THE GLOBAL DISINFLATION PUZZLE. A SELECTIVE REVIEW OF THE THEORY AND EVIDENCE IN AN HISTORICAL CONTEXT

Emilio Ocampo

Junio 2020
Nro. 726
The Global Disinflation Puzzle
A Selective Review of the Theory and Evidence in an Historical Context

Emilio Ocampo¹
UCEMA

Abstract

In the last three decades average inflation rates have declined around the world. Since 1995 the number of countries with inflation rates below 10% a year increased from 98 (54% of the total) to an average of 178 in 2015-2019 (90% of the total). In the aftermath of the 2008 Global Financial Crisis (GFC), inflation in the US has averaged 1.8% a year despite an unprecedented monetary expansion, and more recently, a drop in the unemployment rate to historical lows. In the last decades, two of modern macroeconomic theory’s most important relationships appear to have broken down: the Quantity Theory of Money (QTM) and the Phillips Curve (PC). This paper i) presents evidence that confirms the global disinflationary trend of the last three decades, ii) identifies previous historical episodes during which the QTM appeared to break down in the US and the UK and the theoretical reassessment that it provoked, iii) examines experts’ reaction to the apparent current breakdown of the QTM and the PC and the alternative paradigms that have emerged, and iv) reviews the alternative hypotheses that have been proposed to explain global disinflation, focusing particularly on the effects of technological innovation and globalization.

¹ Ines S. Ocampo provided valuable research assistance in the preparation of this paper. I received helpful comments from Jorge Streb, Jorge Ávila, Carlos Newland, José Dapena and Martín Lagos. Any mistakes are my sole responsibility. My viewpoints do not necessarily represent those of Universidad del CEMA.
Changes in the general level of prices have always excited great interest. Obscure in origin, they exert a profound and far-reaching influence on the whole economic and social life of a country.

Knut Wicksell (1898)

1. Introduction

Over the last three decades, a steady decline in inflation rates in the face of an expansion in the money supply and a simultaneous decline in the unemployment rate, particularly in the US and the UK, seem to have broken two of the most important relationships in macroeconomic theory: the Quantity Theory of Money and the Phillips Curve (PC). The former is one of the oldest in economics and dates back to the 16th century. The latter was born in the late 1950s as an outgrowth of Keynesianism.

Since October 2008, the central banks of the G-7 countries launched an unprecedented and coordinated massive monetary expansion –euphemistically referred to as Non-Conventional Monetary Policy (NCMP) or Quantitative Easing (QE)– to stimulate economic recovery. To the surprise of many monetary experts, this expansion did not lead to a pick up in inflation rates as would have been predicted by a simple reading of the QTM. In fact, in the last decades inflation has declined slightly, not only in G-7 countries but also in the rest of the world. However, the QTM is alive and well in several countries that are outliers in terms of their inflation rates such as Argentina and Venezuela (see the Appendix A for an analysis of the Argentine inflationary experience).

As to the PC, its slope –using either the unemployment or the output gap as an explanatory variable– had been flattening for decades. Moreover in the aftermath of the Global Financial Crisis of 2008 it reversed its sign: in the US the unemployment rate fell from almost 10% in December 2009 to 3.5% in December 2019, while during the same period the annual inflation dropped from 2.8% to 1.5%. In other advanced economies, although a trade-off between unemployment and inflation persists it is much weaker than in previous decades.

2 Countries like Argentina and Venezuela in which populism is endemic or like Zimbabwe and Congo in which institutions are less developed have continued to experience high rates of inflation. But they have become outliers.
Both developments have important implications at the theoretical and policymaking levels. Economists have provided a variety of hypotheses to explain the strong disinflation of the last three decades. These explanations do not necessarily invalidate the QTM but they raise serious questions: Is its main underlying prediction “dormant” due to structural changes in the global economy? If so, are these changes permanent or can we expect their impact to diminish or reverse over time and thus reawaken the QTM? Former Fed’s Chair Alan Greenspan (2005) anticipated some of these issues in a speech he gave at the Council of Foreign Relations before the GFC:

Over the past two decades, inflation has fallen notably, virtually worldwide, as has economic volatility. Although a complete understanding of the reasons remains elusive, globalization and innovation would appear to be essential elements of any paradigm capable of explaining the events of the past ten years.

The structure of this paper is as follows. Section 2 presents evidence that confirms the consistent fall in inflation rates around the world in the last 25 years. Section 3 presents two previous historical episodes in which QTM’s traditional prediction also broke down. Section 4 summarizes the theoretical challenge posed by the most recent disinflationary trend which has apparently neutralized the main predictions of the QTM and the PC and provides a summary account of the alternative hypotheses economists have provided to explain this breakdown. The final section offers some concluding remarks and a conjecture about the future.

2. Declining Inflation: The Empirical Evidence

Whether inflation is high or low is relative to time and place. The literature distinguishes between high inflation, very high inflation, extreme inflation and hyperinflation. These distinctions are somewhat arbitrary. The first refers to a situation in which the inflation rate persistently exceeds 80% a year (Harberger, 1978); the second, 100% a year (Fischer, Sayah and Vegh, 2002); the third, 1,000% a year or more than 15% a month for several months (Dornbusch, Sturzenegger and Wolf, 1990), and the last is defined as starting when monthly inflation rates above 50% (Cagan, 1956). There is also “chronic inflation” which has been defined as “a

3 There deflation and disinflation are conceptually different. The latter refers to a reduction of the inflation rate to low but positive levels, while the former would indicate negative rates of growth. However, in the context of the article, it is deflationary forces that are driving the disinflation trends.
condition in which price increases of more than 20% per annum” over an extended period of time, and of “acute” inflation, which is characterized by “rapid bursts of inflation” (Harberger, 1978). In this paper we will use the definitions: low inflation shall refer to single digit rates, moderate inflation to rates between 10% and 20%, high inflation above 20% and below 80% and very high inflation to rates of between 80% and below 1,000% a year. The definitions of extreme inflation and hyperinflation remain unaltered.

The chart below shows inflation rates around the world for the period 1990-2018 using the above definitions for a sample of countries the size of which increased from 150 countries in 1990 to 188 in 2018. As can be seen, the disinflationary trend of the last few decades has a global dimension. Only a dozen countries around the world continue to experience inflation rates above 20% a year.

Chart 1: Global Inflation Trends (1990-2018)

The chart confirms that disinflation has been a global phenomenon. Extreme inflation has completely disappeared and at the end of the second decade of the 21st century only one case of
hyperinflation survives: Venezuela. In 2018 only five countries (3% of the sample) fell into the high inflation category (Argentina, Iran, Liberia, Sudan and Yemen) and only one in the very high inflation category (South Sudan). In 2019, Zimbabwe re-entered the groups of countries with very high inflation after a period of relative price stability (it had a bout of hyperinflation in 2007). In fact, 2018 marked the year with the highest percentage of countries with low inflation since 1900.

The composition of the “top ten” has changed significantly over the last three decades. In the 1990s it was mostly African countries (Democratic Republic of Congo and Angola), offshoots of the former Soviet Union such as Armenia and Ukraine as well as Brazil. There was an interlude during the first decade of the century, when even the country with the highest inflation rate in the world (Zimbabwe) experienced the worst hyperinflation in history. In the last decade, Latin America again dominates at the top echelons with two entries: Venezuela and Argentina. However, if we exclude the country with the highest inflation rate in the world during 2010-2018, the average level in the remaining nine is significantly lower than in the early 1990s (31% vs. 842% a year).

