 0 1 0 �1 0 0 0

�'111(t� 1) 0 �'112(t� 1) 0 0 1 0 0
�'121(t� 1) 0 �'122(t� 1) 0 0 0 1 0

0 0 0 0 0 0 0 1

377777777775
;

The dynamic version of the model (solving the model)

Bt =

266666666664

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

� (1� �)K 0 0 0 0 0 0 0
�� 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 


377777777775
;

and
C =

�
0 0 0 0 0 0 0 1

�0
:

Finding an impulse response function

� Constant gain OLS can be very slow to converge

� the economy is run for 40; 000 periods with a forgetting factor of :99999

� then run again using the average values for � over the last 20; 000 periods
as a new starting point.

� The economy is run twice for 40; 199 periods beginning with the coe¢ cients
found above (with the forgetting factor = 1).

� the same normally distributed shocks are applied to the economy

� except that in period 40; 001 of the second running, an additional impulse
of :1 is applied to the technology shock

� The impulse response function to a technology shock for this economy is
found by subtracting the last 199 observations of the �rst run without
forgetting from the second run.
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Figure 3: Impulse-response functions

How measurement error a¤ects the parameters

� For an example economy with a variance of measurement error of :001,

� The range of the signal to noise ratio is from 10 to :0001

� 10 1 .1 :01 :001 :0001
'11 0:4989 0:4856 0:4295 0:3258 0:2260 0:1978
'12 0:2892 0:2763 0:2698 0:2053 0:1163 0:0914
'21 �1:0079 �0:9936 �0:8935 �0:6341 �0:4987 �0:5149
'22 0:9702 0:9583 0:8572 0:5134 0:2101 0:1088

Impulse response functions

� � is the ratio of �2"� to �
2
�, shock is to technology

Value of public information

� Reliable public information can permit returning to the rational expecta-
tions equilibrium

� Only information necessary is survey data from households

� that averages the data observed by the households

� Why
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