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I. Introduction’

At the early stages of an individual’s working career a decision has to be made on what type
of job and where geographically to work., Sometimes, previous investment in human capital
narrows the choice to a few jobs and locations, some other times this choice is wider. But, in
most cases the individual has a narrow information on the characteristics of a given job and/or
location and on his/her own traits that could be matched to those. This implies that there is a lot
to "learn” at the initial stages in order to find the best possible match between worker and
job-location. These ideas have been formalized in the job mobility context by Jovanovic (1979),
Johnson (1980) and Miller (1984) among others. One of the implications found in this literature
is that individuals faced with the initial choice of say two jobs, will sample the one with more
learning opportunities first, even if wage differentials are not favorable. It is then possible by
"experiencing” the job to accumulate and update previous information and conditional on it decide
o quit or not the chosen job. This "risky” job has a premium over differential rates of return
conditional on the option to quit if it turns to be an undesirable (ex-post) match.

What is the connection between these theories of job-mobility and migration? : there are
several stylized facts of the migration process that have not been successfully explained by the
existing "human capital” theory of migration. These facts include the existence of high rates of
return migration, strong positive correlation between in and out migration rates in given
locations, and migratiuu.mncentrafed at ages below those implied by a present value calculation
of returns minus costs. McCall and McCall (1987) and Pessino (1989,1991) showed that these
facts can be explained in the context of learning theories as those used in the job mobility
literature. Imperfect information is more prevalent in a move between locations than between

just jobs in the same location and the empirical consequences are more clear cut. It is rather



ambiguous to talk about "return” from a job to a previous one, than 10 talk and do empirical
analysis over returning from a location.

_ This paper presents to my knowledge the first formal empirical test for one of the implications
of the learning-matching literature, namely, if some people move for the first time for learning
reasons, the conditional probability of remigration will increase with duration in the chosen
location for some time and decrease thereafter. There is no reason to expect this pattern to occur
in the alternative theory; that of preplanned mobility.

Pessino (1991) pmv;tded initial empirical evidence in favor of the sequential migration model.
This paper extends the implications of her model to account for structural duration dependence.
The purpose of this extension is to provide further implications for the empirical analysis of
individual migration histories. Section Il presents the extension u.;rf the two-period model of
sequential migration to M periods. This extension is necessary to show the pattern of dependence
of the conditiona! probability of remigration (the hazard) on duration. Section lII proves that the
hazard rate of remigration exhibits first positive duration dependence and then negative duration
dependence. That is, the learning model implies a special functional form for the probability
distribution of remigration times. Section IV discusses the empirical implications of this result.
A natural test that arises from this result is that the hazard rate of migration for the first time will
be different from the hazard rate of remigration (the return move) if bayesian learning is present.
A second implication is derived from the comparison of this hazard with the hazard rate of
remigration in a preplanned model of migration. If people "preplan” in advance a fixed time of
returning to their original location, the hazard rate in this case will present duration dependence
that is the resuli mainiy of pure heterogeneity in the population. Section V derives the likelihood
function for the model if the analyst had available “ideal” duration of residence data. The actual

duration data with the different types of censoring is described in S=ction VI There, the



likelihiood function used in the analysis is derived taken into account the format of the data.
Section Vil preseats the empirical findings using individual migration histories from Peru.
The analysis concentrates in the flows of migration from Lima and into Lima taking into account

the urder of the migration event. Section VIII concludes with a brief summary.

II. Sequential Migration Model: M periods.

To show the dependence of the hazard rate of remigration on duration it is necessary to extend
the two period model of Pessino (1991) to an M period model, where m=1,...M. This is an M-
priod two-armed bandit probiem with normal arms. The simple decision rules IN, and IN, for
the two period model get very messy in the M period case. For this reason, it is desirable to get
a recursive expression for the M period decision rule. There are a number of results that are
needed to show this recursion.?

The structure of the model is analogous to the one presented in Pessino (1991). The potential

wages in the two locations i=1,2 can be written as:

X = 8, + 0¢,_ , (D
where
&m ~ N(O,1)
6, ~ N(u,0.") 2)

Xm/0, and I, ~ N(6,,0,)
and where I, = 0; I, = z,,7(0); I, = z,,2,,7(z,), etc., are the information sets available at the
mum.ent of deciding which location to choose. X, in equation (1); the wage in location i at time

period m; is a random variable that follows a normal distribution with unknown mean 8; and



known variance o). Individuals are assumed to have a prior distribution on the parameter &,
which is also assumed to be normal with mean g and variance p’.
The posterior distribution of 8, P(6/1,), when all of the n observations were taken in focation

i is normal with mean p(n) and variance p,{n):

6/1, ~ N@m),on) (3)
where
olp + ﬂiiiilzi
. = -1 ) = . 4
p; (n) Y IRV forn > 1 and (1) = (4)
and
o2 pl
. = P 5
p; (n) o ¥ (- Do &)

The marginal unconditional distribution of X,, given that location i has been sampled n times

1§

IR A CAE T
xl — N ) i i E 6

The optimal value of the problem is the following:

V(P(8).P(6) = sup E(T z,) M

where P(8,) and P(8,) are the posterior distributions in the respective locations when no

observations were taken; i.e, they are identical to the prior distributions of &, and 4,.



Let V" denote the worth of selecting location i initially and then continuing with the optimal

strategy, that is :
VER0),P(6,) = p + E[V'[PE/T, = 2,1}, P8/, = z,,i)/P(8,),P(8,)]] (8)

We can now state the following lemmas:
LEMMA 1. Vo(@(6,),P(6,)) = max [V,"(+),V,"(*)]
The individual wil! choose location 1 if the worth of choosing in the first period location 1

and continue optimaily exceeds the worth of choosing first location 2 and then proceed optimally.

LEMMA 2. Ar optimal strategy is given by
(1) Go to location 1 if V,™(-) > V,(+)
(i1) Go to location 2 if V=(+) < V,2(+).
Now, instead of using as state of the problem, the posterior distribution of the process state,
it is preferable to use the posterior moments of the normal distribution and characterize V,™ and

V,™ by using the foilowing recursions:

Vimtita0)0y) = g + j ve
We can now standardize X, using the distribution defined in (6) to obtain:

ﬂli Pu“l!

Zy, 1L, 0y ) d¥(z
(ﬂ|1+ﬂ|2)H 1142 ﬂ11+;ﬂ|1 ﬂ:) (z,)

Vi (007,077 = py + I v ( By ¥

where X, = u, + (0+p)" z, and @ is the cdf of the standard normal. In an analogous



way, we can get V,"(+).

The interpretation of the above equation is the following. The value of choosing location |
when there are m periods to go is a function of the current information on the two locations:
the prior means g, and u, and the prior variances p,” and p,*. This equals the prior mean in
location 1 plus the value of proceeding optimally when there are m-1 periods to go as a
function of the posterior mean and variance in location 1 when one observation has been taken
integrated over all possible values of the normal random variable z,. A similar interpretation
can be given to the value of choosing first location 2.

Now, it is possible to define the advantage of location ! over location 2 in an m period

problem as:

&mU‘I-FQ-Plz*-P::) = vlm(ﬂhh*ﬂ::sﬂlj) - V:”(}l;.ﬂg,ﬂ:?pﬁz:) )

and so. location 1 is selected when there are m periods to go iff A™>0. Let’s additicnally

define:

A™(<)* = max (0,4) = A™(-) I{(A® > 0)
A"(+) = max (0,-4) = A™(+) {A™ < 0)
where
ar > 0)=1ifa" 2 0

{(A™ > 0) = 0if A < 0

Let V,.® be the optimal value of beginning sampling location | and then move to location

2 and continue optimally and V.,® be the optimal value of beginning sampling location 2 and



then move to location 1 and continue optimally. Note that since the order of receiving
information is irrelevant, V," = V,®° Therefore, to get the recursion for A™(+), V™ can

be subtracted and V,® added to (9):
AR(+) = V™) -V,"(-) + Vi"() - V7(e)
50, we get

2
Py ﬂui’l!

tefd2,
@ito* " 0 e

A™(y, 10,0707 = f A ( w, + ==P=’)+ dd(z,)
1

(10)
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Through the following lemma, A™(+) can be reparameterized to depend on the difference
in means § = y, - ..

LEMMA 3. If g -y = g, - g, then A", 1y ,0,%,0,7) = A™(u, 1, ,0,%,0,7) so that
A™pyop2,0,5,077) = A"y - 10,0,0.%,0,7) = A™O,pt, - p2p,2,0.) = A™5,0,%,0.).

Then, the recursion for the M period problem can be reparametrized as:

2 2
£1,7,

Zy,
(0, +0,)" 0’ +p,

2y

A™(8,0,2,0,%) = I A™! ( 6 + ,p-f)* d®(z,)

(11)
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In the two period model, Pessino (1991) showed that A™ is an increasing function of § for
given variances, and an increasing function of p?, ceteris paribus. By induction, similar
statements for the M period model can be proved. These lemmas are stated below.

LEMMA 4. A%(5,p,%.p,°) is strictly increasing in 9.

LEMMA 5. A"(8,p,%p,%) is strictly increasing in p,? and steictly decreasing in p,°.

The following lemma states that there is a unique §° such that A™ = 0.

LEMMA 6. There exists a unique & such that A™(8",p,°,p,") = 0 and that satishies

if § = & sample location 1
it & < & sample location 2

That is, 8" is the differential reservation wage and 8 is the current difference in posterior
means. This lemma follows from the uniform continuity of A%(6,0,%,0,°) in 6. For a proof of
the above results see Fahrenholtz (1982).