Table 1: The “Top Ten” Countries in Inflation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D. R. of Congo</td>
<td>3,379.7%</td>
<td>Zimbabwe</td>
<td>2,205,860.6%</td>
<td>Venezuela</td>
<td>8,627.3%</td>
</tr>
<tr>
<td>Armenia</td>
<td>1,317.7%</td>
<td>D.R. of Congo</td>
<td>106.5%</td>
<td>South Sudan</td>
<td>100.2%</td>
</tr>
<tr>
<td>Angola</td>
<td>1,011.1%</td>
<td>Angola</td>
<td>80.3%</td>
<td>Sudan</td>
<td>32.1%</td>
</tr>
<tr>
<td>Turkmenistan</td>
<td>996.0%</td>
<td>Belarus</td>
<td>37.2%</td>
<td>Zimbabwe</td>
<td>27.4%</td>
</tr>
<tr>
<td>Ukraine</td>
<td>876.0%</td>
<td>Iraq</td>
<td>24.3%</td>
<td>Argentina</td>
<td>25.7%</td>
</tr>
<tr>
<td>Brazil</td>
<td>843.2%</td>
<td>Turkey</td>
<td>23.2%</td>
<td>Iran</td>
<td>21.7%</td>
</tr>
<tr>
<td>Peru</td>
<td>807.9%</td>
<td>Serbia</td>
<td>22.7%</td>
<td>Belarus</td>
<td>19.8%</td>
</tr>
<tr>
<td>Belarus</td>
<td>657.7%</td>
<td>Venezuela</td>
<td>21.0%</td>
<td>Yemen</td>
<td>17.1%</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>591.5%</td>
<td>Myanmar</td>
<td>20.3%</td>
<td>Malawi</td>
<td>16.2%</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>473.2%</td>
<td>Eritrea</td>
<td>19.2%</td>
<td>Angola</td>
<td>16.1%</td>
</tr>
</tbody>
</table>

Source: IMF WEO Database October 2019 and April 2020 and Reinhart and Rogoff (2016).

In 2019 Zimbabwe regained a position in the top five having reached an average inflation rate of 255%. And barring an attempt by the government to distort statistics (which it has done in the

4 Zimbabwe’s official statistics are also misleading. Those published by the World Bank and the IMF don’t reflect the hyperinflationary bout of 2007-2008.
past), Argentina will probably also climb higher in the global rankings in 2021 given the massive monetary expansion that has taken place since the beginning of the year. An examination of the data since 1945, shows that Argentina more than any other country has been among the top ten with the highest inflations. The only exception was during the period 1991-2004. Other countries in Latin America like Brazil, Chile and Uruguay have been able to eliminate high inflation.

One interesting question is to what extent there exists a relationship between GDP per capita and inflation rates. Are poorer countries more prone to inflation? Data from the IMF’s *World Economic Outlook* (not always reliable given that it is based on official statistics) provides a negative answer. The IMF divides the world into two separate groups: Advanced Economies, which includes 39 countries (Puerto Rico and Macau are included in this group) and Emerging Market and Developing Economies, which includes 155 countries. The average statistics for the period 2014-2018 (excluding outliers) are shown in Table 2 below:

Table 2: Global Inflation and GDP per capita (2014-2018)

<table>
<thead>
<tr>
<th></th>
<th>Advanced Economies</th>
<th>Emerging Market and Developing Economies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GDP pc Inflation</td>
<td>GDP pc Inflation</td>
</tr>
<tr>
<td>Average</td>
<td>43,185 1.0%</td>
<td>11,723 4.7%</td>
</tr>
<tr>
<td>Median</td>
<td>39,875 1.0%</td>
<td>7,947 2.7%</td>
</tr>
<tr>
<td>Maximum</td>
<td>94,256 2.7%</td>
<td>73,274 33.4%</td>
</tr>
<tr>
<td>Minimum</td>
<td>24,199 -0.3%</td>
<td>671 -0.5%</td>
</tr>
</tbody>
</table>

Source: IMF WEO Database October 2019. The data for Advanced Economies excludes Puerto Rico, Macau and San Marino. The table also excludes outliers for Emerging Market and Developing economies (Qatar and Venezuela) and one country for missing data (South Sudan). GDP per capita is in constant prices of 2011 at purchasing power parity. Inflation is average for the year.

There is no noticeable relationship between GDP per capita and inflation among the advanced economies. If anything, higher GDP per capita is associated with higher inflation rates. However, in this group inflation rates have not exceeded 3% a year during the period 2014-2018. When it comes to Emerging Market and Developing Economies the relationship between inflation rates and GDP per capita is also weak. This is due to the fact that two of the countries in this group with higher inflation rates (Argentina and Venezuela) also have relatively high average GDP per capita levels. If we eliminate both countries from the sample, a slight negative relationship between inflation and GDP per capita appears.
Table 3: Inflation and GDP per capita (2014-2018)

<table>
<thead>
<tr>
<th>Inflation Rate (p.a.)</th>
<th>Advanced</th>
<th>Emerging Market and Developing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average GDP pc</td>
<td>Number of Countries</td>
</tr>
<tr>
<td>Below 1%</td>
<td>44,421</td>
<td>20</td>
</tr>
<tr>
<td>Between 1 and 2%</td>
<td>40,048</td>
<td>15</td>
</tr>
<tr>
<td>Between 2 and 5%</td>
<td>59,790</td>
<td>2</td>
</tr>
<tr>
<td>Between 5 and 10%</td>
<td>n.a.</td>
<td>0</td>
</tr>
<tr>
<td>Above 10%</td>
<td>n.a.</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: IMF WEO Database October 2019. The data for Advanced Economies excludes Puerto Rico, Macau and San Marino. The table also excludes outliers for Emerging Market and Developing economies (Qatar and Venezuela) and two countries for missing data (Somalia and South Sudan). GDP per capita is in constant prices of 2011 at purchasing power parity. Inflation is average for the year.

In those countries included in the Emerging Market and Developing Economies category, institutional quality (as measured by V-Dem’s Liberal Democracy Index) seems to have slightly more explanatory power than GDP per capita (see Appendix B for the results of a multiple regression analysis): lower institutional development is associated with higher inflation rates.

In conclusion, the disinflation of the last three decades is a global phenomenon and has coincided with what is called the “Second Era of Globalization”. This aspect doesn’t seem to be of minor significance. In the first three decades of the “First Era of Globalization” (1870-1914), the world also experienced a similar phenomenon.

3. Disinflation with Monetary Growth: Previous Challenges to the QTM

QTM is one of the oldest theories in economics. According to Schumpeter, its first “explicit, full, and—so far as it went—theoretically satisfactory presentation” appeared in 1568, with the publication of Jean Bodin’s *Réponse de J. Bodin aux paradoxes de M. de Malestroit* (Schumpeter, 1957, p.296). Among the illustrious minds who over the last four centuries have championed the QTM are John Locke, David Hume, Adam Smith, David Ricardo, John Stuart Mill, W. Stanley Jevons, Alfred Marshall and Irving Fisher. In his early days, Keynes was also a “true” believer. “This Theory is fundamental,” he wrote in 1923. “Its correspondence with fact is not open to question but is often misstated and misrepresented”. (1923, p.75). Despite its ancient lineage the QTM has probably stimulated “more debate than any other single topic in the field of monetary theory” (Humphrey, 1974).
Part of the problem with the QTM is that it is both a theory and a macroeconomic identity (the equation of exchange).\footnote{The equation of exchange is usually represented \(MV = PQ \), where \(M \), \(Q \), \(P \) and \(V \) respectively denote measures of the nominal quantity of money, physical output and the price level, and velocity of circulation.} To consider them as equivalent would deprive the former “of any empirical or theoretical content” (McCallum and Nelson, 2010). The identity by definition can never “break down”. The theory is associated with the idea of monetary neutrality: in the long run, money has no real impact on the economy. Therefore, to the extent that the demand for money remains relatively constant over time, any exogenous increases in the money supply will in the long run lead to a proportionate increase in prices. As Friedman (1987) explained:

On an analytical level, it [the QTM] has long been an analysis of the factors determining the quantity of money that the community wishes to hold; on an empirical level, it has increasingly become the generalization that changes in desired real balances (in the demand for money) tend to proceed slowly and gradually or to be the result of events set in train by prior changes in supply, whereas, in contrast, substantial changes in the supply of nominal balances can and frequently do occur independently of any changes in demand. The conclusion is that substantial changes in prices or nominal income are almost always the result of changes in the nominal supply of money.

