

UNIVERSIDAD DEL CEMA

Buenos Aires

Argentina

Serie

DOCUMENTOS DE TRABAJO

Área: Matemática y Economía

Intuitive Mathematical Economics Series.

Linear Functions, their Matrix Form and

the Geometry of Linear Systems of Equations

Sergio Pernice

Diciembre 2019

Nro. 707

https://ucema.edu.ar/publicaciones/doc_trabajo.php

UCEMA: Av. Córdoba 374, C1054AAP Buenos Aires, Argentina

ISSN 1668-4575 (impreso), ISSN 1668-4583 (en línea)

Editor: Jorge M. Streb; asistente editorial: Valeria Dowding <jae@cema.edu.ar>

Intuitive Mathematical Economics Series
Linear Functions, Their Matrix Form and

The Geometry of Linear Systems of Equations

Sergio A. Pernice1

Universidad del CEMA
Av. Córdoba 374, Buenos Aires, 1054, Argentina

Abstract

Matrices, their products, linear systems, and the underlying geometric ideas are presented
in an intuitive and practical way for economics students and other students of the social
sciences. Python Jupyter notebooks are used to present examples that enforce the geometric
ideas.

Keywords: Linear systems, Matrices.

1 Introduction

Continuing with the objective of the “Intuitive Mathematical Economics Series” of presenting to
economics students, and in general students of the social science, the mathematics they need in
an intuitive way, in this article we present linear functions, their matrix form, and linear systems
of equations in an intuitive, geometric way.

The article first presents linear and affine functions. Their matrix form is presented simply as
a short way of encapsulating linear functions. Presented in this way, matrix-vector ad matrix-
matrix multiplication become natural. We also present systems of linear equations and their
matrix form. Then we introduce the “column view” of matrices, which make the geometry of
linear systems transparent in any dimension. This is the main purpose of the article, allowing
a very intuitive approach to linear equations. Finally we present some examples with Jupyter
notebooks.

1sp@ucema.edu.ar

1

2 Linear and Affine Functions

Definition 2.1. A scalar function f : IRn → IR is affine if it has the form:

f




x1

x2
...

xn


 = a1x1 + a2x2 + · · · + anxn + b

where a1, · · · , an, b ∈ IR. Note that f [0] = b, where 0 is the vector with all its elements equal to
zero.

Definition 2.2. A scalar function f : IRn → IR is linear if it has the form:

f




x1

x2
...

xn


 = a1x1 + a2x2 + · · · + anxn (b = 0)

where a1, · · · , an ∈ IR. Note that f [0] = 0.

Definition 2.3. A vector-valued function f : IRn → IRm is affine if it has the form:

f




x1

x2
...

xn


 =


f1 [x]
f2 [x]
...

fm [x]


where we are using bold letters to denote vectors, as in x = (x1, x2, · · · , xn)T . The functions fi [x],
i = 1, · · · ,m are affine functions.

Definition 2.4. A vector-valued function f : IRn → IRm is linear if it has the form as in definition
2.3 but where all the functions fi [x] are linear.

Note that a property of linear functions is that f [0] = 0, i.e. it transforms the null vector into a
null vector. However note that the first zero vector 0 lives in IRn and the second in IRm.

The following examples show affine, linear and general nonlinear functions:

Example 2.1.

f


 x1

x2

x3


 =

 3x1 + 0.2x2 − x3

x3 − x1 + 7
x1 − x2 − x3 − 1

 is affine

Example 2.2.

f


 x1

x2

x3


 =

 2x2 − x3

x3 − x1

x1 − x2 − x3

 is linear

2

Example 2.3.

f


 x1

x2

x3


 =

 2x2 − x3

x3 − x1

x1 − x2 − ex3

 is neither linear nor affine

Note that with the above definition, for functions f : IR→ IR, a function like f (x) = ax + b, that
normally would be called linear, is in fact an affine function. It is linear only for b = 0.

Consider a general linear function. From definition 2.4, a general linear function f : IRn → IRm

can be written as:

f




x1

x2
...

xn


 =


a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

am1x1 + am2x2 + · · · + amnxn

 (2.1)

Linear functions like (2.1) can be seen as defining of a product between a matrix and a vector:
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




x1

x2
...

xn

 ≡


a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

am1x1 + am2x2 + · · · + amnxn

 (2.2)

where on the left hand side we have a matrix A, with elements ai j, i = 1, · · · ,m, j = 1, · · · , n.
The element ai j corresponds to the number in the ith row and the jth column of matrix A. A is
said to have “dimensions” m × n, also called “shape” (m, n).