In next section, these results are used to prove the dependence of the hazard rate on duration

of stay in a given location.

III. The Hazard Function and its Dependence on Duration

This Section shows that the hazard rate of remigration first increases with duration and then
decreases monoionically after some time.

In this model the individual sequentially optimizes the remaining stream of wages after
observing realizations of productivity in the chosen location. It is assumed in this Section that

the individual chooses in the first period to sample location 1 so that he updates each period the
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expected productivity in location 1. If location 1 was chosen at the beginning of his working
career is because there was a positive wage differential in location 1 and/or a payoff to learning
by experiencing location 1; i.e. the index function in equation (11) was positive. Suppose that
this individual has already observed n realizations of productivity in location 1. In this case, the
decision rule at time n+ 1 will dictate to exit this location if A™* < 0, where the arguments of
A™" are now the updated mean and variance after n periods of experience in location 1. The first
tume n after the initial decision that A™® becomes negative is called the remigration time.* At
this point it is useful to rewrite the model in terms of the hazard function. The hazard function
is a conditional density of exit times from a location given the length of time spent in that
location. We want to find out what is the dependence of this conditional probability of leaving
location 1 on the number of periods n spent sampling that location. From equation (11) and
lemma 6 this is the probability that the current difference in posterior means is less than the
differential reservation wage given duration of stay in the current location. Let’s define §(n) =
() - py(n) as the difference (after n samplin‘g periods in location 1) between the posterior mean
in location 1 and the fixed mean in location 2. Let's denote by 8°(n) the differential reservation
wage when n observations have been already taken in location 1. Then, If 6(n) < §°(n) the
individual exits location 1.

Denote by G(6(n + 1);4,n) the conditional probability of 8(n + 1) given 8(n) = 8. Note that
6(n + 1) can be written recursively as a function of §(n) and p,(n) the posterior variance in
location 1 that given the fixity of u, it is also the posterior variance of the difference in

productivities. The recursion is the following:
6(1) = p, -

6(2) = 0, p t £y X -ty
g, +p} o +p?
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— £1(2) Gty - o) + (1 - p(2) ) X,,

p.(1) p,(1)
on + 1) = oy + 1) d(n) + (1 - pin + l)) X, (12)
p,{n) p(n)

So, &(n + 1) conditional on 6(n) = & follows a normal distribution with mean § and the following

variance:

var(d(n + 1Y/8(n) = 6) = (1 _pn t 1) ) [p,(n) + 0,7
ﬂl(n)

(13)

.. p(n + 1) p(n)
o’

So, we can see that the variance of 6(n + 1) conditional on 8(n) = 6 decreases with n because
p,(n) and p,(n + [) decrease with n. In conciusion G(6(n + 1);6,n) is a normal distnibution
representing the distribution of the wage differential at the next observation of productivity in
location | given that 6(n) = 0. In this dynamic programming model when there are m periods
to go and the individual has not yet sampled any of the locations the decision rule A™ depends
on the values of the prior means and variances, 6(1) = 8, p,(1) = p,” and p,(1) = p,°. Given
that at each successive period the individual reapti.mizes with his new information, .the decision
rule after n observations in location 1 A™® can be written as depending on &(n), p,(n) and p,(n).

In this model, the probability that the worker remigrates after sampling n times location 1 and
observing &(n) = § is the probability that the new wage differential is less than §'(n + 1), the
reservation wage differential with a sample size of n + 1. So, the hazard rate of remigration

h(é,n) is:

12



h(6,n) = G(8'(n + 1),6,n) (14)

Note that

dé

The theoretical remigration rate holding sample size constant is decreasing in the wage
differential because the higher the current wage differential the less likely that any future wage
differential will be below the reservation wage as a consequence of the positive autocorrelation
in the wage process implied by the model.

To show how h{é,n) changes with duration in location 1, it is necessary to show the
dependence of the differential reservation wage on n. This is shown in the following lemma.

LEMMA 7. §'(n) is non decreasing in n.

Proof:

Define by IN(n) = A™(&"(n),0,(n),0,(1)) = O where in IN(n) we include explicitly the
dependence of p,(n) on n. Note that p,(1) = p,%
Differentiate IN(n) with respect to n to obtain:

JIN(m) —_ 94 85", 9A_ dp(n) _
on 3" an  dp, on

and this implies that 36" (n)/an > 0; the differential reservation wage increases with n, and when
dp,(n)/dn = 0 we will have that 36°(n)/dn = 0. This is because da/dp, > O by lemma 5,
dp,(n)/dn < 0 by (5), and dA/35 > 0 by lemma 4,

The reservation differential wage that makes one indifferent between staying or returning
increases with duration precisely because the posterior variance of the unknown mean decreases,

s0 that the learning motive that provided the incentive to move in the first place dissipates as time
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goes by. As duration increases, the prediction of future productivity in location 1 becomes
increasingly more precise. In the limit, the worker's average productivity 8, is known with
certainty, provided, of course, that he/she has not yet decided to leave. Once remigrated, the
worker will not return.

Now, we can establish the behavior of the hazard rate with respect o n.  Differentiate

equation (14) with respect to n:

oh(d,n) _ 3G 88", 4G (15)

an 36" dn  9n

The change in the.hazard rate of remigration attributable to an increase in the sampie size is
the sum of two effects corresponding to the two terms on the right hand side of equation (15).
The first term is the change due to the change in the differential reservation wage. Because G is
a distribution function, dG/36" > 0 and by lemma 7, d6/dn > 0, this effect is always positive
but will diminish to zero as n becomes large as a consequence of the convergence of the posterior
vartance of £, to zero. The second term is the change attributable to the decrease in the variance
of the next wage induced by the increase in sample size. Because G( +) is the normal distribution
function, a decrease in variance reduces its value to the left of the mean and increases its value
to the right. So the second term in equation (15) is negative if 8 > &(n + [). And for long
enough durations, given that most people with § < §°(n + 1) would have already left, this term
will be negative. Summing up, for short durations both terms in equation (15) will be positive.
As time goes by, the first term converges to zero and the second becomes negative. This is the
main resuit, namely: the hazard rate of remigration increases with duration and after some time,

envugh to learn about productivity in location I, it turns to depend negatively on duration. This
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result is not new in the learning literature. It has been proved by Jovanovic (1979) and
Mortensen (1985) in the context of job matching models. The proof of the result in this section

followed the proof presented by Mortensen adapted to the two-armed bandit probiem.’

IV. Empirical Implications

The result of last Section presents a number of interesting empirical implications for the
dynamics of migration. I will analyze household data from Peru, and specificall y movements in
and out of I._,ima. I will refer to the empirical implications making explicit reference to this case:
however, the implications of this model are much more general.

Lima-Callao is the area of Peru that concentrates the highest proportion of the population and
that according to the 1981 Census had the highest rate of in and out migration. 1 will analyze
movements in and out of Lima from other areas. Other areas include both Other Urban areas
and Rural areas.® The analysis of movements in and out of Lima is twofold. Movements into
Lima (that I will sometimes call movements from "Other") are divided into primary moves and
return moves. Primary moves are made by people beginning the process in "Other" and return
moves by people beginning the process in Lima but having moved to "Other” in their first event.
Movements from Lima (that [ sometimes will call movements into "Other") are also divided into
movements made by primary migrants and by secondary migrants. Primary migrants from Lima
are those individuals who begin their working career in Lima and make a move to "Other” for
the first time. Secondary higrants are people born in "Other” but who had made a first move
into Lima so they are at risk of remigrating from Lima.

What has the theory of sequential migration to say about the hazards; i.e the conditional

15



probability of exiting Lima or "Other” given duration of stay, for primary and secondary
migrants?. How much time do individuals spend in "Other" areas or Lima before they decide
to migrate?. How much time do individuals spend in Lima before deciding to remigrate (if ever)
again?. How does the duration of stay in each region vary across individuals?. The length of
stay in each location and the determinants of whether or not to exit given the past history of
migration are key ingfedienls of a sequential migration process.

The following 1s a list of empirical implications of the model:

(1) Positive and eventually negative duration dependence is implied by this model. Only young
workers will take the risk of migrating for the purpose of learning. In this way they can cut off
the left tail of the wage distribution and have the option to remigrate if the match is not
satisfactory. The lengih of time before negative duration dependence settles in is an empirical
matter. However, opportunity costs and specific human capital costs will dictate that the period
should not be that long in years. This functional form for the hazard rate is especially pertinent
to secondary movements out of Lima; that is the hazard rate of remigration from Lima. [ do not
expect the same type of result (or not as strong) for the hazard rate of migration from “Other”
or from Lima for the first time because it is less likely that persons beginning their careers in
those places have so much to learn as those that have moved to a different place. If one views
f. as a vector of location-worker characteristics, the elements corresponding to location specific
amenities will teivially be better known by the individual born in location i. On this account, the
hazard of migration for the first time will not present an initial positive slope or if positive not
that important because less people will be expected to fail after beginning their working career
in the better known location than in the distant and unknown one.

(1) Is remigration preplanned or is the remigration that often follows an initial migration

episode a consequence of unsuccessful labor market outcomes?. Previous work on the
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determinants of multiple moves have emphasized an alternative view of the remigration decision.