As it can be seen in Chart 2 below, during the last 150 years the UK economy experienced three deflationary waves that could not be explained by changes in the money supply. The first breakdown took place between 1873 and 1896, the second, between 1921 and 1947, and the third, between 1999 and 2016 (continuing until presently). The former ended up with the discovery of the Transvaal gold deposits in 1895 and the latter with the post WWII economic recovery. In both cases, the supposed breakdown of the QTM contributed to the emergence of new theoretical paradigms that challenged it.

The period between 1870 and 1896 in many way resembles the last three decades: globalization, rapid technological change and massive expansion of global production and a major global financial crisis (1890-1891). The end of bimetallism and the general adoption of the gold standard around the world led to a contraction in the global money supply in relation to output. At the same time, the expansion of the agricultural frontier in the New World, enabled by
technological change and massive migrations, led to an increase in the production of cereals that kept food prices in check. Between 1873 and 1896 the price of wheat declined at almost 1% a year in real terms, while the price of gold increased at 1.1% a year.

In the UK, during that same period the general level of consumer prices fell 23.5% while the monetary base increased 18%. This discrepancy led to one of the most influential and lasting theoretical innovations in macroeconomics: Knut Wicksell’s theory of the natural rate of interest. In fact, Wicksell developed his theory to explain the evolution of prices and interest rates in nineteenth century England (Jonung, 1994, p. 394). Chart 2 below puts the long run (defined as 25 years) relationship between the growth in money supply and inflation in the UK an historical perspective. A ratio equal to 100% implies en equiproportionate increase in both, which *caeteris paribus*, is what the QTM would predict.

Chart 2: Long Term Relationship between Prices and Money in the UK (1870-2016)

Source: Bank of England, "A Millenium of Macroeconomic Data for the UK".

6 The apparent breakdown in the QTM was partly caused by the end of bimetallism in Europe.
7 Obviously this proportionality would disappear if the demand for real balances significantly changes over time.
The chart also shows how the relationship posited by the QTM reversed in the three decades prior to the publication of Wicksell’s *Interest and Prices* in 1898. Wicksell thought this decline was “indisputable evidence” against the QTM. Its many apparent inconsistencies with “actual facts have completely discredited that theory in the eyes of most people” he wrote ([1906] Vol. II, p.146, 154). In his view, the QTM as a “mere truism” with limited explanatory power ([1898], p.41). Although under certain conditions it was “capable of being correct”, it did not mean that “the quantity of the available stock of money or of individual balances serves as a direct measure of commodity prices and determines their level” (*ibid.*, pp.34-35). However, the theory could not just “be thrown overboard” (*ibid.*, p.50).

In fact, Wicksell not only did not dismiss the QTM but incorporated it into his own theory (Humphrey, 1997). Also, his theory applied to a cashless economy under the gold standard. If a government issued unlimited amounts of fiat currency, for example at times of war, increases in prices would inevitably follow. Wicksell specifically mentioned the experience of Colombia between 1899 and 1902 to back this assertion. He concluded “there is no doubt that large and continuous issues of paper money lead to a corresponding fall in the value of the paper money, which, as might be expected, is in exact accordance with the principles of the Quantity Theory” ([1906], Vol.II, p.167).

According to Wicksell there was “a certain rate of interest on loans which is neutral in respect to commodity prices, and tends neither to raise nor to lower them. This is necessarily the same as the rate of interest which would be determined by supply and demand if no use were made of money and all lending were effected in the form of real capital goods. It comes to much the same thing to describe it as the current value of the natural rate of interest on capital (p.102).” He defined this rate as “the real interest of actual business” ([1906], Vol.II, p. xxv) which depended “on the efficiency of production, on the available amount of fixed and liquid capital, on the supply of labour and land, in short on all the thousand and one things which determine the current economic position of a community; and with them it constantly fluctuates” ([1898], p.106).

The divergence between the natural rate and the actual monetary rate at which businessmen could borrow funds was the primary determinant of the evolution of general prices: it would lead
to an excess demand for society’s savings which in turn lead to an excess aggregate demand for goods. Since the natural rate was not directly observable, it constantly fluctuated and Wicksell did not provide any guidance as to how to estimate it, it was impossible at the time to verify his theory. In *Interest and Prices* he argued that during the period 1873-1896:

There was a considerable lack of really profitable openings for the additions to liquid capital which arose out of the savings of almost all classes of the community. The increase in real capital served rather to raise real wages and the rewards of other factors of production. The natural rate of interest consequently fell everywhere… The money rate of interest also fell, but whether it fell to a corresponding degree must be regarded as doubtful. For effect cannot precede cause, and furthermore there were monetary influences operating in the opposite direction. The production of gold was slackening (it has caught up again only in the last few years), cash payments were resumed in several countries (France, the United States), and finally silver was extensively demonetized.

As to the global disinflation trend, Wicksell’s explanation also seems applicable to the current situation:

If there occurs such a general and enduring fall of prices as was witnessed in the last three decades before 1890, at any rate as regards world prices, this is found to be sufficiently explained by reference to the progress in the technique of production and transport: goods are produced more cheaply and are transported more cheaply, therefore they are cheaper. (1906, p.154)

Basically, in Wicksell’s theory cyclical price movements were driven by productivity shocks while monetary factors “played at most a secondary, albeit potentially amplifying, role” (Laidler, 2009, p.68). The Austrians incorporated Wicksell’s theory into their own theory of the business cycle (Mises, [1912], pp.354-360; Hayek, 1930, pp.114-115). In his *Treatise of Money* (1930) Keynes wrote that Wicksell’s theory deserved “more fame and much more attention” than it had received and that “in substance and intention” was “closely akin” to his own (Vol I, p.186).

8 Wicksell also ignored inflationary expectations and did not distinguish between real and nominal rates.
However, following the publication of Keynes’ *General Theory*, Wicksell’s theory was “abandoned by monetary economists and left to antiquarians” (Leijonhufvud, 1979). By 1936 Keynes had changed his mind and in his *General Theory* (1936) he dismissed the natural rate of interest for not having anything “very useful or significant to contribute to our analysis” (p.243). Although in the late 1960s Friedman borrowed the analogy between the natural unemployment rate and natural rate of interest to reformulate the PC, he considered the latter irrelevant as a monetary policy tool. It was almost century after Wicksell published his theory that Columbia University economist Michael Woodford reintroduced the concept of the natural rate of interest into modern macroeconomic theory. Woodford demonstrated how an inflation-targeting central bank “can steer the economy toward the natural rate and price stability by conducting policy through the application of a Taylor rule, which links the policy rate to measures of economic activity and prices” (Lubik and Matthes, 2015). As Mankiw and Reis (2018) have pointed out, Friedman lost the argument to Woodford, “who convinced academics and central bankers to embrace the Wicksellian use of interest rates as the main policy tool and their deviation from natural rates as the key policy target” (p.90). The monetary policy rules that are prevalent in the more advanced countries, which to a great extent have contributed to disinflation, owe more to Wicksell’s “feedback rule” than to Friedman’s constant monetary growth rule.

As Chart 2 above shows, in the UK, the second disinflation *cum* monetary growth wave of the last hundred years started in the aftermath in the 1920s. Churchill’s decision to rejoin the gold standard at the pre-war parity reinforced the deflationary trend and the Great Depression exacerbated it even further. Between 1930 and 1938 the annual inflation rate in the UK was a negative 0.6% while monetary aggregates grew at slightly above 3% per annum. In 1936 Keynes published his *General Theory* which as he wrote in the preface to the French edition represented “my final escape from the confusions of the Quantity Theory, which once entangled me” (p. xxiii). The US experience during the 1930s was different very different from that of the UK, as money supply contracted sharply between 1930 and 1933 due to the Fed’s mistakes. However, between 1933 and 1938 monetary aggregates grew by almost 40% while the CPI index rose 7%.

After the Great Depression, there was “a wave of scepticism about the relevance and validity of the quantity theory of money” (Friedman, 1987, p.19). The Keynesian revolution relegated the QTM to a chapter in the history of economic thought. If capitalism could not achieve full
employment, as Keynesians believed, the QTM’s basic policy prescriptions were irrelevant. In fact, some prominent disciples of Keynes such as Kahn and Kaldor argued that concepts such as money velocity had no behavioral significance (Laidler, 1991). It was Friedman who revived the theoretical version of QTM in the late 1950s.

