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This paper uses analytically tractable and numerically solved general equilibrium models
to examine the significance of pre-existing distortions in factor markets for revenue-
neutral environmental tax reforms and for various policies involving pollution quotas
and permits.  Results indicate that pre-existing factor taxes generally raise the costs of
these environmental policies.  This reflects a tax-interaction effect:  the lowering of
real factor returns resulting from the higher output prices occasioned by environmental
taxes and other regulations.  The revenue-recycling effect – stemming from the use of
environmental tax revenues to finance cuts in pre-existing factor taxes – helps reduce
policy costs, but under plausible assumptions does not eliminate the costs of such
policies:  the double dividend does not materialize. Even if it does not produce a double
dividend, the revenue-recycling effect is important for reducing policy costs.  Policies
that fail to exploit the revenue-recycling effect suffer significant disadvantages in terms
of efficiency. Like environmental taxes, freely allocated (or grandfathered) pollution
quotas or permits, for example, produce a costly tax-interaction effect, yet such quotas
or permits do not enjoy the offsetting revenue-recycling effect.  Auctioning the permits
or quotas makes possible the revenue-recycling effect and allows given pollution-
abatement targets to be achieved at lower cost. The failure to exploit the revenue-
recycling effect can alter the sign of overall efficiency impact.  Indeed, if marginal
environmental benefits from pollution reductions are below a certain threshold value,
then any level of pollution abatement through freely allocated quotas or permits is
efficiency-reducing. The tax-interaction effect is relevant to government regulation
outside the environmental area.  To the extent that regulations on international trade or
agricultural production raise output prices and thereby reduce real factor returns, these
regulations exacerbate the factor-market distortions from pre-existing taxes and thus
involve higher social costs than would be indicated by partial equilibrium analyses.
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I. Introduction

Economists have long been interested in ways that taxes and other policy

instruments can address environmental problems associated with

externalities.  This interest dates back at least to Pigou (1938), who showed

that taxes could usefully internalize externalities and thereby “get the prices

right” – that is, bring prices into alignment with marginal social cost.  In the

last two decades, there has been increased attention to other, non-tax market

instruments – including tradeable emissions permits and deposit-refund

systems – as tools for dealing with environmental problems in an effective

way.

The tradition in environmental economics since Pigou has been to analyze

environmental policies with an almost exclusive attention to the externality

of immediate concern and little attention to other distortions or market

failures.  However, in recent years economists have come to recognize the

importance of interactions between environmental policies and other (non-

environmental) distortions in the economy.  In particular, there has been

increased attention to the interconnections between environmental taxes and

the distortions imposed by pre-existing income or commodity taxes.

Perhaps the first to consider closely these interactions was Sandmo (1975),

although the Sandmovian issues and insights were largely ignored until

recently.  Sandmo analyzed the optimal setting of commodity taxes when the

production or consumption of one of the commodities generates an

externality.  He showed that when the government’s need for revenue exceeds

the level that can be generated by taxes set according to the “Pigovian

principle” (that is, set equal to the marginal environmental damages), then

the optimal tax system includes taxes not only on externality-generating goods

and services but on other goods and services as well.  In Sandmo’s analysis,

the optimal tax rates on environmentally damaging activities and on ordinary

activities are intimately connected.

The interconnections between ordinary and environmental taxes, so

central to Sandmo’s optimal tax result, also figure importantly in the analysis
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of the impacts of marginal (that is, less than globally optimizing)

environmental reforms.  A line of research conducted during this decade

shows that one cannot effectively evaluate the impacts of many environmental

reforms without paying attention to the magnitudes and types of existing,

distortionary taxes such as income, payroll, or sales taxes.  There are two

important interconnections here.  First, as Terkla (1984), Lee and Misiolek

(1986), Oates and Schwab (1988), Oates (1993), Repetto et al. (1992), and

others have emphasized, the presence of distortionary taxes introduces

opportunities to use revenues from new environmental taxes to finance cuts

in the marginal rates of the ordinary distortionary taxes.  To the extent that

revenues from the environmental tax finance marginal rate cuts of this kind,

some of the distortions that the ordinary taxes would have generated are

avoided.  This revenue-recycling effect suggests that the overall gross1  costs

of environmental taxes will be lower in a second-best world than in a first-

best setting.

However, a second interconnection works in the opposite direction.

Recent work by Bovenberg and de Mooij (1994a), Bovenberg and van der

Ploeg (1994), Bovenberg and Goulder (1996, 1997), Parry (1995, 1997),

and others2  points out that environmental taxes are implicit taxes on factors

of production such as labor and capital.  By raising the costs of production

and the costs of goods in general, environmental taxes (and many other

environmental regulations) reduce after-tax factor returns much like explicit

factor taxes do.  Thus, environmental taxes function as increments to existing

factor taxes, tending to magnify the factor market distortions already

generated by pre-existing factor taxes.  The additional efficiency costs of

environmental taxes associated with the reduction in factor returns brought

about by higher costs and output prices has been called the tax-interaction

1 The modifier “gross” indicates that the costs do not net out the policy-generated benefits
associated with an improved environment.