In a more compact notation, the left hand side of equation (2.2) can be written as Ax, and the
product between the matrix A of dimensions m × n and the vector x ∈ IRs, as defined by (2.2),
only makes sense if s = n. The result is a vector in IRm, which can also be seen as a matrix of
dimension m × 1:

A
m×n

x
n×1

= y
m×1

(2.3)

The matrix times vector multiplication can be expressed in terms of their components as

(Ax)i =

n∑
j=1

ai jx j (2.4)

In a more compact notation, using the “Einstein summation convention”, it can be written as:

(Ax)i = ai jx j (2.5)

where the convention is that equal indices (the index “ j” in ai j and in x j) is summed over.

Equation (2.2) indicates that every linear function f : IRn → IRm has associated an m × n matrix
and vice versa. As already mentioned, it also defines the matrix-vector product.

3

The composition of two linear functions f : IRn → IRm, with associated m × n matrix F and
g : IRm → IRs, with associated s × m matrix G is defined as:

g (f (x)) = g (Fx) = G (Fx) (2.6)

where in the first equality Fx represents the vector in IRm that results from the product of the
m × n matrix F with the vector x ∈ IRn, and the second equality represents the product of the
s × m matrix G and the vector Fx ∈ IRm.

In components form, as in (2.4), the composition (3.2) is:

g (f (x))i = g

 n∑
j=1

Fk jx j


i

=

m∑
k=1

Gik

 n∑
j=1

Fk jx j

 =

n∑
j=1

 m∑
k=1

GikFk j

 x j = ((GF) x)i (2.7)

Let us pause to understand every term in these equalities. The left hand side indicates that we
are going to compute the ith component of the vector that results from the composition of the
function g with the function f applied to the vector x. In the second term the reader should
be warned that the notation may be misunderstood as indicating that g is only a function of the
component k of the vector f (x). This is most definitively not what it means. g is a function of the
whole vector f (x), whose kth component is explicitly shown, as computed with the matrix-vector
product between the matrix F associated with the linear function f and the vector x. The third
term computes g of this resulting vector by multiplying it by the matrix G associated with the
linear transformation g. The fourth term uses the distributive property of the finite sums and
products to interchange the sums in j and k. In this fourth term, inside the parenthesis, appears
the expression

m∑
k=1

GikFk j ≡

(
G

s×m
F

m×n

)
i j

s×n

(2.8)

This expression defines the product between two matrices G and F. It is important to note that
this product rule follows directly from the notion of a composition of linear transformations,
together with the fact that linear transformations are one to one related to matrices.

3 Vectors as Matrices, and Matrix Transpose

With the notion of matrix-to-matrix product defined in (2.8), vectors can be seen as a special
case of matrices. A general matrix A has dimensions m × n, where m and n are positive integers.
A vector can be seen as a matrix with dimensions n × 1.

Given a matrix A with dimensions m × n and elements ai j, the matrix transpose AT , is a matrix
with dimensions n × m with elements aT

i j = a ji, i.e., with columns and rows interchanged.

Example 3.1.

A =

 1 2
3 4
5 6

 , AT =

(
1 3 5
2 4 6

)

4

Figure 1: Python numpy array as a matrix and its transpose, with their respective dimensionali-
ties.

In Python, with the library numpy we have.

Note that the dimensionality of the matrix is given by the “.shape” operation.

Now, looking at the (column) vector x as an n × 1 matrix, its transpose must be a 1 × n matrix,
and is known as a “row” vector:

Example 3.2.

x =

 1
2
3

 , xT =
(

1 2 3
)

In terms of the transpose of a vector, the scalar product between two vectors can be seen as a
product of two matrices as in (2.8). Indeed:

x · y =


x1

x2
...

xn

 ·


y1

y2
...

yn

 (3.1)

= x1y1 + x2y2 + · · · + xnyn︸ ︷︷ ︸
1×1

(3.2)

= (x1, x2, · · · , xn)︸ ︷︷ ︸
1×n


y1

y2
...

yn

︸︷︷︸
n×1

(3.3)

see Figure (3).

5

Figure 2: A column vector as an n × 1 matrix and its transpose, a row vector, or a 1 × n matrix.