It was at this time that the PC was born, not as a theory but as an empirical relationship. In its original form, as developed by British economist A.W. Phillips, it plotted nominal wages against the unemployment in the UK. For a while during the sixties the relationship also seemed to hold in the United States. Influenced by Keynesian analysis, economists and policymakers widely accepted the notion that a trade-off existed between inflation and unemployment. According to Friedman (1975), a major reason “for the prompt and rapid acceptance of the Phillips curve approach was the widespread belief that it provided the missing equation that connected the real system with the monetary system”. In his opinion, this belief was false and the whole notion of the PC was fallacious. As Abraham Lincoln said that “you can fool all of the people some of the time, you can fool some of the people all of the time, but you can’t fool all of the people all of the time.” However, the QTM suggested you could fool all the people in the short run, i.e. increases in the money supply could have real effects on output.

Borrowing ideas from Wicksell, Fisher, Keynes and Cagan, Friedman (1968) reformulated the PC. In the General Theory (1936) Keynes had noted that “for every rate of interest there is a level of employment for which that rate is the 'natural' rate, in the sense that the system will be in equilibrium with that rate of interest and that level of employment” (p.242). Using this analogy, incorporating Fisher’s distinction between real and nominal interest rates and Cagan’s adaptive expectations hypthesis, Friedman argued that the only way the monetary authorities could stimulate employment with monetary growth was by generating increasing levels of inflation. According to Friedman the basic defect of the original PC was that it failed “to distinguish between nominal wages and real wages– just as Wicksell's analysis failed to distinguish between nominal interest rates and real interest rates” (Friedman, 1968, p.8-9). The difference in both cases was due to inflationary expectations. The reformulated PC thus allowed a short-term trade-off between unemployment and inflation. In the long run, as Hume had explained three centuries earlier, money would have no real effect on output or employment. Lucas (1976) later

9 Phelps (1967) had almost simultaneously reached a similar conclusion but using a different line of reasoning.
demonstrated that any short term effect of unemployment on the inflation rate was only possible if policymakers could consistently fool economic agents. If agents had rational expectations, the PC wouldn’t hold even in the short term.

The breakdown of the original PC in the 1970s enhanced Friedman’s reputation. During the rest of the decade and in the early 1980s he tirelessly argued that inflation “was always and everywhere a monetary phenomenon”. One of the graphics he brandished around to great effect plotted the growth in M2 and the inflation rate two years later (1983, pp. 212, 216). Friedman recognized that although “many factors other than changes in the money supply affect the precise rate of inflation” and that a “constant lag of two years” was not “a natural constant”, the close relationship between both variables was “no coincidence”. In fact, he argued, “similar comparisons for a much longer period yield similar results” (pp. 199, 213). During the 1970s and 1980s, the evidence was strongly on his side.10

4. **Disinflation with Monetary Growth: The Current Challenge to the QTM**

From a monetary standpoint the situation started to change after August 1979, when Paul Volcker was appointed Chairman of the Fed. Table 4 illustrates how the relationship between growth in the money supply (using M0, M1 and M2) and the inflation rate two years later evolved since 1961.11 Both the slope and the R^2 of the linear equation fell. This trend accelerated in the following decades.

<table>
<thead>
<tr>
<th>Period</th>
<th>OLS Estimates</th>
<th>M0</th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961-1978</td>
<td>Slope</td>
<td>1.46</td>
<td>0.98</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>R-Squared</td>
<td>63.3%</td>
<td>54.5%</td>
<td>43.1%</td>
</tr>
<tr>
<td>1979-1999</td>
<td>Slope</td>
<td>0.15</td>
<td>0.48</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>R-Squared</td>
<td>1.5%</td>
<td>11.5%</td>
<td>9.3%</td>
</tr>
<tr>
<td>2000-2019</td>
<td>Slope</td>
<td>0.00</td>
<td>0.01</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td>R-Squared</td>
<td>0.0%</td>
<td>0.1%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

Source: FRED.

10 As late as 2003, Friedman (2003) insisted that “takes something like two years for a change in monetary growth to affect significantly the behavior of prices”.

11 An endless and unsettled debate regarding the empirical validity of the QTM centers on the definition of money in the exchange equation. For a tre
The same conclusion can be reached by looking at Chart 3 below, which shows the Friedman graph updated until 2016 (using M2 as a measure of the money supply).

Chart 3: Growth in M2 and Inflation Two Years Later

As can be seen, until about 1979, inflation followed growth in M2 quite closely. However, their paths completely diverged during the 1980s and never reversed to the pattern of 1960-1979.

The first obvious response from a monetarist perspective would be that this is not what the QTM is all about. Lucas (1996) remarked that the QTM could be applied “with remarkable success to comovements in money and prices generated in complicated, real-world circumstances” and very few “specific economic theories” could claim a similar “empirical success” (Lucas, 1996, 666). According to Lucas (1980), the theory’s main prediction is that a given change in the rate of growth in the quantity of money will induce an equal change in the rate of inflation and an equal change in nominal interest rates. This is what strict neutrality implies. The QTM therefore “amounts to the claim that actual economies possess the properties that imply long-run monetary neutrality” (McCallum and Nelson, 2010).
However, as can be seen in Chart 4 below, the long-run relationship between inflation and the rate of growth in the money supply in the US also weakened in recent decades (independently of which monetary aggregate is used).

Chart 4: Long-Run Relationship between Inflation and Growth in Monetary Aggregates

This trend accelerated since the turn of the century and most particularly after October 2008, when the Fed launched its QE policy. A sharp drop in the relationship between prices and the monetary base followed (M1 and M2 also show a similar downward trend). By the end of 2019, it had reached its lowest levels in the last 35 years.

From a monetarist perspective the obvious response is that the demand for money increased (velocity decreased) which in turn explains why inflation has remained subdued. As Friedman (1992) pointed out, “changes in demand for money can have the same effect as changes in the demand” (p.46). The latter was supposedly stable. As a result, “substantial changes in prices or nominal income are almost always the result of changes in the nominal supply of money, rarely the result of changes in demand for money” (ibid., p.46). However, at the end of the eighties, Poole (1987) observed that after Volcker’s appointment the money demand function “seems to have fallen apart, and is apparently not a reliable basis for monetary policy after all”. Back then
it was due to a substantial increase in nominal interest rates; currently partly due to an equally significant fall in rates.

Chart 5: Relationship between Inflation and Adjusted Growth in M2

Source: FRED using quarterly data since January 1959. Adjusted growth is equal to the percentage increase in nominal M2 minus growth in real GDP.

As late as 2005, Friedman continued to argue that “velocity is ordinarily very stable, fluctuating only mildly and rather randomly around a mild long-term trend from year to year”. A cross-country econometric study of OECD countries from 1970 until 2005, Teles and Uhlig (2013) found that the long term relationship between average inflation and the growth of monetary aggregates “is tenuous at best” but the fit improves significantly when correcting for real output growth and the opportunity cost of money. However, they recognized that after 1990 there was considerably less inflation variability and the relationship between money growth and inflation weakened due to a lower elasticity of the demand for money. Based on this evidence they concluded that the QTM “is still alive”.

Friedman also observed that since 2000 “the rate of growth in the quantity of money has been trending downward and in the past year has consistently been in the range of 4% to 6%, just about the rate required for a rapidly growing non-inflationary economy”. However, as Chart 5
above shows, in the case of the US, even adjusting for real GDP growth, the discrepancy between the inflation rate and money growth has been highly volatile. A simple regression analysis of inflation and adjusted M2 growth since 1960 suggests that their relationship has also significantly changed in the last two decades, implying a fundamental change in the demand for money (i.e., a secular drop in velocity):

Table 5: The Changing Nature of the Relationship of Inflation and Adjusted M2 Growth

<table>
<thead>
<tr>
<th>Period</th>
<th>Slope</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960-1978</td>
<td>0.5</td>
<td>26.5%</td>
</tr>
<tr>
<td>1979-1999</td>
<td>0.4</td>
<td>22.8%</td>
</tr>
<tr>
<td>2000-2019</td>
<td>-0.1</td>
<td>8.8%</td>
</tr>
</tbody>
</table>

Source: FRED using quarterly data since January 1959. Adjusted growth is equal to the percentage increase in nominal M2 minus growth in real GDP.