2 For reviews of this new literature, see Oates (1995) and Goulder (1995a).
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effect.3   The larger the rates of pre-existing factor taxes, the larger the tax-

interaction effect, and thus the higher the gross costs from environmental

taxes and other regulations that reduce after-tax returns to factors.  The tax-

interaction effect implies that, for any given method of recycling the revenues,

the gross costs of environmental taxes are higher in a second-best setting

with pre-existing factor taxes than they would be if there were no prior taxes

on factors.  As will be discussed in more detail later in this paper, the tax-

interaction effect tends to be of greater magnitude than the revenue-recycling

effect; that is, it is only partly offset by the revenue-recycling effect.

The revenue-recycling and tax-interaction effects are highly relevant to

the evaluation of currently debated environmental policy alternatives.  In

discussions of carbon tax policies, for example, there has been great interest

in the possibility that judicious recycling of the revenues from carbon taxes

could cause the overall gross costs of these policies to be become zero or

negative.  Proponents of carbon taxes certainly would welcome this result,

since it implies that policy makers must only establish that there are non-

negative environment-related benefits from the carbon tax policy to justify

the policy on efficiency grounds.  Given the vast uncertainties about the

environment-related benefits from carbon abatement, it would significantly

reduce the information burden faced by policy makers if they simply needed

to determine the sign, rather than magnitude, of the environmental benefits.

If one ignores the tax-interaction effect and concentrates only on revenue-

recycling (and the revenue-recycling effect), the prospects for a zero-cost

carbon tax will seem quite good.  But the tax-interaction effect also has a

key role here and, as will be discussed below, this latter effect significantly

reduces the scope for the zero-cost result.  This does not mean that carbon

taxes are a bad idea; it only means that justifying these taxes requires attention

to the magnitudes (not just the sign) of the environmental benefits.

3 Parry (1995) was the first to isolate the tax-interaction and revenue-recycling effects in
evaluating the second-best welfare impacts of environmental taxes.  He termed these the
“interdependency” and “revenue” effects.
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A second area where the revenue-recycling and tax-interaction effects are

important is in the choice among alternative policy instruments.  Consider, for

example, the choice between pollution tax policies (or pollution permits

policies involving the auctioning of permits by the government) and freely

allocated (or “grandfathered”) emissions permits.  The former policies raise

revenue and thus are capable of taking advantage of the revenue-recycling

effect.  The latter policies, in contrast, do not raise revenue and therefore

cannot exploit this effect.  As discussed below, the tax-interaction effect arises

under both policies, but only under the revenue-raising policies is the (costly)

tax-interaction effect offset by the revenue-recycling effect.  Recent work by

Parry (1997), Goulder, Parry, and Burtraw (1997), Parry, Williams, and

Goulder (1998), Fullerton and Metcalf (1997), and Goulder et al. (1998)

reveals that the presence or absence of the revenue-recycling effect can

fundamentally affect the overall efficiency impacts of these policies.4   In fact,

when marginal benefits from pollution abatement fail to exceed a certain

threshold value, pollution permit policies that fail to enjoy the revenue-

recycling effect may be unable to produce any efficiency improvements, no

matter what the level of pollution abatement!5  This analysis shows that the

decision to give out pollution permits free rather than to auction them (or,

equivalently, to employ a pollution tax) comes at a high price in terms of

efficiency, and indeed may affect the sign of the overall efficiency impact.

There may be other considerations (such as distributional impacts) that tend

to support the use of grandfathered permits rather than auctioned permits or

4 Fullerton and Metcalf explain differences in efficiency outcomes in terms of whether policies
generate privately-retained scarcity rents, rather than in terms of whether they exploit the
revenue-recycling effect.  As discussed in Section III, the two issues are intimately connected.

5 This result, for pollution permits, was foreshadowed by Bovenberg and Goulder’s (1996)
finding that a carbon tax with lump-sum replacement of the revenues will be efficiency-
reducing if marginal environmental benefits from carbon abatement are below a certain
threshold (about $50 per ton).  Parry (1997) recognized that the same formal analysis applies
to the case of pollution quotas and grandfathered pollution permits; thus the same “threshold”
issue arises.
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pollution taxes, but this recent literature indicates that the efficiency

disadvantage of grandfathered permits is more significant than was previously

recognized.

This paper examines the efficiency impacts of pollution taxes and some

other pollution-control policies in a second-best setting with prior distortionary

taxes in factor markets.  It aims to articulate and pull together some key ideas

from recent papers on this subject.  The next section provides a simple

analytical framework for defining and evaluating the efficiency effects of

environmental taxes and quotas (or tradeable permits) in this second-best

setting.  Section III then elaborates on these results, first by offering additional

interpretation related to environmental taxes and the double dividend issue,

and then by considering the significance of second-best issues for the choice

between taxes and other, non-tax instruments for environmental protection.

