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Idea

e Start with a very simple model (hansen’s rbc model)

e have households learn about aggregate values of variables with measure-
ment noise

e this measurement noise is idiosyncratic

e Each household estmates forecasting equations from noisy data
e Forecasting parameters are biased

e Find Stationary state with idiosyncratic noise

e find dynamic model with idiosyncratic noise

The model (Hansen)

e Households max
BlY 8 (el + Al (1= y,))
i=0

subject to ' _ ' 4 4
kg = wihi + (re+ 1= 0)ki — ¢l + X1,

e Production is competitive and the production function is Cobb-Douglas

Y, = NKH!T?



e factor markets result in

The full model

e The Hansen RBC model can be written in terms of the following five
equations :
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Forecasting equations (1)
e Households estimate the forecasting equations
a1 = ki + P12V

and ‘ ‘ .
i1 = Pkl + 20yr

e estimated with the noisy data that they have
e Household j has the data history comprised of
kipr = Ky +ef

and ‘ .
yi =Y+l

Forecasting equations (2)
e Define
X=[K ol )= (Koret) (Yoorsel) |
e and o _
Y=[dc rl|=[(Cit+el®) (rs+ei)].

e The parameters for the forecasting model are found from
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e are found from
d=(X'X)" XY
Forecasting equations (3)
e This equation can be written as
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e Because the shocks are independent, this becomes
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Forecasting equations (4)

e Since the X’X matrix is only 2 x 2, it can be inverted exactly and after
a bit of substitution, along with the assumption that the variances are

proportionally the same for all variables, that o2, = KZ?0? and Ugy
Y202,
of
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Applying the forecasting equations to the model (1)

e The first equation of the model is

i:Efg““_é
Bei Cli1
e Apply the equations for forecasting to get
i,. = Etw,
Bei Cti1

o1kl + Pooyl +1 -0
o1kl + w1y
1 P21 (Kt+1 + 5{7k) + P2 (Yt JFEg’y) +1-4

Bei P11 (Kt+1 + Eik) + P10 (Y;t + 5iy)

one gets stationary state parameters for the forecasting equations



Applying the forecasting equations to the model (2)
e Both sides of the last equation can be inverted and we get
P11 (KtJrl + EgJC) + 12 (Y;t + Eiy)

P21 (Kt+1 + 5{’k) + P22 (Yt + Egy) +1-9¢

el =

e aggregating the lhs is easy and gives SC}
e Aggregating the rhs is quite difficult and is done by approximation
Applying the forecasting equations to the model (3)

e Taking a second order Taylor approximation of the rhs gives

EC
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replacing the parameters of the forecasting equations with what they equal
gives
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Applying the forecasting equations to the model (4)

e Cancelling out C, gives
2 T _
PO £ S 1) (1-96) |

T2 = _ 30¢
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e Notice that if o2 = 0, this equation becomes the standard expression for
this first order condition.

The stationary state (1)
The five equations for the stationary state are
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The stationary state (2)

e For the parameter values of 8 = .99, § = .025, § = .36, and A = 1.72

e The stationary state values when 2 = 0 are the usual

K = 12.6695,
Y =1.2353,
C = .9186,
H = .3335,
7 =.0351

The stationary states with idiosyncratic measurement error
e The effects of bias in the forecasting estimations

The stationary states with idiosyncratic measurement error
e The effects of bias in the forecasting estimations

The dynamic version of the model

e The log-linear version of the basic model is

0 = E?*Eﬁ@ﬁﬂ?EﬁH’
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e and _ _
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Figure 1: Stationary state values for K, Y, and H as a function of the measure-
ment error

observed

consumption

expected

1 1 1
0.002 0.004 0.006 0.008 0.01

0.038 T T T T

0.036 - 1
observed

0.034

rental

0.032

0.03

expected
.

0.028 : ‘
0.002 0.004 0.006 0.008 0.01

sig ep

Figure 2: Stationary state values for C, 7, EC;,1, and Er;,, as function of
measurement error



The dynamic version of the model

e The expectational variables, F;& 41 and B 41 are determined by each

family using an OLS model and using K ++1 and }N/t as explanatory variables

e the equation is

[mé s ]=[ 2020 00 ][R ],

e where the ¢ (t — 1), are estimated using data available up to time t-1

e The OLS estimation is
N
P = ((XJ) XJ) (X]) Y7
The dynamic version of the model

e Given the measurement error, a bias is introduced into the estimates

e The bias can be seen in
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The dynamic version of the model (solving the model)

e A state space version of the model is used

the variables are

Ty = f?t+1 ﬁt ﬁ 5t T Et6t+1 BT Xt]

and the state space formulation of the problem is

Ay (Pi—1) 2 = By (Py—1) 241 + Cey,

the recursive updating equation for the parameters is

RS

The dynamic version of the model (solving the model)



the state space model can be solved directly in each period as

xy = [Ay (‘I’t—l)rl By (Pr—1) xp—1 + [As (‘I’t—l)rl Cey.

e where
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The dynamic version of the model (solving the model)
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and

c=[0 000000 1].

Finding an impulse response function

Constant gain OLS can be very slow to converge
the economy is run for 40,000 periods with a forgetting factor of .99999

then run again using the average values for ® over the last 20, 000 periods
as a new starting point.

The economy is run twice for 40, 199 periods beginning with the coefficients
found above (with the forgetting factor = 1).

the same normally distributed shocks are applied to the economy

except that in period 40,001 of the second running, an additional impulse
of .1 is applied to the technology shock

The impulse response function to a technology shock for this economy is
found by subtracting the last 199 observations of the first run without
forgetting from the second run.
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Figure 3: Impulse-response functions

How measurement error affects the parameters
e For an example economy with a variance of measurement error of .001,

e The range of the signal to noise ratio is from 10 to .0001

T 10 1 1 .01 .001 .0001
w11 | 0.4989 0.4856 0.4295 0.3258 0.2260 0.1978
P19 | 0.2892 0.2763 0.2698 0.2053 0.1163 0.0914
w9 | —1.0079 | —0.9936 | —0.8935 | —0.6341 | —0.4987 | —0.5149
P9y | 0.9702 0.9583 0.8572 0.5134 0.2101 0.1088

Impulse response functions
e 7 is the ratio of ng to Ui, shock is to technology
Value of public information

e Reliable public information can permit returning to the rational expecta-
tions equilibrium

e Only information necessary is survey data from households

— that averages the data observed by the households
e Why