By the early 2000s, the evidence suggested that the PC was also breaking down. Econometric models confirmed that by the end of the 1990s its slope had become close to zero (IMF, 2013). Partly in response to this evidence, a “New Keynesian” formulation of the PC (NKPC) emerged which proposed that a short-run trade-off exists between inflation and the output gap due to nominal rigidities, while in the long run inflation remains constant at the non-accelerating inflation rate of unemployment (Galí and Gertler, 1999).

However, for many experts, the most puzzling breakdown of the QTM and the PC started in the aftermath of the GFC. In October 2008, the Federal Reserve started its Quantitative Easing (QE) program that sought to bring down long term interest rates to spur investment. The monetary base almost quadrupled in a year. In early 2010 a number of conservative scholars from very respectable institutions wrote a public letter to Ben Bernanke, then Chairman of the Fed, in which they argued that “the Federal Reserve’s large-scale asset purchase plan (so-called “quantitative easing”) should be reconsidered and discontinued” because it could trigger “currency debasement and inflation” and would not achieve the Fed’s objective of promoting full employment (Asness et al, 2010). By May 2011, the Fed had already tripled the size of its balance sheet, an unprecedented move in its hundred year history. Another Nobel Prize warned:

For most of the last 25 years, the quantity theory of money has been sleeping, but during the last year, unprecedented growth in central banks' balance sheets has
prompted us to worry because the quantity theory has slept before, only to reawaken (Sargent and Surico, 2011, 110).

In a Newsweek column, British historian Niall Ferguson claimed that “double-digit inflation” was back. In his view, part of the problem was the Bureau of Labor Statistics was tampering with the CPI. “Pretty soon you'll be able to figure out the real inflation rate just by moving the decimal point in the core CPI one place to the right” he wrote (Ferguson, 2011).

Despite all these warnings, QE continued, and by mid 2013, the monetary base had expanded by another 30%. At the time, another prominent monetarist, Allan Meltzer (2013) explained that inflation had “so far remained subdued” because banks were “not using their swelling reserves to expand credit and increase liquidity.” In his view, under these circumstances the Fed’s policies “hindered employment growth” (in the previous twelve months the unemployment rate had averaged close to 8%).

In its April 2013 World Economic Outlook, the IMF pointed out that inflation had remained remarkably stable in the wake of the Great Recession even though unemployment had significantly increased. IMF’s analysts were surprised that deflation hadn’t occurred given the high levels of cyclical unemployment (p.87). So instead of a “missing inflation” puzzle, there was a “missing deflation” puzzle. The IMF staff tested two alternative hypotheses. The first suggested that much of the rise in unemployment during the Great Recession was structural and, consequently, continued high levels of unemployment exerted less of an influence on wages and prices than in the past. The second suggested that inflation had become much less volatile and less responsive to changes in economic slack than in the past due to central bank’s increased credibility. The IMF report concluded that “the recent stability of inflation is consistent with the prevalence of ongoing economic slack and a more muted response of inflation to cyclical conditions” and predicted that “ongoing monetary accommodation” would not have significant inflationary consequences, as long as inflation expectations remain anchored.” The latter in turn required preserving central banks’ independence (p. 79).

These conclusions became increasingly irrelevant in the following months as the labor market significantly strengthened. By April 2014, the US unemployment rate had dropped to 6.7%, almost a full percentage below a year earlier. In the following twelve months it declined further
to 5.4%. Meanwhile, the Fed’s balance sheet expansion continued until October 2015, having almost quintupled since the start of QE. In early 2016, Ferguson again warned that inflation would return to the US economy by the end of the year. “The inflection point is happening, but it will only be visible in about a year, and is barely perceptible to most people now” (Chinnery, 2016). However, in October 2017, Janet Yellen, then Chair of the Federal Reserve, admitted that the “biggest surprise in the U.S. economy this year has been inflation.” She meant low inflation. The deflationary worries of early 2013 had now completely disappeared. Yellen also predicted that this situation would likely not persist and as labor markets “strengthened” inflation would increase (Yellen, 2017). However, by the end of 2018, labor markets had strengthened – the unemployment rate had dropped from 4.1% at the time of Yellen’s speech to 3.9%– while inflation had dropped slightly to 1.9% p.a. from 2.1% a year before. This unusual trend continued during 2019. The unemployment rate dropped even further to 3.5% and the money supply as measured by M2 increased by almost 7% while the inflation rate remained anchored around 2% a year. The IMF’s October 2019 *World Economic Outlook* highlighted that the “the broad synchronized global expansion from mid-2016 through mid-2018 helped narrow output gaps, particularly in advanced economies, but did not generate sustained increases in core consumer price inflation (IMF, 2019, pp.3-4).

![Chart 5: Inflation, Unemployment and the Output Gap in the US (1998-2019)](chart5)

Source: IMF WEO Database October 2019.
In fact, the sign of the NKPC’s slope seemed to have reversed. In the US, the unemployment rate declined from almost 10% in December 2009 to 3.5% in December 2019, while the annual inflation dropped from 2.8% to 1.5% in the same period. During the same period the output gap increased from -4.8% to 1.8%.

Based on a econometric analysis of US unemployment and inflation data for the period 1949-2018 Hopper Mishkin and Sufi (2019) concluded that “reports of the death of the Phillips curve may be greatly exaggerate”. In their view, the flattening of its slope since the mid 1980s reflects a combination of slack in labor markets, endogeneity of monetary policy, the anchoring of inflation expectations. A commitment to stabilize inflation by the Fed underlies these three factors. A departure from this policy “would likely lead to a steepening of the Phillips curve” (p.54).

Sargent and Surico (2011) reached a similar conclusion about the QTM. In their view, what put its predictions “to sleep” was a monetary policy that responded aggressively to inflationary pressures. What would likely reawaken it would be a monetary policy rule “that accedes to persistent movements in money growth by responding too weakly to inflationary pressure” (p.110). It is a commonly held view that an important factor in explaining global disinflation is greater credibility of monetary policy to a great extent supported by greater central central bank independence, a greater prevalence of more conservative anti-inflation oriented central bankers, better communications strategies, and improved monetary control capabilities (Rogoff, 2004). Inflation targeting regimes based on Taylor rules have improved central bank credibility and helped anchor inflationary expectations (IMF, 2013).

What could lead to a change in the monetary policy stance? As in previous apparent breakdowns of QTM’s main prediction, new theories have emerged that directly challenge it to influence policy. One that has received increasing media attention is known as Modern Monetary Theory (MMT), which is loosely based on Lerner’s functional finance theory according to which “the absolute size of the national debt does not matter at all” because however large the interest payments they don’t constitute “a burden on society” (Lerner, 1947, p.47). The key tenet of MMT is that it is possible to use expansive monetary policies “to finance large fiscal deficits and create a ‘jobs guarantee’ program that will ensure full employment and good jobs for everyone”
(Edwards, 2019). Advocates of MMT reject the QTM and assert that “no simple proportionate relationship exists between rises in the money supply and rises in the general price level.” In their view, the problem of inflation is “intrinsic to the power relations between workers and capital (class conflict), which are mediated by government within a capitalist system” (Mitchell, Wray, and Watts, 2019, p.13, 15, 263 and 255). In its proposed explanation of inflation, MMT resembles the “structuralist” theory that was popular in Latin America in the 1960s and 1970s. According to structuralism, what generates inflation are structural bottlenecks and “distributive conflicts” that generate chronic upward pressures on prices (see Olivera, 1960 and Ros, 1989). Therefore “income” policies are needed to reduce inflation. Interestingly no country in Latin America has been able to reduce its inflation rate with such policies. What has worked very effectively is the trinity of central bank independence, fiscal rules and inflation targeting. Chile, which in the 1960 and 1970s had inflations in excess of 100% a year, provides the clearest evidence. As Edwards (2019) has pointed out, MMT’s policy prescriptions have already been tried in a number of emerging market and developing economies. Mostly in Latin America but also in Turkey, Israel and in France briefly during the early years of the presidency of Mitterrand. In Latin America, almost all experiments in which the central bank financed fiscal expansions took place under populist regimes “and all of them ended up badly, with runaway inflation, huge currency devaluations, and precipitous real wage declines” (Edwards, 2019, p.3). The same results are likely if the US or the UK adopt MMT’s policy proposals.