Figure 3: In Python, the scalar product between two vectors is done with the numpy function
vdot. We can also take the scalar product as a matrix product we use the numpy function dot. In
this case we have to transpose the first vector. Note also the type difference.

4 Linear Transformations, Systems of Equations and Their
Matrix Form

As we saw in (2.1), a linear function is a mapping between vectors in IRn into vectors in IRm, and
every linear transformation has its matrix form (2.2).

A way to view this mapping, specially insightful when m = n (square matrices), but useful even
when m , n, is to think about the linear mapping as a transformation of the input vector into the
output vector. So in the equation

y = Ax (4.1)

y is viewed as the (output) vector in which the matrix A transforms the (input) vector x.

If the matrix A and vector y are known, but the vector x is not, equation (4.1) defines a system
of linear equations. From the “transformation” perspective, solving the equation amounts to

6

finding, if it exists, the vector (there may be more than one) x such that when transformed by A
gives you back the known vector y. Let us consider an example:

Example 4.1. Consider the equations

x + y = 3
x − y = −1

Fig. ?? is the picture we tend to have in our mind for a system of equations like this.

Figure 4

Equation x + y = 3 defines the straight line y = 3 − x in the (x, y) plane, and equation x − y = −1
the straight line y = 1 + x. Solving the system of equations amounts to finding the point of
intersection between these two lines, which happens to be at x = 1, y = 2.

But this system can also be seen, in a matrix form, as:

Ax =

(
1 1
1 −1

) (
x
y

)
=

(
x + y
x − y

)
=

(
3
−1

)
= y

in this way, the matrix A transforms the unknown vector x into the vector y = (3,−1)T . And
solving the system must amount to somehow doing the inverse transformation to y.

7

5 Matrix-Vector Product, the Rows View, and Column View

A matrix A can be seen as a collection of rows [ai1, ai2, · · · , ain]. It can also be seen as a collection

of columns


a1 j

a2 j
...

am j

. Each one of these views open their own “vistas”.

Let us start with the view of a matrix as a collection of rows:

A =


—r1—
—r2—

...
—rm—

 (5.1)

where the row vectors are ri = (ai1, ai2, · · · , ain). In terms of row vectors the matrix-vector
product (2.2) is

Ax =


—r1—
—r2—

...
—rm—




x1

x2
...

xn

 =


r1 · x
r2 · x
...

rn · x

 (5.2)

As described in section 3, the row vectors are 1 × n matrices, and the vector x is an n × 1 matrix,
therefore the product ri · x is 1 × 1 (scalar).

Note that since the row vectors ri are n dimensional, if m > n, at least m − n of them must be a
linear combination of the other n.

Equation (5.2) represents the row view of a matrix-vector product. But we can also see a matrix
as a collection of columns:

A =

 | | |

c1 c2 · · · cn
| | |

 (5.3)

where each column ci is an m × 1 (column) vector ∈ IRm with elements:

ci =


a1i

a2i
...

ami

 (5.4)

Now, look at equation (2.2) again, specifically, the column vector in the right hand side. No-
tice that it can be written as a linear combination of the column vectors of the matrix A with

8

coefficients equal to the components of x:

Ax =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




x1

x2
...

xn

 ≡


a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

am1x1 + am2x2 + · · · + amnxn

 = x1c1 + x2c2 + · · ·+ xncn

(5.5)
this view of the matrix-vector multiplication is specially illuminating when transforming a sys-
tem of equations into its matrix form, as in example 4.1.

A system of equations in its matrix form is

Ax = y (5.6)

where, again, A and y are known, and the vector x is unknown.

The right hand side of (5.5) indicates that Ax is a linear combination of the n columns vectors ci
of A. Each one of these columns vectors live in IRm, and y also lives in IRm.

Just form these observations, remembering that A is an m × n matrix, we can arrive at very
important high level conclusions:

1. If m > n, the chances are that the system will have no solution.
In high school, if m > n, we would say that the system has more equations than un-
knowns, and therefore, in general, there will be no solution. This statement is typically
supplemented with examples.

Consider the case of m = 3 equations and n = 2 unknowns. Each equation represents a
line in the (x, y) plane, and since there are 3 equations (m = 3), there are 3 straight lines.
It is geometrically intuitive that in the plane, in general, 3 straight lines will not have any
point belonging to the 3 of them.