The preplanned model of migration claims that migrants return because they have planned that
in advance; it does not depend on the outcome of migration.” The main distinction between the

preplanned model of migration and the sequential mode! is that the former is deterministic in its
extreme version. The individual that migrates does so knowing in advance that he/she will return
at some prespecified date. The reason for this behavior is presumabl y the desire to accumulate
some amount of assets that is not possible in the origin destination given the absence or
incompleteness of capital markets. So, at the individual level there is no stochastic process
governing the conditional probability of returning as compared to the sequential migration model.
It is only when an as:-iumptinn is made about the distribution of dates/target wealth of these
individuals in the population that an aggregate hazard rate possibly duration dependent emerges
as a result of pure heterogeneity in the population. 1t is the distribution of different fixed dates
of departure that creates spurious duration dependence. This claim is illustrated by considering
the sequence of probabilities of terminating a location match at specified duration levels, derived
from sequentially maximizing an intertemporal utility function sﬁbject to income and information
constraints. We called this sequence {h(8,n)}. Contrast this setup with a very simple model in
which a population of identical agents stay in the location according to the fixed time {i=1,..n}
that takes to accumulate their target wealth. Suppose that the proportion of people that
accumulate wealth during i periods is hi. Then, clearly, the second model can generate duration
dependence only as a consequence of the various fixed dates of departure. In the first model,
each individual probability is duration dependent. Compared to the hazard function generated
by the sequential migration model, the hazard for a preplanned model will not present a
decreasing hazard at long enough durations.® Furthermore, controlling for observed and

unobserved heterogeneity, the individual hazard rate is predicted to be approximately degenerate
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at some ﬁied target date. Only, when we aggregate across individuals the preplanned model can
generate duraﬁnn dependence.

(iii) The sequential migration model predicts a positive correlation between in anﬂ out
migration flows in given locations, usuaily in prosperous or more developed ones. By analyzing
the serial order of migration events out of each location, Lima and "Other”, the empirical model
can help to discriminate between the two explanations given for this phenomenon. In the
sequential model, new migrants with poor realizations from the wage distribution are more likely
to leave in a subsequent period. In contrast, static models presume that this phenomenon is due
to cross-section heterogeneity, that different people with different skills will enter a location and
some others will decide to leave it at the same time., This issue is analyzed in Section 7 by
comparing the flows in and out of Lima for first time migrants and secondary migrants.

(ivy Do education and family background variables have similar effects on the hazard rates
{or the first and subsequent mﬂvehents?. Do they differ by the serial order of the spell and by
location?. The theory of sequential choice predicts that wage differentials and information
differentials are the two key ingredients of the first migration event. For subsequent migratior
events, we have to add the realization of the wage in the chosen location that serves to update
both wage and informational differences. How then does education affect the conditional
probability of migration and remigration?. Most of the literature on return migration expects to
find a negative effect of education on the probability of remigration. In the sequential model,
the effect is not that clear. Education affects the information factor in two ways. On the one
hand, better educated individuals are expected to have better information previous to a move, so
on this account they will tend to migrate less to acquire information than the less educated. On
the other hand, more educated people are expected to learn faster and this will tend to increase

the payoff to learning by moving. So these two effects work in the opposite direction and so it
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is an empirical question how education affects the likelihood of the different types of moves.

V. Likelihood Function for Ideal Data

With these issues in mind, a continuous time semi-Markov model of the migration process will
be implemented. As in existing models of discrete choice, the probabiiity that an individual wiil
opt for a particular location depends on observed characteristics of the location and the decision
maker. This discrete time mode! is generatized {0 continuous time by regarding the time between
moves as a random variable whose expectation may depend on the current state occupied and the
observed explanatory variables. Given wage realizations, the prospective migrant faces a discrete
choice problem - whether to stay in the given location or move (back) to another one.

The individual is assumed to select that location that yields the highest expected present value
of income given current information, the current location and the length of the current spell. The
semi-Markov specification allows for the presence of duration of residence effects. The hazard
rate in a particular spell will depend on the duration of stay in the current location. In contrast,
a Markov model specifies the probability that an individual will change locations as depending
only on the location currently occupied. Previous residence history piays no role on subsequent
choice under the Markovian hypothesis.

The econometric model proposed in this Section can be regarded as a reduced form resulting
from behavioral models. Reduced form results can serve to rule out some potential structural
models, but cannot distinguish between others. The maximization model implies a sequence of
(conditional) probabilities that an individual will migrate given that he had not previously done
SO.

I will assume in this Section that the investigator has access to "ideal” migration data. By that
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I mean that the completed durations of stay in each location are available for a random sample

of the populﬁtiun.

Locations are divided for the analysis into "Lima"™ and "Other” areas, denoted L and O
respectively. The migration history of each individual will be governed by the exit time
distribution from "Lima”, f (t,) and the exit time distribution from "Other”, f,(t,). As usual, it
is convenient to express the analysis in terms of hazard functions, h (t,) and hy(t;). The hazard
function is the conditional density of exit times from a location given the length of time already

spent in that location. Let § = L.,O then the hazard rate in location § is:

hot) = —ds(ts) 16
s(ts) |- Ey(t) (16)

where 1 - Fg{ts) is the probability that the duration of residence exceeds tg, i.e, the survival

function which can be expressed in terms of the hazard as:

| - Fy(t) = Ss(ts) = Exp [- | gho(U)dU] (17)

From (16} and (17) the density of exit times can be expressed in terms of the hazard function

as.

fs(ts) = hs(ty) . Exp [- {&hg(U)dU] (18)

Duration dependence exists if dhg/otg # 0. If ah,fa:,' > 0 there is positive duration
dependence. If dhy/dty < O there is negative duration dependence. If dhs/dty > O for some &

< t and éhydig < O for some tg > t° the hazard is nonmonotonic, first increasing and then
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decreasing,

With complete duration data, the individual likelihood function is the product of the density
of exit times from each location. By multiplying this term over individuals one obtains the
likelthood function for the migration data. Leti = 1,...,N index individuals and L,=1,...,m;
O; = 1,...,mg; the number of total completed spells in Lima and "Qther” regspectively for each

individual, Then the likelihood function is:

N

L =11 glfu(tu? Elfm(t@i)]

This general parametrization permits behavioral coefficients to differ depending on the location
and the serial order of the spell. Such shifts in coefficients have been termed "occurrence
dependence” by Heckman and Borjas (1980).

This "ideal” migration data is generally unavailable for migration histories. The likelihood
function and the empirical analysis in general must be adjusted to match the availabie data. In
next Section, I discuss how the duration and transition data are recorded and how to specify the

likelihood function for the actual data.

VI. Likelihood Function for Actual Duration Data

The data set from Peru has retrospective information on migration events. However, some
of these events and their respective durations are incompletely recorded.

The Survey reports for each individual (15 years of age or older) their birthplace, previous
place of residence and current residence. It also reports when the last move was made and the

age at which the individual first left his/her birthplace. So, the data set includes at most three

21



locattons for each individual: the piace of birth, the last place of residence and the current place.
The possible patterns of residence for each individual are the mutually exciusive sequences:
O-L-0, O-L-L, 0-0-0, L-O-L, L-0-O and L-L-L. For exampie O-L-O means that the
individual began the process in “Other”, the last place of residence was "Lima”™ and currently
resides in "Other™; O-L-L means that the individual began the process in “Other”, moved to
“Lima" and stay there till the time of the Survey; and O-O-O means that the individual never
moved to Lima.

Figure | shows the possibie patterns of lifetime migration for each individual originating in
"Lima” and in "Other” as recorded in the data set.”® The first part of the figure displays the
possible paths of the 76 percent of the men that began their migration history in "Other” and the
second gives the path of the 24 percent of the men who began their migration history in "Lima”.
The upper branch of each node (L) indicates a move to Lima, and the lower branch (O) indicates
a move to "Other”, | will consider in the empirical analysis a first spell out of "Other” (FO) with
3134 individuals, of whom 27 percent migrated to Lima and a second spell out of “Lima” (SL)
where out of 840 individuals 29 percent remigrated to "Other”. I will also consider a first spell
in "Lima" (FL) of 983 individuals, of whom 17 percent exited. The second spell out of “Other”
(SO) will begin with these 171 individuals at risk, of whom 82 percent remigrates to "Lima”.

As reported in figure 1, two is the maximum number of moves reported in the data for which
the locations are known. If the individual made actually more than two moves the intermediate
locations are not known. Only the total number of moves are recorded but not the duration,
origin or destination for all of the events. Given these facts, the larger the number of moves the
person reported, the less accurate the information.  Younger cohorts have actually moved less
number of times than older cohorts. This augmented with the fact that any economic theory of

migration (and especially the learning model) applies to the young implies that the data for
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Figure 1.--Observed lifetime movements in and out of Lima
for sample of Peruvian males
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younger cohorts is the most accurate for any meaningful interpretation of the theory. If some
individuals from older cohorts perform more than two moves, the last move recorded might have
been performed at an older age and the moves following the first move from his/her birthplace

are lost. This second move that is lost for some individuals is the crucial move for implications
on the learning-matching model. However, even for individuals that made more than two moves,
we know the maximum amount of time they spend in the second location.

In the discussion that fpllows, I will concentrate on the information available for movements
originating in "Other”. The characteristics of the duration data for "Lima“ are symmetric to this
case. Considering all the possible migration events originating in "Other”, the following
complete or censored information is available:

(1) For transitions "0-0-O" , we know the migration history up to censoring on the right,
The information available is that the individual survived till the current date of the Survey without
making a transition into Lima. This is accurate as long as the individual performed two or less
moves in his/her lifetime.

(2) For "O-L-L" transitions we have complete duration information for the first spell in
"Other” and right censored information for duration in "Lima”. The same qualifications apply
as in (1) if the person made more than two moves.