As mentioned earlier, from a strictly monetarist perspective there has been no breakdown in the QTM; money demand simply increased (i.e., velocity dropped). Consequently, explaining disinflation in the face of significant growth of M2 requires explaining what is behind this increase. No definitive answer to this question has emerged yet from academia. However, there are several factors besides subdued inflationary expectations that contributed to an increase in the demand for money.

Saving (2016) has cogently explained that the massive increase in the monetary base following the GFC did not have the expected impact on the money supply and inflation for two reasons: 1) the Fed started paying interest on reserves and bank’s excess reserves significantly grew, 2) money velocity fell dramatically as a result of historically low interest rates. Essentially, the Fed sterilized the growth in assets “by making reserves a Federal Reserve short-term liability.”
Following Friedman, Teijeiro (2020) argued that the discrepancies between nominal GDP growth and growth in monetary aggregates in the last decade in the US are mainly due to two factors: a) a lower opportunity cost of holding idle balances due to declining nominal interest rates to historical lows, and, b) an increase in the proportion of US dollars held by non-residents from 48% in 2009 to around 60% by 2016 (see Judson, 2017 and Haasl et al, 2018 for estimates of foreign holdings of US dollars). The first factor was reinforced after GFC when interest rates reached historical lows. The second factor however does not explain what happened in the UK, where the increase in money demand was more significant than in the US.

There is a third factor that may have contributed to the increase in the demand for money that has not received much attention from monetary experts: changes in portfolio managers’ cash allocations. The total market value of bond and stocks has increased from 177% of GDP in 1990 to 349% of GDP in 2018. Such increase had significant impact on the demand for cash balances by portfolio managers. Such demand is a function of the opportunity cost of cash, transaction costs, changes in the regulatory framework for the banking system and securities markets and investor uncertainty. The latter can be measured by the risk premia (the spread between yields on Baa corporate bonds and 10-year Treasury bonds) or the expected volatility of the stock market (VIX). Evidence from the first two decades of the 21st century suggests that as interest rates declined steadily towards historical lows, expected stock market volatility became an increasingly important driver of those allocations. Between 2007 and 2008 while the VIX index increased from 17.5% to 32.7% US private pension funds increased their cash allocation from 3.6% to 4.4% (SIFMA, 2019). Cash allocations of money market mutual funds showed a similar behavior: they increased from 25.7% to 39.8% of the total. After analyzing data for the US, the Euro area, Switzerland and the UK in the aftermath of the 2001 crisis, Bellike and Tollet (2011) concluded that “drastic changes in stock market volatility indeed appear to have been accompanied by a growing demand for money” (p.114). Anderson, Bordo and Duca (2016) developed a model that tracked changes in money velocity in the US since 1929 by incorporating risk premia a measure “of financial market participants’ perceived risk.”

Another factor leading to the growth in money demand has been the explosive growth in the derivative markets, which require counterparties to post collateral. According to the International Swaps and Derivatives Association (ISDA) estimated the amount of collateral posted in 2019 on
outstanding contracts was approximately $1 trillion, of which almost 73% was in cash (see ISDA, 2019). The impact of this factor on the demand for money has not received much attention by monetary theorists.

All the arguments above would, by altering money demand, have an effect on the left hand side of the QTM’s equation of exchange. Other forces may have had an impact on its right hand side, and consequently also on the measured slope of the PC. First, a persistent mismeasurement of inflation would also alter any conclusion regarding the validity of the QTM. On this point two separate arguments have been made. First, based on the work of Shadowstats’ John Williams (2009), Ferguson (2011) argued that the CPI is “a bogus index” that underestimates the real inflation rate: if the Bureau of Labor Statistics (BLS) used the methodology of a few decades ago, the inflation rate would be around 10%. One of Williams’ key objections to the CPI is that instead of holding the cost-of-living basket unchanged for long periods, the BLS makes frequent changes to its composition. Some changes occur due to technology (e.g., CDs been replaced by Spotify) or changes in quality while others due to changes in relative prices. The latter imply a substitution effect: if the price of meat increases relative to the price of chicken, consumers will eat more of the latter than the former. Maintaining the original weights would ignore this effect. As Dolan (2010) has pointed out, “if we did not account for changed consumption patterns in response to changed prices… we would overstate the cost of maintaining a constant level of satisfaction”. Also, the BLS weighs each item in the CPI basket based on regular household surveys that provide information about buying habits, income, and other household characteristics. In general, the hypothesis that the CPI underestimates inflation is not taken seriously by mainstream economists. Moreover, a study by the Boskin Commission in 1996 found that the effects of these biases overstate rather than understate the inflation rate (Boskin et al, 1996).

The second mismeasurement argument is based on the idea that the theoretically correct inflation index should measure the prices of both current and future consumption. Alchian and Klein (1973) were the first to argue in favor of including asset prices in any measure of inflation. As Issing (2001) explained, “asset prices are claims on future consumption and can be used as

12 ISDA does not provide details about currency composition of this collateral but it is safe to assume that the US dollar predominates.
measures of future prices.” (ibid., p.193). Based on this idea, Cechetti et al (2000) built an intertemporal cost of living index that included the prices of consumer goods and services (those commonly included in the CPI), equities and housing. They concluded that equity prices contain “too much noise to be useful in inflation measurement” but housing prices “contain significant information regarding aggregate price inflation”. Even though central bankers resist this approach, an inter-temporal CPI would improve the QTM’s predictive power. However, the overall conclusion would remain: a) at least in the US and the UK, money currently seems to have less influence on prices that at any time in the last three decades, b) even adjusting for real GDP growth, the discrepancy between money growth and prices implies a breakdown in the money demand relationship.

Economists have proposed several other hypotheses to explain the disinflation trend of the last three decades, which to some extent could also explain a temporary breakdown of both the QTM and the PC. These hypotheses can be grouped in five broad categories: 1) credibility of monetary policy, 2) globalization, 3) technological innovation, 4) improved domestic retailing logistics, and 5) declining commodity prices.

Globalization

According to Greenspan (2005), globalization “is patently a key to understanding much of our recent economic history.” The growing integration of goods, labour and financial markets over the last three decades and the development of highly efficient global supply or value chains (GSCs) has led to stronger direct and indirect competition that has contributed to global disinflation (Roach, 2020). China’s emergence as a global manufacturing giant has particularly contributed to this trend. Since the early 1980s and first decade of this century China benefited from a massive “Lewisian” demographic dividend. During this period, between 300-400 million people moved from rural to urban areas, representing “the largest mass migration in human history” (Chan, 2013, p.85). This generated an excess supply of labor that put downward pressure on industrial wages and allowed Chinese manufacturers to become increasingly competitive. Although this process seems to be coming to an end in China (Das and N’Diaye, 2013), a similar one –although in a much smaller scale– started to take place in Vietnam, Indonesia and other South East Asian countries that accelerated their industrialization and became more integrated with the rest of the world.
Greenspan (2005) argued that consequent significant additions to world production and trade from China, India and other developing economies “clearly put downward pressure on prices in the United States and in the economies of our trading partners.” Rogoff (2007) has argued that although it is true that China’s low wage workers “place relentless downward pressures on wages and prices elsewhere” this can only affect relative prices. If central banks target inflation in the overall price level “cheap goods from China simply imply that other goods must become more expensive.” Following this logic, China is actually “exporting inflation to the other sectors of the global economy” (p.6). On the other hand, Rogoff (2004) recognizes greater competition global competition has weakened the influence of domestic monopolies and labor unions and thus contributed to greater price and wage flexibility. Labor union’s weaker bargaining power as a result of globalization and innovation is confirmed by the decline in the share of wages in GDP. Between 1991 and 2014, this ratio declined in twenty nine of the world’s fifty largest economies (IMF, 2017). The impact has been particularly sharp for middle-skilled labor.