Two lines, in general, will have a point of intersection (unless they are parallel, in which
case they either don’t share any point, or they share infinitely many of them if they are the
same line). But if we have three lines, each pair of them will in general have a point of
intersection, but these 3 points will in general be different. So there will be no solution.

The problem with this line of reasoning is that when m and n are large, our intuition doesn’t
work that well. It would be nice to have a way of looking the system of equations that
makes our intuition almost independent of the values of m and n. This is the role the matrix
form of the system of equations, and the column view of matrix-vector multiplication, is
going to play.

As equation (5.5) shows, the left hand side of equation (5.6), Ax, is a linear combination,
with unknown coefficients, of the columns vectors of the matrix A. If we think for a
moment about the unknown coefficients as arbitrary, the left hand side of (5.6) can be any
vector in the subspace of IRm spanned by the n column vectors. Solving the equation means
finding the particular linear combination that makes the vector on the left hand side equal
to the known vector y on the right hand side.

9

But if m > n, even assuming that all the columns vectors are linearly independent, they
will span at most a subspace of dimension n of IRm. This means that, unless the vector y
happens to lie in this same subspace, the system of equations won’t have any solution!

Moreover, the chances that a vector of IRm, chosen at random, will lie in a pre-specified
subspace of dimension n < m is zero (think of choosing m real numbers at random, what
is the probability that n of them will be zero?)

Of course, it could be the case that the vector y, for some particular reason specific to the
problem at hand, does lie in the subspace spanned by the column vectors of A, in which
case there will be a solution, but in this case it will be interesting to understand why it is
so.

The point is that the matrix form of the system of equations, together with the column
vector view of the matrix-vector product, does provide a clear intuition about why and
when a system of equations will have solutions.

2. If m < n, the chances are that the system will have infinite solutions.
Suppose, to fix the numbers, that m = 2 and n = 3, then the matrix in the left hand side of
equation (5.6) has three 2-D column vectors. Unless two vectors happen to be proportional
to each other, in general, every pair of vectors will span IR2. Making one of the three
components of x equal to zero, say x3, equation (5.6) becomes Ax = x1c1 + x2c2 = y. But
since by hypothesis the vectors c1 and c2 are linearly independent, then we are guaranteed
that there will be unique values of x13 and x23 such that

x13c1 + x23c2 = y (5.7)

Similarly, making x1 = 0, there will be unique values of x21 and x31 such that x21c2+x31c3 =

y.
x21c2 + x31c3 = y (5.8)

and unique values of x32 and x12 such that

x32c3 + x12c1 = y (5.9)

Consider for example the pair of equations (5.7) and (5.8). Multiplying (5.7) by an arbi-
trary constant z, (5.8) by 1 − z and adding, we get:

zx13c1 +
(
zx23 + (1 − z) x21

)
c2 + (1 − z)x31c3 = y (5.10)

where again, this equation holds for an arbitrary constant z, so there are infinite solutions.
And similarly if we choose the pair of equations (5.8) and (5.9), or (5.7) and (5.9).

3. If m = n, the chances are that the system will have a unique solution. After the discus-
sion above this should be trivial to the reader.

10

6 Python Exercises

6.1 General Case, Unique Solution

Let us try to solve the equation Ax = y, where A is a 3 × 3 matrix and y a 3 × 1 vector, both
generated at random with components in the range [−1, 1], See Figure 5.

Figure 5: A and y are pseudo-randomly generated.

Since A is generated at random (pseudo-random), its columns will in general be linearly indepen-
dent, and therefore they will span the whole 3-D space. So, no mater what y is (also generated at
random), there will in general be a unique linear combination of the column vectors of A equal
to y, therefore there will in general be a unique solution to the equation, that we find by using
the function LA.solve(), see Figure 6.

Figure 6: Unique solution to the equation Ax = y. “LA” is used as a nickname for the “linalg”
numpy library. One should type “from numpy import linalg as LA” at the beginning of the
Jupyter notebook.

6.2 Case Where There is No Solution in General

Let us now generate a 3 × 3 matrix in which, by construction, one of the column vectors is
a linear combination of the other two, but such that when we “look at” the matrix, this linear

11

dependence in not apparent to the “naked eye”. We can do this by generating two 3 × 1 vectors
at random, with values in the range [−1, 1], see Figure 7. Note that we are subtracting a number

Figure 7: c1 and c2 are generated at random.

to a vector. How is this possible? Search from “numpy broadcasting”. It subtracts a vector of
the same dimensions with all elements equal to 0.5.