{(3) For "0O-L-O" individuals, the timing and duration information is not complete in any spell
if the person reported making more than two moves. In this case (and in L-O-L) we know that
a first movement occurred but not exactly at what point in a given interval,'

The likelihood function of last Section has then to be moditied to take into account the
information available.

The last aspect to consider is the time at which the process begins. The ideal is to have a date

(say, age of the individual) at which the individual begins his working career. However, that
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information is not provided by the Survey. In the empirical analysis, I experimented with a
beginning age of 12 years old which is the age at which most individuals end primary school.
If the individuals made a move before age twelve, they were treated as though they began their
migration history at the new location. The case O-L-O was treated somewhat differently. Of
the 245 individuals that performed this sequence, 19 percent reported leaving their birthplace at
an age less than 12 years old. Given that the variable "age at which left birthplace” provides a
iower bound for the interval at which migration took place, I decided to keep these individuals
in the current sequence instead of moving them to the "L O O" category.

A key distinction in the sequential model of migration is that spells in different locations differ
in terms of their order, A different hazard will characterize movements out of Lima and out of
"Other” and first or second spells out of these locations. [n particular, for the hazard function
for the second spell out of Lima, the remigration decision, it is expected that a non-monotone
hazard, first increasing and then decreasing characterizes the process.

With these issues in mind, I will derive the likelihood function for the first spell out of
"Other”, the first spell out of "Lima" is analogous. The following terms contribute to the
likelihood function:

1) Right censored observations, the sequence "0-O-O", they contribute the probability of

survival more than the censoring time:

So'te’) = Exp [- [ ho(U)dU] (20)

where t,' is the total duration of stay in "Other” (i.e, age at Survey minus twelve years old).
it} Uncensored observations, the "O-O-L" transition; its contribution to the likelihood is the

density of exit times:
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() = b)) - Exp [- feha(UxU) @1)

and, finaliy,
(iii) interval censored observations, the sequence "O-L-O". The upper limit of this interval
is the timing of the last migration event, call it to,". The lower limit t, ' is the age at which they

left their birthplace minus 12 years. This term is:

Foltou) - Foltor) (22)

that is the difference between the cdf for duration at ;' and the cdf at i, "

Let’s define the following dummy variables:

AN =1 if nhsewétinﬁ is right censored
= (] otherwise;

d =1 if observation is interval censored
= otherwise.

Then, the log-likelithood function for the first spell out of "Other” is:

N N N o |
L = E(Il - d)(1 - Mloghy'(t) +_§';J - dINlogSo (1) +_§:i-.(1 - MioglFo'(tey) - Folto)] - (23)

The following terms contribute to the likelihood for the second spell out of Lima (the
likelihood for the second spell out of "Other” is analogous):

(i) right censored observations for individuals with the sequence "O-L-L":
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S.'(t.) = Exp [- [&h/(U)dU] (24)

(i1) uncensored observations, for individuals with the sequence "O-L-O" and who performed

exactly two movements in their lifetime:

fit) = h(t) . Exp [- [4h/(U)dU] (25)

and, finally

(i11) interval or left censored observations, for individuals with the sequence "O-L-O" and who
performed more than two movements in their lifetime. These individuals exit Lima at the timing
of the last migration event but they enter at some point after the age they left their birthplace.
The duration of this spell is at most the age they last migrated minus the age at which they left

their birthplace. Their contribution to the likelihood is:

Fl(to' - tw) (26)

Then, the log-likelihood for the second spell out of Lima is:

N N N
L = L(I-d)(1 - Nlogfi(t,)) + ?3{11 - d)NlogS, ‘(1)) + ,E'I:L(I - MIog[F 'ty - 1, (27)

To actually implement the estimation of the model I need to specify distributional assumptions
for the hazards and the way that covariates influence them. For people born or beginning the

migration process in "Lima", we called the conditional probability that the individual will migrate
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h{t) and for people bora in "Other”, hy(t,)."" In the case of a stationary economic

environment and no behavioral duration dependence, the hazard rates are independent of t; and

the duration distribution is exponential; i.e, the hazard rate is constant, he(ty) = hS, S = O,L.
One way to test for the absence of duration dependence is to assume a Weibull distribution

of exit times. The Weibull hazard function is:

hg(ts) = aty™ 28)

The exponential distribution is obtained by restrictingy = 1. Fory < | the hazard decreases
with duration. For y > | the hazard increases with duration.

A distribution that aliows for positive and then negative duration dependence is the log-logistic

distribution with parameters vy > 0 and o > 0:

-1 |
hy(ty) = O @)
I+t afy

For y > 1, the hazard first increases and then decreases with duration. If 0 < v < 1 the
hazard function decreases with duration.
To introduce covariates in the analysis, [ assume, as has been the practice in most of this

literature, that:

o; = Exp(-8x) 30)

where x; is a vector of socioeconomic characteristics of person i. Here, any element of X;
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influences negatively the hazard both in the Weibull and the log-logistic case. Hence, a positive
coefficient means that the hazard decreases. In the Weibuil case, the resulting hazard will be
both of the proportional hazard form and accelerated lifetime form. In the proportional hazard
specification, the effect of the regressors is to muitiply the hazard function itself by a scale factor.
The regressors in the accelerated failure time model have the effect to rescale the time axis. In
the log-logistic case, the resulting hazard is of the accelerated failure time form.

The variables used to explain the hazard variation across individuals and spells_, to account
both for observed heterogeneity and occurrence dependence, are in the first specification that 1
implement years of schooling and parents’ years of schooling. It has been usually expected that
own and parents education will positively affect the hazard of leaving "Other”; the less
advantageous region; in the first spell. The conventional reason for this result is that highly
educated individuals and with better family background will profit more from their human capital
investment and endowments and use them in a more productive environment, However, if
informational factors are in. part determined by educational variables, the effect of education on
the probability of migration can be ambiguous. For those that experience a second spell in
"Lima”, having moved from "Other" in the first transition, it has also been usually expected that
family background and schooling variables affect negatively or not at all the hazard of exiting
"Lima”. The more schooling attributes a person possesses the more probable will be that the
individual will decide to stay, but a bad draw or bad "luck” in the draw of the wage distribution
may cause him/her to perform a new transition even if he/she has adequate attributes in terms of
productivity. On the other hand, if more educated individuals are more prone to migrate:fur
learning reasons than less educated individuals, they will also be more prone to return, These
facts will try to be elucidated in the empirical section.

There are other covariates that can influence the decision whether to move or not. Such
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variabies as household size and marital status that are thought to increase the costs of migration
are excluded from the .analysis because oniy the current value is known.

Wages have not been included in this initial specification. The reason, being that wages are
endogenous to the migration process and are only observed for right censored observations. This
first specification, omitting wages, but including some of its determinants can be thought as a
reduced form estimation. In a subsequent step, | include predicted wages as an additional
covariate. This extension aids in identification of the duration parameter. By not conditioning
on wages, an average over ali possible wages of the hazard function is being estimated up to the
control that educational variables can provide. This tends to bias the results towards negative
duration dependence. On the other hand, by entering wages in the estimation, the net effect of
education on the hazard of migration and remigration can be estimated.

Some of the individuals will never move either in the first or second speil out of each location.
{f the control for the effects of explanatory variables is insufficient, heterogeneity will remain and
will lead to misleading inferences, especially about duration dependence. In general, not
controlling for unobserved heterogeneity leads to downward biased estimates of duration
dependence. This is because, as time elapses "movers” will exit the current state or location and
the proportion of “stayers” will rise. This will show as a decline in the hazard function over
time. To account for heterogeneity, I use the Heckman and Singer (1984) specification of the
mover-stayer model with two points of support. I assume that a proportion (1-p) of the sample
who have not moved yet will never move, while the proportion p remain at risk of moving. This
specification was also used by Walker (1986) and by David, Mroz and Wachter (1985) in studies
of duration and timing of births.

Incorporating unobserved heterogeneity, the terms of the likelihood function get transformed

in the following way:"
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(1) §s°(tS) = pSslty) + (1 -p)
(1) fy(ts) = pfs(ty)
(i)  plFts) - Flts)]

and pF(ty, - tg) for the second spell.

VII. Empirical Results

The first and second spell out of Lima and "Other” were estimated for the Weibull and
log-logistic specification with and without unobserved heterogeneity correction.

To account for cohort effects and minimize the impact of the biases introduced by the data in
the estimated hazards, the sample was divided by cohorts. The sample size does not allow for
narrow definitions of cohorts. Hence, I implemented the model using two definitions, the first
one divides the sample in three cohorts in the age groups 15-29, 30-44 and 45-65. The second
one refines the cohort interval to ten years and so consists of four cohorts: 15-24, 25-34, 35-44
and 45-54. Preliminary results showed that a Wald test for stability of estimates across cohorts
was rejected, so decided-tu continue the analysis with these two cohort definitions. With these
two cohort definitions 1 am able to compare how sensitive the results are to the width of the
cohort interval. The covariates used were years of schooling, YRSCHL, and mother years of
schooling, MYRSCHL."?"

Table 1 summarizes the results for the Weibull specification for each cohort and spell. For
the first spell out of Lima the exponential model cannot be rejected at the | percent level of
significance, except for cohorts 45-65 and 45-54 which exhibit negative duration dependence.