As a result of all of these trends, “the real effects of unanticipated monetary policy become smaller and more transitory” (p.46). An econometric study by Borio and Filardo (2007) supports the hypothesis that global factors had “become more important relative to domestic factors, and that in some countries the explanatory power of global factors has actually superseded that of domestic output gaps as one of the key determinants of domestic inflation” (p.13).

The deflationary pressures unleashed by globalization not only resulted from greater competition from low labor cost countries such as China but also structural changes in global manufacturing. In recent decades production has been increasingly organized around global supply or value chains (GSC), which different stages of production distributed across different countries. As a result, the share of gross exports consisting of inputs imported from abroad has increased in many countries have specialized in adding value at an intermediate stages of production. (IMF, 2015, p.16). Companies around the world have been able coordinate and track just-in-time (JIT) production through all different stages of production by relying on third party suppliers located in multiple countries. For example, Apple Computer does not own most of the manufacturing plants in its supply chain. The growth of GSCs not only has improved overall productivity and altered global trade patterns but also played an increasingly important role in determining domestic inflation rates (Roach, 2020). Before the coronavirus crisis, a study by Auer, Borio and
Filardo (2017) confirmed the hypothesis that by fostering greater direct and indirect competition among economies, the expansion of GSC contributed to making domestic inflation more sensitive to the global output gap. According to their estimates, the sensitivity of domestic inflation to the global output gap—which increased significantly after the GFC—was close to one percent.

Technological Innovation

It is difficult to separate the effects from technological innovation on inflation from those generated by globalization. To some extent both factors have reinforced each other. Globalization provided the scale that made many innovations cost-effective (such as those underlying GSCs). As Greenspan (2005) pointed out “the remarkable technological advances of recent decades have doubtless augmented and fostered the dramatic effect of increased globalization on economic growth.” A recent study by Lv, Liu and Xu (2019) explored the joint impact of both forces on inflation and concluded that the impact of the domestic and foreign output gap has weakened in recent years, while the impact of technology has increased.

Moore’s law—which states that the number of transistors in a chip doubles every two years—is a power deflationary force. As a result of it, the relative price of technology continuously falls and as manufacturing increasingly relies on technology, production costs are also decline. According to a recent study (Davis, 2017), the amount of technology used in production processes has more than doubled since the late 1990s, from $0.08 per $1 of output to $0.20. The same study estimated that since 2001, declining prices of computer and electronic products and services reduced the annual inflation rate by 0.5% a year.

A more recent econometric analysis by Csonto, Huang and Tovar (2019) found that digitalization—which is defined as growing pervasiveness of information processing and communications technology in the global economy—had a statistically significant negative effect on inflation in the short and long run in a sample of 36 advanced and emerging market economies. As a proxy for digitalization they used the number of IP addresses per country. Their results show that digitalization not only was a key determinant of the negative global trend or structural component of inflation but also contributed to reducing short-term inflation, particularly since 2012. The study also showed that digitalization impacted inflation through a direct cost/mark-up
channel—associated cost reductions via improved productivity and/or through increased competition— and to a lesser extent an indirect cost channel that has influenced price-setting behaviors. Both channels have contributed to reduce the slope of the PC over the last few years.

Robotization also seems to have had a negative impact on inflationary dynamics. Fueki and Maehashi (2019) used a country level balanced panel dataset and a standard New Keynesian model to empirical verify this hypothesis. The replacement of human labor by robots has allowed firms to adjust their production and increase efficiency. Consequently, marginal costs have become less responsive to changes in economic activity. Their empirical results confirm that as manufacturing becomes more dependent on robots the PC becomes flatter.

Improved Retailing Logistics

Another explanation concerns the effect of increased retail competition on inflation, also known as the “Walmart effect” (Basker 2007, Igan & Suzuki 2012). The entry of Wal-Mart, now the world’s largest retailer, into the market exerted a huge amount of downward pressure on the prices of consumer goods directly but also indirectly, as it affected the prices that incumbent competitors charge both in the short-run and long-run (Basker, 2007). Igan and Suzuki examined the contribution of retail competition to inflation in Europe between 2000 and 2004 and found that “a 10% increase in retail competition reduces the inflation rate for goods that are traded on retail by around 0.5 percentage points.” Therefore, there is evidence to suggest that retail competition has contributed to the deflationary environment seen in the last two decades.

Once the impact of the “Walmart effect” waned, another retail revolution took place: e-commerce, in turn fuelled by technological innovation. According to US Census data, e-commerce has grown at a compound annual rate of more than 9% since 1992. In the first quarter of 2020 online sales accounted for almost 12% of total U.S. retail sales. Amazon dominates e-commerce with a market share close to 40%. According to one hypothesis, the “Amazon effect” has been a powerful deflationary force (Trainer, 2016; Guatieri, 2019). Amazon not only cuts costs by eliminating middlemen, but also provides an engine for price discovery on broad array of products contributing to increased competition. In 2013, Amazon carried 230 million items for sale in the United States, nearly 30 times the number sold by Walmart. However, according to
the available data, the “Amazon effect” on inflation appears to be negligible (Charbonneau et al 2017; McClellan, 2017).

Commodity Price Cycles

Another factor that has contributed to disinflation in spite of monetary expansion has been the reversal of the commodity supercycle. Since early 2012, most commodity prices entered a sustained downward phase. The decline of oil prices—which have historically had a significant impact on consumer prices—was significant and steady. Between its peak of March 2012 and December 2019 the average price of crude fell 43% in nominal terms. The decline was in great part due to a technological revolution—fracking—that allowed the US to rapidly expand production and become the largest oil producer in the world. This in turn led to a decline in the bargaining power of OPEC, disrupting the traditional supply and demand dynamics in the oil market.

5. Conclusion

Economists have not reached yet a consensus about which factors better explain the cyclical disinflation trend of the last three decades and the apparent breakdown of the QTM and the PC in any of their respective versions. A number of structural changes in the world economy have occurred during this period and it is difficult to disentangle the individual impact of each. Undoubtedly globalization and technology have reinforced each other and have played an important role by fostering competition and weakening the bargaining power of labor unions. The increased credibility, independence, managerial competence and technical expertise of the world’s main central banks have also contributed to anchor inflation expectations. To which in recent years we must add global output slack in the aftermath the GFC and a persistent decline of commodity prices since mid 2012.

Of all these factors technological innovation is the one that is most likely to continue to exert a persistent negative influence on inflation. Central bank independence may succumb to political pressures as the coronavirus takes its toll on national economies and global output slack deepens or alternative monetary policy paradigms such MMT become dominant. As to commodity prices, in the short term their likely trajectory also seems downward absent a crisis in the Middle East.
As to globalization, the political backlash against it that started after the GFC—which seems to have intensified with the spread of the coronavirus—could revive the QTM and bring inflation back. As Roach (2020) has pointed out, “the inflationary risk for the post-coronavirus world” lies in the dismantling of the GSCs. If that were to happen, the world would likely be headed towards another period of stagflation as during the early seventies. Higher inflation rates would in turn help dilute the weight of higher public debt levels.

Finally, the experience of Argentina suggests that the QTM is not irrelevant. Wicksell and its modern interpreters may have provided a better theory to explain cyclical movements in the general price level in the case of countries that consistently maintain fiscal and monetary discipline during periods of rapid technological innovation, expanding real output and high levels of trade, labor and financial integration. However, in a scenario of persistent expansionary fiscal and monetary policies (such as those proposed by MMT advocates), diminished central bank autonomy and protectionism, the QTM is likely to reawaken with a vengeance.