Since c1 and c2 were generated at random (pseudo-random) the chances that they are linearly
dependent is vanishingly small. Still we check it by taking the scalar product and dividing by
their norm. We see that this is 0.2422..., see Figure 8. Since it is not equal to 1 or −1, they are

Figure 8: cos θ12 = c1 · c2/(|c1||c2|) = 0.2422..., indicating that they are linearly independent.

linearly independent.

Let us generate c3 as a linear combination of c1 and c2 with pseudo random coefficients, so this
linear dependency is not apparent to the “naked eye”. With c1, c2 and c3 we create the matrix A
by concatenating the 3 vectors, see Figure 9.

Figure 9: A has columns c1, c2 and c3. c3 is a linear combination of c1 and c2.

We are going to try to solve the equation Ax = y, for a vector y generated at random. Before
looking at what happens, try to have the intuition for it.

12

The intuition goes as follows: we know that the left hand side of the equation, Ax, as (5.5)
indicates, is a linear combination, with unknown coefficients x1, x2 and x3, of the column vectors
of A. And we explicitly constructed the matrix A so that the third column vector is a linear
combination of the other two. Therefore, the left hand side of the equation Ax, is an arbitrary
vector in the two dimensional subspace spanned by the first two columns of A.

On the other hand, the right hand side of the equation, namely, y, is a 3-D vector generated at
random. The chances that it will lie in the subspace generated by the first two columns of A is
virtually zero. Therefore the equation will not have a solution. Let us see what Python tells us
by using the function LA.solve(), see Figure 10.

Figure 10: We are trying, and failing, to solve the equation Ax = y. In general, the 3-D vector y
will not lie in the two-dimensional subspace spanned by the column vectors of A.

The output vector, with components of the order of 1014, is the way Python has of telling us that
there is no solution (the details of why this is so will be explained in a different article).

If, instead of generating y at random and unconstrained (apart from the fact that the components
lie in the segment [−1, 1]), we generate it as a random linear combination of c1 and c2, we are
guaranteed that it will lie in the subspace of these two vectors, and the equation will have a
unique solution even though in general it does not, see Figure 11.

These results, that are not obvious at all looking at the numerical components, are trivially ex-
pected with the column geometric view of the matrix A.

7 Conclusions

As advertised in the Introduction, in this article we presented matrices as a compact away of
writing linear functions, this makes matrix-vector and matrix-matrix multiplication natural. Then
after presenting systems of linear equations in their matrix form, we showed that looking at a
matrix as collection of column vectors, the geometry of linear systems becomes transparent in

13

Figure 11: When y does lie in the two-dimensional subspace spanned by the column vectors of
A, there is a unique solution.

any dimension. Finally we tried to make this intuition apparent by presenting some examples
with Jupiter notebooks.

To summarize the results, the rules that encode the solutions to the system of linear equations
Ax = y, when viewed from the perspective of the column space of the m × n matrix A are
extremely simple:

1. The left hand side of the equation, Ax, for all possible values of x, correspond to the
subspace of dimension r ≤ m of IRm spanned by the column vectors of A. If y lies in this
subspace, then there is at least a solution, if not, then there isn’t any.

(a) If r = m, then there is always at least one solution.

(b) If r < m, then in general there is no solution, but if y happens to lie in this r-
dimensional subspace, then there is at least one solution.

2. Consider now the case where y does lie in the r dimensional (r ≤ m) subspace spanned by
the n column vectors of A, so that we guaranteed at least one solution.

(a) If n = r, then there is one and only one solution, because y has a unique linear
expansion in terms of the n linearly independent column vectors.

(b) If n > r, then n − r column vectors are linearly dependent of the other r, therefore
there is redundancy in the column vectors of A and there are infinite solutions.

i. If the ith column of A happens to be the zero vector 0, this is a particular case of
linear dependence and the same happens, as the ith component of x, xi, can take
any value.

14

	Introduction
	Linear and Affine Functions
	Vectors as Matrices, and Matrix Transpose
	Linear Transformations, Systems of Equations and Their Matrix Form
	Matrix-Vector Product, the Rows View, and Column View
	Python Exercises
	General Case, Unique Solution
	Case Where There is No Solution in General

	Conclusions