For cohorts 15-29 and 25-34, for the first spell out of "Other" and for the cohorts 15-29, 45-65
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TABLE 1

- re— -

MIGRATION PROCESS WITH WEIBULL DURATION DEPENDENCE"

g 5 o T e e R e e sl

Cohort 15-29 30-44 45-6% 15-24 25-34 35-44 45-54 55-65
(a) First spell Lima (FL)

Intercept 3,863 4.992 4,886 4.850 4.097 5.156 4.816 5.372
(6.961) (12.436) (10.921) (5.089) (8.780) (9.730) (8.703) (5.982)

MYRSCHL -0.072  -0.058 -0.0lé  -0.155 -0.079 0.0136 -0.019 -0.035
(-1.167) (-1.728) (-0.269) (-2.444) (-2.177) (G.269) (-0.286) (-0.397)

YRSCHL - 0,099 -0.047 -0.074 0.091 0.059 -0.106 -0.087 -0.038
(1.705) (-1.483) (-1.631) (0.896) (1.424) (-2.535) (-1.572) (-0.464)

Y 0.968 0.913 0.596 1.297 0.992 0.772 0.525 0.829
(6.957) (B.580) (5.924) (4.589) (7.963) (5.901) (4.784) (3.392)
Log-L -25%3.4 -366.3  -181.2 -11s.1 -322.1 -179.1 -110.6 -69 .4

N 459 3136 188 266 151 178 117 71

(b) First spell Other (FC)

Intercept 4.672 4.710 4.629 4,704 4,845 4.648 4.541 4.813
(21.075) (233.342) {(36.193) (14.933) (23.038) (27.829) (28.502) (21.8623)

MYRSCHL -0.087 -0.033 -0.037 -0.066 -0.072 -0.022 -0,029 -0.046
(-4 .283) (-1L.750) (-1.488) (-1.938) (-3.849) (-0.852) (-0.881) (-1.153)

YRSCHL -0.061 -0.105 -0.105 -¢.077 -0.08% -0.103 -0.109 -0.099
(-2.551) (-7.804) (-6.961) (-2.105) (-4&.537) (-6.290) (-5.365) (-4.271)

¥ 1.094 0.799 0.694 1.214 0.968 0.757 0.694 0.716
(1a.898) (18.938) (17.972) (10.582) (15.370) (1&4.858) (l4.427) (10.609)
Log-L -858.5  -1524.5 -1492.9 -441.9  -959.0 -977.1 -944 .0 -546 .7
N 902 L1185 1047 528 783 776 647 400
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TABLE 1 {continued)

Cohort 15-29 30-646  45-65  15-24  25-3&  35-44  45-54  55-65
(¢) Second Spell Lima (SL)

Intercept 2.362  2.881 3.355  1.931  3.037  2.706 3.531 3.19
(6.549) (12.273) (15.195) (3.277) (8.675) (10.282) (11.768) (9.312)

MYRSCHL 0.105 0.038  0.0001 ©0.225  0.034  0.050 -0.105 -0.040
(2.085) (1.016) (0.003) (2.114) ( 0.872) (0.980) (-0.726) (-0.588)

YRSCHL -0.013  -0.008 0.018  0.008 -0.033  0.006  0.0005 0.040
(-0.303) (-0.266) ( 0.541) ( 0.100) (-0.863) ( 0.172) ( 0.012) (0.764)

Y 0.615  ©0.425  0.322  0.655 0.510  0.39%  0.262  0.399
(6.502) (7.087) (5.103) (4.518) (6.149) (5.599) (3.478) (3.744)

Log-L -176.9  -349.2  -251.6 -77.4 -221.0 -227.1 -140.6  -109.5
N 197 342 303 100 222 217 193 108

(d) Second spell Other (50)

Intercept 0.493  1.405  3.316 0.857  0.966  1.467 2.481 5. 480
(0.819) (3.674) (5.322) (0.906) (1.949) (2.882) (3.132) (3.303)

MYRSCHL -0.006 -0.065 -0.046  0.221 -0.048 -0.095 -0.040  0.025
(-0.150) (-1.482) (-0.847) (2.746) (-1.024) (-1.423) (-0.683) (0.113)

YRSCHL 0.031  0.025 -0.154 -0.189  0.029 0.042 -0.082 -0.386
(0.484) (0.636) (-2.506) (-1.622) (0.583) (0.746) (-1.067) (-1.947)

¥ 0.801 0.706 0.456 1.085 0.799  0.689  0.383  0.942
(7.062) (8.068) (&.396) (4.405) (7.906) (5.647) (3.548) (2.495)
Log-L -61.5 -118.3 -50.8 -16.0 -90.3 -67.4 -33.0 -15.4
N 50 83 38 22 69 42 2% 14

" Asymptotic normal statistics in parentheses.
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15-24 and 55-65 for the second spell out of "Other"”, the evidence of no duration dependence
cannot be rejected. Cohort 15-24 for the first spell out of "Other” is the only one that shows
significant evidence in favor of positive duration dependence. All the other cohorts in the
remaining transitions show evidence of negative duration dependence.

The results confirm the expectations about the sign and significance of the effect of covariates
for some of the cohorts. For most of the cohorts at risk of moving for the first time out of Lima,
there is no significant effect of educational variabies. If there is any effect, the results imply that
better educated individuals are at higher risk of exiting Lima for the first time. Comparing to
the first transition out of "Other", years of schooling exert a positive and significant effect at the
| percent level for all cohorts. Mother years of schooling exerts a positive effect for the younger
cohorts only. These results confirm the findings of Pessino (1991): people that move into urban
areas are more educated and tend to have better family background than those that stay. For
* those individuals that made a first move into Lima and came back to "Other™ areas, mother’s
years of schooling exerts a negative and significant effect on the likelihood of returning for the
younger cohorts. For cohort 15-29, however, the effect of own years of schooling has negative
sign. So, for the younger cohorts better family background increases the likelihood of a first
migration event to "Lima” but decreases the likelihood of returning. The effect of the covariates
and the duration parameters are not very precisely estimated for the second spell out of "Other”
given the small sample size for each cohort. [f there is any effect from the own and mother’s
education covariates, it is to increase the probability of a transition out of "Other” back to Lima.
Analyzing this reverse case, where people migrate first from the "developed” region into "Other”
areas, the results are not surprising. The reason they moved in the first place seems to have little
to do with the sequential model.

Table 2 presents the results of estimating the spells for the Weibull case accounting for
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TABLE 2

MIGRATION PROCESS WITH WEIBULL DURATION DEPENDENCE WITH
MOVER-STAYER HETEROGENEITY CONTROL °

. -

Cohort 15-29 30-44 45-65 15-24 25-34 35-44 45-54 35-65

{a) First spell Lima (FL)

Intercept 3.863 4,992 3.975% 4.077 4,097 5.156 4.028 4.834
(6.941) (12.436) (5.20%) (1.149) (8.780) (9.730) (3.959) (3.289)
MYRSCHL -0.072 -0.058 -0.039 -0.169 -0.079 0.0136 -0.035 -0.415
(-1.167) (-1.728) (-0.557) (-1.497) (-2.177) (0.269) (-0.449) (-1.910)
YRSCHL 0.099 -0.047 -0.085 0.109 0.059 -0.106 -0.102 0.225
(1.705) (-1.483) (-1.398) (0.678) (1.424) (-2.535) (-1.419) (1.261)
¥ 0.968 0.913 0.721 1.359 0.992 0.772 0.607 1.618
(6.957) (8.580) (4.362) (2.737) (7.963) (5.901) ¢€3.547) (3.127)
) No No -0.618 -0.026 No No -0.346 -1.218
Admit Admlt (-0.880) (-0.004) Admit Admit (-0.302) (-3.621)
Probab. of 0.65 0.51 0.59 Q.77
Stayer
Log-L -253 .4 -366.3 -180.7 -114.1 -322.y  -179.1 -110.5 -67.0

(b) First spell Ocher (FO)

Intercept 4.357 4.503 4,387 4.704 4.657 4,546 4.370 4.584
(15.180) (23.571) (25.605) (146.933) (18.192) (1B.379) (20.217) (14.975)
MYRSCHL -0.104 0.021 0.001 -0.066 -0 081 0.053 -0.021 0.053
(-3.854) (0.700) (0.029) (-1.938) (-3.535) (1.422) (-0.572) (1.046)
YRSCHL -0.075 -0.167 -0.145 -0.077 -0.094 -0.195 -0.124  -0.189
(-2.546) (-7.911) (-6.445) (-2.105) (-4.243) (-7.697) (-4.930) (-5.399)
Y 1.227 0.969 0.774 1.214 1.029 0.970 0.733 0.864
(12.509) (16.144) (15.447) (10.582) (12.875) (13.756) (12.374) (10.009)
é 0.366 0.147 0.662 No 1.116 -0.022 1.287 0.160
(0.832) (0.791) (2.010) Admic (1.570) (-0.129) (1.639) (0.529)
Probab. of 0.30 0.46 0.34 0.25 0.50 0.22 0.46
Stayer

Log-L -855.2 -1517.2  -1489.6 -441.9 -958.2 - -967.2 -943 .3 -542.9
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Cohort