6. References

7. Appendix A: QTM Alive and Well in Argentina

When it comes to inflation, Argentina is a perfect laboratory that delivered all types: moderate, high, severe, extreme and hyper; creeping and explosive, chronic and acute. Since January 1945, Argentina came close to hyperinflation on two occasions (July 1975 and March 1976) and fully experienced it on another two (mid 1989 and early 1990). The country is also a typical case of chronic inflation, defined as “a condition in which price increases of more than 20% per annum” over an extended period of time, and of acute inflation, which is characterized by “rapid bursts of inflation” (Harberger, 1978). Argentina is currently experiencing severe inflation bordering with extreme, as in the last twelve months consumer prices increased by slightly over 50% (whereas Venezuela instead is experiencing hyperinflation with annual rates of above 12,000%). As Chart 5 below shows, even though the QTM seems to have broken down in the US and other advanced economies, it is alive and well in Argentina. It only lost explanatory power between 1999 and 2003 when the country experienced one of the most severe economic contractions in its history. But was quickly awakened by populist economic policies.

Chart 6: Long Term Relationship between Inflation and Growth in M2 (1968-2019)

Source: Inflación Verdadera, BCRA Estadísticas Monetarias Históricas. The graph measures the evolution on a monthly basis of the ratio of inflation to growth in M2 over rolling periods of 10 and 25 years.
On the other hand, Friedman’s dictum that “inflation is always and everywhere a monetary phenomenon” (Friedman, 1963) is not very helpful to understand the root cause of Argentina’s inflationary problem. Inflation is a monetary phenomenon in the same way a flood is an excess of water. The history of inflation in Argentina is associated to the growth of public spending and increased state intervention, which in turn led to recurrent fiscal deficits financed that were financed with money creation (Fernández, 1984). Since 1946, Argentina had a fiscal surplus (including interest on public debt) in only seven years, six of them during the commodity price boom of the 21st century (which led to a massive increase in tax revenues). These recurrent and persistent fiscal imbalances reflect a pervasive inability (or unwillingness) of Argentine society to live within the constraints imposed by economic reality. Populism, in a variety of electoral packages, has been the “enabler” of this fantasy, promising prosperity and equality without ever tackling structural barriers to both. As a result it could never deliver on its promises. Instead, Argentina got low growth, high inflation plus increasing inequality and poverty rates. Based on World Bank figures, from 1960 until 2015, a period for which comparable cross-country data is available, Argentina’s annual inflation rate exceeded the world average in absolute terms by 143 percentage points and its annual GDP growth rate lagged the world average by 1.4%.

Perhaps there is no better empirical confirmation of Keynes’ dictum about the destructive power of inflation than Argentina. Since January 1945, the country’s average annual inflation rate has exceeded 145%. There are very few other countries that can match this inflationary track record (possibly Brazil). It is important to note however, that before 1945, Argentina didn’t really have an inflationary problem: between 1900 and 1944 the annual inflation rate averaged 2%.

Looking at this data, an objective observer might conclude that Argentina doesn’t know how to stop inflation. However, a closer look shows that in 13 out of 72 years since 1945 the annual inflation rate was below 10%, during eight of those years it was below the world’s median inflation rate and during three consecutive years it was among the ten lowest in the world. It all happened between 1992 and 2001. So Argentina was in fact able to stop inflation, quite effectively but for a relatively short period of time. Which would lead the objective observer to conclude that Argentines either have a short memory or have a collective inability to learn from their own (and other people’s) experience.
Table 6: Argentina before and after 1945

<table>
<thead>
<tr>
<th>Country</th>
<th>Primary Fiscal Balance</th>
<th>Net Fiscal Balance</th>
<th>Average Inflation Rate</th>
<th>GDP per capita Growth Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1900-1939</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>0.4%</td>
<td>-1.6%</td>
<td>1.6%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Australia</td>
<td>0.4%</td>
<td>-1.0%</td>
<td>2.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Canada</td>
<td>0.0%</td>
<td>-1.8%</td>
<td>1.7%</td>
<td>0.9%</td>
</tr>
<tr>
<td>UK</td>
<td>3.0%</td>
<td>-1.9%</td>
<td>1.4%</td>
<td>0.7%</td>
</tr>
<tr>
<td>US</td>
<td>-0.8%</td>
<td>-1.4%</td>
<td>1.6%</td>
<td>1.1%</td>
</tr>
<tr>
<td></td>
<td>1945-2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>-2.4%</td>
<td>-4.5%</td>
<td>143.0%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Australia</td>
<td>0.0%</td>
<td>0.0%</td>
<td>5.5%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Canada</td>
<td>0.7%</td>
<td>-2.0%</td>
<td>3.9%</td>
<td>1.9%</td>
</tr>
<tr>
<td>UK</td>
<td>-0.3%</td>
<td>-3.0%</td>
<td>5.0%</td>
<td>1.9%</td>
</tr>
<tr>
<td>US</td>
<td>-0.7%</td>
<td>-2.7%</td>
<td>3.7%</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

Despite this evidence, the old debate between monetarism and structuralism, although no longer relevant in the rest of Latin America, remains alive in Argentina (Rapoport, 2011). In fact, the structuralist explanation (which denies that the cause of inflation is the expansion of the money supply) still exerts considerable influence over an important segment of the country’s political leadership, which obviously doesn’t bode well for reducing inflation. At different times between 1960 and 1995, Brazil, Chile and Uruguay experienced high rates of inflation and on several occasions secured a position among the the “top ten” countries. But only Argentina has been unable to escape the curse of inflation. This fact alone serves as a refutation of the structuralist theory, unless it were only applicable to Argentina, which doesn’t make any sense. Argentina’s neighbors (and other past members of the infamous top ten) reduced inflation by applying fiscal austerity and monetary restraint. As Samuelson (1980) explained decades ago, the causes of Argentina’s sickness are “political and sociological rather than economic” (p.69). The nature of this sickness is a form of populism that has been endemic since 1946. Friedman also used the country as an example of what happens when populism takes over. After WWII, he explained, Argentina “went very rapidly and very far in the direction of a welfare state, in the direction of Government controls. It lost its political freedom and it lost its economic prosperity” (p.18).
8. Appendix B

Regression Statistics

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>0.22754</th>
<th>R-Squared</th>
<th>0.05177</th>
<th>Adjusted R-Squared</th>
<th>0.03730</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE</td>
<td></td>
<td>159.88736</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durbin-Watson (DW)</td>
<td></td>
<td>159.88736</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akaike info. criterion (AIC)</td>
<td></td>
<td>7.93448</td>
<td>AICc</td>
<td>7.93516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwarz criterion (BIC)</td>
<td></td>
<td>7.99936</td>
<td>Hannan-Quinn criterion (HQC)</td>
<td>7.96084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESS</td>
<td></td>
<td>22.060.31421</td>
<td>PRESS RMSE</td>
<td>12.38079</td>
<td>Predicted R-Squared</td>
<td>0.00129</td>
</tr>
</tbody>
</table>

Inflation = 11.41384 - 0.00012 * GDP pc - 0.11768 * Lib Dem

ANOVA

<table>
<thead>
<tr>
<th></th>
<th>d.f.</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>2</td>
<td>1.143.64631</td>
<td>571.82316</td>
<td>3.57641</td>
<td>0.03074</td>
</tr>
<tr>
<td>Residual</td>
<td>131</td>
<td>20.945.24353</td>
<td>159.88736</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>133</td>
<td>22.088.88984</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Coefficients</th>
<th>Std Err</th>
<th>LCL</th>
<th>UCL</th>
<th>t Stat</th>
<th>p-value</th>
<th>H0 (5%)</th>
<th>VIF</th>
<th>TCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>11.41384</td>
<td>2.32764</td>
<td>6.80821</td>
<td>16.01847</td>
<td>-4.90361</td>
<td>2.2305E-6</td>
<td>Rejected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP pc</td>
<td>-0.00012</td>
<td>0.00007</td>
<td>-0.00027</td>
<td>0.00003</td>
<td>-1.63518</td>
<td>0.10441</td>
<td>Accepted</td>
<td>1.00229</td>
<td>0.99772</td>
</tr>
<tr>
<td>Lib Dem</td>
<td>-0.11758</td>
<td>0.05369</td>
<td>-0.22389</td>
<td>-0.01148</td>
<td>-2.19205</td>
<td>0.03014</td>
<td>Rejected</td>
<td>1.00229</td>
<td>0.99772</td>
</tr>
</tbody>
</table>

T (5%) 1.97824

LCL - Lower limit of the 95% confidence interval
UCL - Upper limit of the 95% confidence interval