TABLE 2 {(continued)
____—'__"—'_-_-—-———_—-—_______

15-29 30-44 45-65 15-24 25-34 35-44 45-54 535-65
c) Second spell Lima (SL)
Intercept 1.924 1.964 1.378 1.405 1.796 1.859 0.862 1.767
(3.498) (3.693) (4.054) (1.742) (3.102) (2.773) «(1.807) (3.358)
MYRSCHL 0.129 G.055 -0.063 0.319 0.055 0.061 -0.105 -7.126
(1.883) (1.035) (-0.696) (2.054) ¢ 1L.007) (0.841) (-0.726) (-1.049)
YRSCHL -0.145 -0.014 0.056 -0.062 -0.036 0.002 0.087 0.081
(-2.127) (-0.348) ( 1.021) (-0.447) (-0.770) (0.041) (0.943) (1.039)
. § 1.037 0.534 0.596 0.800 0.723 0.491 0.648 0.637
(6.208) (4.649) (4.502) (4.123) (6.834) (3.484) (3.677) (3.222)
& -0, 415 0.031 -0.993 0.177 -0.297 0.173 -1.244 -0.617
(-2.000) (0.053) (-5.454) (0.244) (-0.897) (0.203) (-6.663) (-1.734
Probab. of 0.560 0.49 0.73 0.46 0.57 0.46 0.78 0.65
Stayer
Log-L -173.2 -348.7 ~249 4 -76.9 -219.6 -226_.8 -138.4 -108 .6
d) Second spell Other (50)
Intercept 0.985 1.405 3.316 -1.877 0.420 1.467 2.481 5.480
(1.198) (3.674) (5.322) (-1.473) (0.714) (2.882) (3.127) (3.303)
MYRSCHL -0.125 -0.065 -0.04% -0.030 -0.126 -0.095  -0.040 0.025
(-2.272) (-1.482) (-0.847) (-0.350) (-2.314) (-1.423) (-0.683) (0.113)
YRSCHL -0.016 0.025 -0.154 0.089 0.069 0.042 -0.082 -0.386
(-0.207) (0.636) (-2.506) (0.580) (1.223) (0.746) (-1.067) (-1.947)
v 1.115 0.704 0.454 2.229 1.231 0.689 0.383 0.942
(7.048) (8.068) (4.396) (3.962) (7.754) (5.647) (3.548) (2.495)
§ 2.428 No No 1,846 2.092 No No No
(4.291) Admit Admit (2.971) (4.721) Admic Admit Admit
Probab. of 0.08 Q.14 0.11
Stayer
Log-L -57 .4 -118.3 -50.8 -13.25 -82.8 -67 .4 -33.0 -15.4

" Asymptotic normal statistics in parentheses.
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heterogeneity and Table 3 the results for the log-logistic case also accounting for mover-stayer
heterogeneity.

To prevent p from falling outside the (0,1) interval, a logistic specification was adnpted for
the mover probability, such that p = exp(6)/(1 +exp(d)).

The results change in the expected manner when the heterogeneity parameter is admitted in
the estimation: the duration parameters increase in size and in some cases the direction of
duration dependence is changed towards the positive side. As it is apparent from Table 2, for
the first transition out of Lima, the exponential model is rejected in favor of negative duration
dependence for cohorts 45-65, 35444 and 45-54 at the 5 percent level of significance. For the
first spell out of "Other™, the exponential model is rejected in favor of the Weibull with positive
duration dependence for the youngest cohorts. It is rejected in favor of negative duration
dependence for cohorts 45-65 and 45-54. The results about the magnitu.de of v show a clear
pattern by order of cohort for the first spell out of "Other" areas. The younger the cohort, the
larger y. Is this attributable to pﬁre cohort effects or to the way the miératiun histury is
recorded? Given the retrospective aspects of the data, it is likely that the events of migration are
recorded better for younger cohorts and by definition both the length of the interval for interval
censored information and their incidence will be smaller.

The effect.ﬂf the covariates on the conditional probability of a move out of both regions are
unchanged by the introduction of control for uncbserved heterogeneity. The heterogeneity
parameter is admitted only for three of the cohort categories for the first spell in Lima and for
alt cohorts, except one for the first spell in "Other”. Panels (¢) and (d) of Table 2 refer to the
second spell in Lima and "Other” areas respectively. For the second spell in Lima, negative
duration dependence cannot ﬁe rejected for most older cohorts and the exponential model cannot

be rejected for younger cohorts. For the second transition out of "Other”, there is evidence of
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TABLE 3

MIGRATION PROCESS WITH LOGLOGISTIC DURATION DEPENDENCE WITH
MOVER-STAYER HETEROGENEITY CONTROL"

——— —————r s 1= Im_R . - — = . —_—

Cohort 15-29 3J0-44 45-65 15-24 25~34 35-44 45-54 55-65

- o mA=.LEa

(a) First spell Lima (FL)

Intercept 3.828 5.034 4.316 4,797 4.047 5.167 $.382 5.39¢
{6.291) (11.26%9) (5.193) (4.748) (7.88B7)y (8.866) (3.621) (3.136)
MYRSCHL -0.078 ~0.069%9 -0.044 -0.,165 -0.085 0.018 -0.037 -0.476
{-1.685%) (-1.729) (-0.547) (-2.414) (-2.107) (0.276) (-0.431) (-1.718)
YRSCHL 0.104 -0.045 -D.088 0.104 0.067 -0.111 -0.101 0.202
{1.664) {=1.257) {-1.38%) (0.969) (1.452) (-2.318) (-1.38%9) (0.906)
g 1.003 0.990 0.753 1.346 1.055 0.826 0.623 1.753
{(6.971) (8.728) (3.665) (4.605) (8.079) (5.989) (3.032) (2.914)
d No No -0.0138 No No No 0.474 -1.051
Admit Admit (-0.030) Admit Admit Admit (0.190) (-2.624
Probab. of 0.51 0. 38 0.74
Stayer '
Log-L -2563. 4 “T=-366.6 -180.7 -114.1 =322.2 -179.7 -110.5 -67.%

(b) First spell Other (FO)

Intercept 4.726 4.877 4.706 4.832 5.009 4.818 4.64% 5.025
(15.415) (22.964) (25.980) (13.595) (iB.605) (17.B36) (20.423) (14.278)
MYRSCHL -0.132 0.022 -0.014 -0,.073 -0.08B8 0.035 -0.028 0.029
{=3.855) (0.569) (-0.400) (-1.788) (=-3.237) {(0.702) {(-0.692) (0.443)
YRSCHL -0.087 -0.18% -0.168 -0.092 -0.107 -0.205 -0.143 -0.231
{-2.599) (-6.127) (-6.159) (-2.198) (-4.043) (~-5.689) (-4.753) ({-4.4%9;
G 1.378 1.062 0.858 1.303 1.11%9 1.05%5 0.802 0.991
{10.772) (13.027) (13.571) (10.6823% (10.813y {(11.428) (10.78%) (8.701)
d 0.778 0.687 1.293 NO 2.508 0.424 2.731 0.471
{1.353) (1.927) (2.158} Admit (0.876) {1.447) (0.B50) {1.183)
Probab. of 0.31 0.33 0.22 .08 0.40C 0.06 0. 38
Stayer
Log=1. -853.4 -1516.8 -148¢6.8 -442.5 -957.1 =~9B6B.6 -941.9 -541.7
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TABLE 3 (continued)

Cohort 15-29 30-44 45-65 15-24 25-34 A5-44 45-54 55-65
c) Second spell Lima (SL)
Intercept 1.863 1.833 0.768  ©.873 1.873 1.561 0.076 1.222
(2.134)  (2.798) (1.167) (0.656) {2.743) (1.916) (0.081) (1.284)
MYRSCHL 0.270 0.676¢ -~0.07¢ 0.396 0.101 0.078 -0.104 -0.150
{2.626) (1.089) (-0.581) (2.148) (1.232} (0.807) {(-0.462) (-0.918)
IRE’CHL -0-255 -U-ﬂza ﬂ-105 -ﬂ.zaﬂ' ""ﬂ-ﬂg"l -U'-Dﬂl 01131 n-145
(-2.269) (-0.436) (1.192) (1.257) (-1.175) (-0.025) (0.978} (1.160)
g 1.906 0.65% 0.802 2.367 0.962 0.644 0.a17 0.834
{3.097)  (3.769) (3.664) (3.309) (4.083) (2.792) (2.903) (2.669)
d =0,451 0.302 -0.8656 ~0.609 =0.173 C.306 ~1.151 ~-0.47%
(~2.348)  (0.420) (-3.784) (~2.201) (-0.475) (0.359} (~5.187) (-1.099)
Probab. of 0.61 0.43 0.70 0.865 0.54 0.42 G.76 C.62
Stayer
Lﬂg_L -159-1 -34313 -243.9 -?4-2 -EIEiT _225-4 —133-5 ‘IDB-E
d} Second spell Other (50)
intercept -1.410 0.468 3.150 -2.085% -1.112 1.029 1.643 6.261
{=-1.200) (0.594) (3.409) (-0.977) (-1.188) (1.117) (0.986) (2.863)
MYRSCHL =0.090 -0.125 -0.056 0.159 ~0.173 -0.194 -0.040 0.163
(=0.95%) (-1.783) (-0.621) (0.693) (~2.310) (-1.623} (-0.348) (0.594)
YRSCHL 0.100 0.076 ~0.203 -0.093 0.154 0.072 -0.115 -0.602
{0.900) (1.165) (=-2.178) (-0.318) (1.757) (0.839) (-0.984) (=~-2.032)
g 2.07¢ 1.189 0.676 2.768 2.301 1.059 0.72% 1.275
(5.427) (4.953) (4.537) (3.482) (6.305) (5.459) (2.077) (2.599)
d 2.429 No No 1.969 2.114 No 2.654 No
(4.030) Admit Admit  (2.676) (4.555) Admit  (0.915) Admit
Probab. of 0.08 0.12 0.11 0.07
Stayer
L.og~-L ~-54.3 -~115.1 -50.75 -14.2 -78.4 ~-67.6 -32.3 -15.5%
"Asymptotic normal statistices in parentheses.
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negative duration dependence for cohorts 30-44 and 45-65 of the first group and for cohorts
35-44 _and 45-54 of the second group. The evidence of positive duration dependence for cohort
15-24 cannot be rejected.

[ turn now to Table 3, where the log-logistic model is presented with the mover-stayer
unobserved heterogeneity mrrection; For the first spell in Lima, there is no clear pattern for the
y parameter. For most cohorts the null hypothesis that y = 1 cannot be rejected at the 5 percent
level except for cohort 45-54. For most of the cohorts for the first spell out of "Other” in panel
(b) of Table 3 there is evidence that y > 1, except for cohorts 45-65, 45-54 and 55-65. Only
cohort 15-29 exhibits significant positive duration dependence. But vy is slightly greater than I,
meaning that for very small durations the hazard increases and then decreases monotonically.

The results for the second spell in Lima are in panel (c) of Table 3; there is evidence of first
positive duration dependence and then negative duration dependence for the younger cohorts.
The magnitude of y is larger than that for the first spell in "Other”. Again, vy turns. tije less
than 1 for older cohorts. The fact that for younger cohorts the evidence in'i;a'i:si--'uf .iﬂnvﬂhw
shaped distribution cannot be rejected, points to the fact that duration intervals for younger
cohorts tend to be more precisely estimated, given the disposition of the data. Moreover, relying
upon the theory, for sufficiently long durations, negative duration dependence will emerge.

The Weibull and log-logistic are non-nested duration models. Therefore, there is no
straightforward statistical method to judge which model best fits the data. The informational
criterion proposed by Schwarz (1978) can be used as a first approx imation to check the validity
of the models. This method is not directly applicable to these distributions because they are not
members of the exponential family. The Schwarz criteria is to choose the model for which

Log-Lik - 1/2 mlog(n)

is the largest, where Log-lik is the log-Likelihood for the model, m is the number of parameters
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of the model and n is the number of observations. For the Weibull and log-logistic models, m
and & coincide fnr each cohort, so the criteria is to choose the maximum value of the
log-likelihood for each cohort and transition. The Weibull model performs slightly better for the
first transition out of Lima, where for most of the cohorts the evidence of no duration dependence
cannot be rejected. For the rest of the transitions the log-logistic model performs almost
uniformly better than the Weibull model. In particular, this is true for those transitions that
exhibit non-monotone hazard behavior under the log-logistic specification.

in light of this evidence, the discussion that follows will be based on the iog-logistic model
for each transition. Based on the log-logistic results, the hazard rates by cohort for the different
transitions will be cmﬁpared. This provides with tests of the sequential theory of migration based
on the behavioral differences among transitions. In particular, the comparisons will try to take
into account the weaknesses of the data and isolate the results that are robust to them. 1 wili
concentrate the analysis on the first cohort group composed of ages 15-29, 30-44 and 45-65.

In this study, the second transition out of Lima is of particular importance, given that it
summarizes the- conditional probability of remigration given duration of stay after the first
transition took place. Figure 2 presents the plot of the hazard rate for the second transition out
of Lima as a function of duration for all three cohorts. The hazard rates for each cohort were
evaluated at the mean of the explanatory variables. For the first cohort, 15-29, the hazard rate
is non-monotone. The peak occurs after one year of stay when it reaches 15 percent, decreases
stightly during the second year and then decreases sharply. After five years of residence, the
hazard rates declines to a level of less than 2 percent. This accords with the fact that return
migrants come back early to their origin places or not at all as the learning model will predict.
In contrast, for cohort 30-44 the average hazard rate is monotone decreasing and lower at

durations less than five in comparison to the hazard rate for cohort 15-29. A similar pattern with
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still lower hazard occurs for cohort 45-65. The peak hazard rate for cohort 30-44 is about 10
percent and for cohort 45-65, 7 percent. My initial presumption for these results wa; that for
older cohorts who have performed on average more number of moves the probability that the
second move is a typical “learning” move is low so that the duration of stay in the second
location is really much lower than the upper bound recorded in the data. However, further
sensitivity analysis indicated a second factor contributing to the monotone decreasing hazard
result. When the model admits heterogeneity control and § < 0 (that is the probability of being
a stayer is more than 50 percent), the hazard tends to be first increasing and then decreasing
independent of the age of the cohort.™ Uncontrolied heterogeneity tends to bias the duration
parameters towards the negative side. The result that is robust to uncontrolled heterogeneity and
data censoring is the level of the average hazard rate. For the first year of residence in Lima,
it tends to fluctuate between 7 and 15 percent and it diminishes sharply (to less than 2 percent)
after five years of residence. What is then the percentage of migrants that survive after migrating
into Lima?. In Pessino (1991) it was demonstrated, assuming no prior expected wage
difterentials among locations, that the likelihood of remigration should be around 50 percent.
That is, 50 percent of tﬁe primary migrants will end up returning to the origin place. If there
exists a positive wage differential, the likelihood of return for each individual will be lower.
Figure 3 presents the Survival function for the three cohorts 15-29, 30-44 and 45-65. After one
year of stay in Lima, the survival fraction is similar for all cohorts, ranging from 85 percent to
95 percent. However, after 2 years, the differences in survival among cohorts increase, such that
75 percent of cohort 15-29 survives, 82 percent of cohort 30-44 and almost 90 percent of the
oldest cohort survive, After § years of residen#e, 65 percent of cohort 15-29 survives and this

rate stays constant for longer durations. For the second oldest cohort, survival is overall of 70

percent and for the third oldest cohort of 80 percent. So, on average 20 to 35 percent of the

43



PWTT WOI] UOTITSUBAI PUODIE 103 SLOTIDUNY ITATAING d13sT3ar-Aoq.-' € aanf1y

#l

¢l

LO11DINQ

Ol 2 9 P

L 1 L T : i ’ 1

CO-C4% JI0YO3 """
wt=0¢ 3I20UCH

——

62-51 330UE)

j r 1 ‘ : |

1S SHOYoD IV

¥ 0

G0

S0

O

ihﬂhjng

]
b
§

a4



initial migrants into Lima leave and they tend to do so heavily in the first two years after their
initial migration.

Another important implication of interest in the sequential migration model concerns if we can
pool together the different transitions by location and/or by order of the transition. 1 will
compare then the hazard for the second spell out of Lima with : a) the first transition out of
Lima, b) the first transition out of "Other" and ¢) the second transition out of "Other”. This
comparison can improve our understanding of the observed positive correlation between in and
out migration in given locations. In particular, is the positive correlation observed a fact of the
correlation between first and second migration events (compare a) and c¢)) for the same
individuals or it is a consequence of cross-section correlation (compare a) and b))?. Figure 4
plots together the hazard rate for the first and second transition out of Lima. The first transition
out of Lima (FL) would correspond to the "cross-section” positive correlation: some people leave
Lima because they have higher productivity in other areas. The second transition out of Lima
(SL) identifies the "sequential™ positive correlation; these individuals entered Lima in a first
migration event and then they decided to remigrate if the match was not favorable. Although the
first transition to Lima exhibits also a non-monotone hazard, it is difficult to see in the figure
when compared to the hazard for the second transition out of Lima. The reason is that the hazard
for the first spell in Lima is very low and after 1 year (after 12 years of age) it is fairly constant
at 1 percent. If we add this to the fact that the original population in Lima is much lower than
that in "Other" we see that the bulk of "Out of Lima movements” are made by previous migrants
to the area. Pessino (1991) showed using Peruvian Census data, that in and out migration
correlation is an important event in Peru in several Departments. This same event was recorded
for other countries (see Greenwood (1975)), included the U.S.

Figure 5 plots together the hazard rate for the first spell out of "Other” (FO) and the second
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spell out of Lima (SL) for cohort £5-29. This figure relates the ficst and the subseguent move
made by m.use that migrated the first time to Lima. Pooling together migration events withoul
taking into account the order would lead to misleading conclusions, not only on the effect of the
covariates but oo the duration and timing of the events.’® For the first transition out of "Other”,
the hazard rate fluctuates around 2 percent a year and is fairly constant afterwards. It is expected
that the patiern of {irst positive and then negative duration dependence applies especially 10 the
hazard rate of remigration from Lima. Those that moved initially from "Other” to Lima are
more at risk of moving again (to "Other") in comparison with those that are risk of migrating for
the first time from Lima or from "Other”. Those that are at risk of moving for the first time
have better information on at least some of the unknown components of the location where they
were born than those that are at risk of remigration.

The last comparison in figure 6 is for the second spell out of Lima (SL) and the second spell
out of "Other” (SO) for Cohort 15-29. Although both distributions exhibit non-munotﬁéléhazard
functions, the hazard rate of remigration is much higher for the second spell out of "Other” (that
is, for those that have made a first move out of Lima). As mentioned before, these moves cannot
be interpreted as typical learning moves. Most primary moves originated in Lima are apparently
job-related moves and end up with a return.

To gauge the importance of education and the viability of the duration dependence result,
predicted wage differentials were introduced as an additional covariate in the hazard functions for
the different spells. Wages are only observed in the current place of residence and they are
simultaneously determined with the migration history of each individual. Moreover, the theory
of sequential choice implies that the current difference in posterior means or wages is the relevant
measure to consider. For these reasons, I enter predicted and not actual wage differentials as

covariates. To partially account for the revision in expectations, given that first time migrants
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will have ordinarily less information than secondary migrants I estimate separately the expected
wages for them. That is, for people at risk of migrating for the first time from Lima and "Other”
(FL. and FO) I use all of the individuals that reside currently in Lima or "Other” to estimate
wages separately in each region. For people at risk of returning (SL and 50) 1 estimate the wage
functions using only observations on individuals that have moved at least once from their initial
place of residence.'® The list of variables used to estimate wages are age (AGE), age squared
(AGESQ), vyears of schooling (YRSCHL), parents’ years of schooling (MYRSCHL and
FYRSCHL) and a dummy variable that is equal to one if the person resides in rural areas in the
estimation of wages in "Other” (RURAL). Table 4 presents the estimation of the wage equations
for each group. The first and second columns show the wage equations in Lirnﬁ and "Other”
using the whole sample, columns three and four using only individuals with a previous movement
from Lima, and columns four and six using only those with a first movement from "Other”.
In general, the coefficients of the wage equations have the expected Mincerian sfﬁhs and
magnitudes; however, the estimates for the selected samples are less precisely estimated. These
estimates were used to compute W, - W, the predicted wage differentials for each of the
categories (W, refers to predicted wage in Lima and W, refers to predicted wége in "Other").
For first spells T use age fifteen to predict wages and for the second spells I use age thirty for a

of the individuals. In addition, for FL transitions | estimate W, without introducing the dumm

for rural-urban location since previous to moving I do not know if they will end up in an urba

or rural destination. This dummy variable turns out to be the identifying restriction, since wage

are dependent on the same covariates used in the hazard functions. Table 5 shows the log-logistic
hazard functions introducing predicted wages. These estimations are showed for the first group
of cohorts only. For the first spell in Lima in panel (a) I do not find any significant effect of

predicted wages on the hazard. However, for the first spell in "Other™ T find a positive and
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TABLE 4

WAGE EQUATIONS IN LIMA AND OTHER AREAS FOR ALL INDIVIDUALS
AND FOR PRIMARY MIGRANTS IN THEIR
CURRENT PLACE OF RESIDENCE

m

All individuals Migrants Lima Migrants Other
Lima Other Lima Other Lima Other
Intercept -1.033 -1.074 -0.662 -3.603 -0.897 0.028

{~5.498) (-5.2186) {=1.040) (-2.131) (-2.676) (0.039)

AGE 0.077 0.076 0.044 0.194 0.078 0.011
(7.407) (7.165) (1.329) {2.059) (4.491) (0.290)
AGESQ -0.0007 -0.0008 -0.0003 -0.0019 -0.0007 =-0.00003

(=5.395) (-6.232) (-0.795) (~-1.724) (=3.351) (-0.077)

YRSCHL 0.077 0.088 0.102 0.061 0.057 0.088
(11.534) (11.747) (5.576) (0.950) (5.781) (4.199)
MYRSCHL 0.023 0.044 -0.004 0.024 0.049 0.0685
(2.896) (3.580) (-0.215) 0.388 (3.765) (2.370)

FYRSCHL 0.018 0.018  0.039 0.421 0.015 0.0161
(2.529) (1.683) (1.999) (0.848) (1.276) (0.615}

RURAL . -0.707 . 1.032 . -0.255
(-13.283) (2.238) (-1.734)

ADJ R2 0.221 0.283 0.312 0.425 0.228 0.274
F-Stat 88.753 168.630 12.276 4.571 36.205 16.389
b. of F 5,1543  6,2563 5,135 6,23 5,595 6,238

Note._ t-statietice in parentheses
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TABLE 5

- MIGRATION PROCESS HITH LOGLOGISTIC DURATION DEPENDENCE WITH
MOVER-STAYER HETEROGENEITY CONTROL AND PREDICYED WAGES™

T e e e R R T R T e e K e T R A T, T o e e e e ey gy Ty e s

{b} Firet Spell Other (FO)

{a) Flret spell Lima (FLj

Cohort 15-29 30-44 4565 15-29 30-44 45-65
Intercept - 3.097 5.297 4.794 5.813 5.213 4.903
(1.445) (2.987) (1.313) (15.307) (18.153) (19.546)
MYRSCHL ~0.026 -0.088 -0.078 -0.180 0.003 -0.030
(-0.171) (-0.685) (-0.294) {-5.145) (0.091) (-0.792)
YRSCHL 0.143 ~0.059 -0.117 ~0.134 -0.207 -0.174
(1.122) (-0.599) (~0.525) {-3.838) (-6.340) (~-6.220)
WL - WO  ° 1.064  =0.379 -0.703 -1.333  -0.466 -0.277
(0.356) (-0.155) (-0.133) (<4.527) (-1.809) (-1.115)
g 1.204 0.990 0.759 1.363 1.068 0.852
{6.983) (8.726) (3.568) (11.517) (13.357) (131.584)
d No Ho -0.076 i.132 0.672 1.398
Admit Admit (-0.062) (1.717) (2.005) (2.113)
Probab. of 0.48 .24 G.34 0.20
Stayer
Log-L ~253.4 -366.5 -180.7 -842.5 ~15%15.1 -1486.2
(C) Second spell Lima (SL) {d) Second spell Other ({S50)
Cohort 15-29 30-44  45-65 15=-29 30~-44 45-65 .
Intercept 2.073 2.519 1.411 -2.518 0.841 2.947
(1.466) (4.179) {1.508) {=1.682) {(1.198) (3.07%)
MYRSCHL 0.265 0.020 -0.1587 -0.06e7 -0.172 -0.0%6
{2.497) (0.258) (-0.8%0) {(=0.699y (-2.273) {(-0.617}
YRSCHL -0.282 ~-0.050 0.082 0.168 0.081 -0.197
(=1.929) (-0.885%} {0.881) {1.325) {1.321) {(-2.045)
WL - WO -D.205 ~1.233 -1.128 1,122 ~-1.017 1.214
(-0.187) {-1.879) (-0.897) (1.155) (-1.43%) {1.011)
g 1.926 0.723 0.858 2.1B4 1.208 0.686
- {4.982) (4.542) (3.989) 15.638) {7T.617) (4.499)
d -0.456 0.092 -0.92¢6 2.329 No Ho
(-2.382) (0.226) (=-4.748) (4.291) Admit Admit
Probab. of 0.61 0.48 0.72 Q.08
Stayer
Log-L -169.0 -3456.0 -248.5 -53.7 -114.1 =-50.2

“Asymptotic normal statistics in parentheses.
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significant effect of W - 'wo on the hazard. That is, as expected, positive wage differentials in
Lima attract migrants- from other areas. Now, the educational effect can be interpreted as net of
the wage effect and isolating its effect on information. Years of schooling continues to be an
important determinant of the transition from "Other” to "Lima”.

For the second spell in Lima and the second spell in "Other” in panels (c) and (d) of Table
5, I do not find a significant effect of WL - WO on the probability of returning. As expected,
the results on duration dependence and the now net effect of educational variables for the second

spell in Lima continue to hold when controlling for expected wage differentials.

VIII. Conclusions

The main finding in this paper is that transitions in and out of Lima are behaviorally different
and tend to accord with the predictions of the sequential migration theory. The finding that the
hazard rate of remigration is first increasing and then decreasing for the main learning move (the
second spell In Lima) is a contribution to the learning-matching literature. To my knowledge,
this prediction has not yet been empirically implemented in the job matching literature and even

less in the migration literature.
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Footnotes

t. This article is a revised version of Chapters § and 6 of my Ph.D Dissertation. [ wish to
thank Gary Becker, James J. Heckman, and Thomas Mroz for their advice. 1 also wish to
thanks workshopparticipants at The University of Chicago, The University of North Carolina
at Chapel Hill and Yale University for their heipful comments. The World Bank Living
Standard Survey Division kindly provided the data for this study.

2. For detailed proofs of some of the results in the text see Farenholtz (1982).

3. This statement is not true if the rate of discount 8 is different from . For simplicity, the rate
of discount was not introduced in the dynamic optimization problem. The important results are
not affected with its introduction, but proofs will get more complicated.

4. 1 call the exit time the remigration time for illustrative purposes and because it is the most
likely situation in this model. That is, the implicit assumption is that the individual was born
in location 2 and at the start of her/his working career chooses location |. So, the decision to
quit location 1 is termed here the remigration decision. If the individual was born in location

1 and chooses to work in location | at the outset, the decision to quit that iocation is termed
the migration decision.

5. The reason I chose the two armed-bandit formulation instead of the formuiation used by the
above authors is that it makes more explicit the different learning opportunities in the two
locations and stresses both the initial decision rule and the quit or remigration decision rule in
this context. It is the natural way to extend the migration model between two locations with
perfect information to imperfect information about the characteristics of those locations.

6. 1 leave for another opportunity the braking up of "Other” into its components.

7. Tunali (1985) discusses these issues and sets up an empirical test of the difference between
these two models based on discrete choice rules with and without multiple selection. The test
relies on the difference between the joint probability of choosing location 1 and 2 and the
sequential probability of first choosing location 1 and then location 2.

8. In the preplanned model of migration, one can predict positive duration dependence if the
fixed dates of departure are for example uniformly or normally distributed in the population:
if everybody is expected to leave after reaching their target wealth, the probability of exiting
increases with duration after some minimum period spent accumulating assets.

9. I used the same subsample as in Pessino (1991) paper: it consists of male wage and self-
employed persons in the age group 15-65 who reported positive remuneration and positive
hours worked in their main occupation during the week prior to the survey. This subsample
consists of 4,195 men, that accounts for about 70% of the male labor force in the 15-65 age

group.

10. In the estimation, I account for the possibility of interval censoring for all the individuals
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