Section IV briefly depicts some results from investigations that apply this

second-best framework to assess the efficiency impacts of environmental taxes

and regulations.  It first considers the impacts of revenue-neutral environmental

taxes; then examines potential impacts of pollution permits, with a focus on

the efficiency implications of the decision whether to auction or freely offer

the permits.  The final section offers conclusions.

II.  An Analytical Framework

Here we present a simple analytical framework for assessing the impacts of

environmental taxes and quotas in a second-best setting with prior

distortionary taxes.  The framework is based on an analytical model presented

in Goulder, Parry and Burtraw (1997), which we hereafter will refer to as GPB.

A.  The basic model

A representative agent model is assumed in which household utility is

U (X, Y, l) + V(Q) (1)
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where U(.) is quasi-concave, V(.) is concave, and both functions are

continuous. X and Y are market goods, l is leisure or non-market time, and

Q is the quality of the environment.  Separability between environmental

and non-environmental goods implies that the demand functions for X, Y

and l are independent of Q.

X and Y are produced by competitive firms using labor as the only input.6

The marginal product of labor in both industries is constant and unaffected

by environmental quality.  Normalizing units to imply transformation rates

of unity, we can write the economy’s resource constraint as:

where T is the household time endowment (T − l is labor supply).
The production of X causes waste emissions that harm the environment;

that is:

Q = Q(X)

Where Qx < 0.7  From (1) and (3), we can define marginal environmental
damages from production of X in terms of dollars by

6 The focus of the present paper is environmental regulation of competitive enterprises.
Oates and Strassman (1984) examined the impacts of environmental policies under alternative
market structures.  That paper included an analysis of  the impacts of regulation in a monopoly
setting, and showed how in that setting environmental regulation generates costs associated
with the reduction in the monopolist’s supply of output.  Optimal regulation must balance
these costs against the benefits from pollution reduction.  More recently, Browning (1997)
and Fullerton and Metcalf (1997) have examined interactions between new regulations and
pre-existing tax distortions in the presence of monopoly.
7 Therefore, reducing waste emissions requires a reduction in output.  In a more general
formulation, this could also be achieved by substituting waste emissions for other inputs in
production

l++= YXT (2)

(3)

XQVXD ¢=
l

1
)( (4)
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where λ is the marginal utility of income. We make the usual assumption that

D’(X) ≥ 0. In the absence of policy intervention, there is assumed to be no

internalization of environmental damages by firms or households.

Finally, the government has an exogenous total revenue requirement TR,

levies a proportional tax of τ
L
 on labor income, and regulates X.  For our

purposes it does not matter what TR is used for; we assume it is returned to

households as a lump sum transfer.8

B.  Impacts of Pollution Taxes (with Revenues Used to Cut Marginal Tax
Rates)

Now consider a revenue-neutral policy involving a new environmental

tax τ
X
  per unit of output  X.  The environmental tax is accompanied by a

reduction in the labor tax τ
L 
, where the reduction is such as to make the

overall policy revenue-neutral.  Normalizing the gross wage to unity, we can

express the household budget constraint as:

Households are assumed to maximize utility (1) subject to their budget

constraint (5), taking environmental quality as given. This yields the first

order conditions

From (5) and (6) we can implicity derive the (uncompensated) demand

functions

(7)

8 An alternative specification would incorporate TR as a public good in the household utility
function.  This produces the same results as in our model, since TR is held constant.
.

TRTYX LX +--=++ ))(1()1( ltt (5)

lt )1( XXU += ;  l=YU ;  lt )1( LU -=l (6)

),( LXX tt ;  ),( LXY tt ;   ),( LX ttl
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Government revenues are the sum of labor and pollution tax revenues.

Therefore government budget balance requires

(8)

Since the policy is revenue-neutral, TR is kept constant.  Substituting (7)

in (8) and totally differentiating the resource constraint (2) while holding TR

constant gives:

(9)

L
L

X
L

X
X

X

L

T
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X
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This expression can be combined with equations (1), (2), (3), y and (7)

(see GPB) to yield:

(10)

where

M represents the marginal welfare cost per dollar of revenue from labor

taxation.  The numerator in the expression for M is the welfare cost of the

L
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policy change.  This is the increase in leisure multiplied by τ
L
 , the wedge

between the gross and net wage.  The denominator is the overall increase in

government revenue from a marginal increase in the labor tax.

Equation (10) is the overall efficiency or welfare impact of the policy

change.  The equation divides this impact into three components.  The first

is the Pigovian (or partial equilibrium) effect ∂W P.  This is the reduction in

X from a marginal increase in the environmental tax, multiplied by the wedge

between marginal social cost and the demand price, or marginal social benefit.

The second is the gain from the (marginal) revenue-recycling effect, ∂WR.

This is the product of the efficiency value per dollar of tax revenue (the

marginal welfare cost of taxation) and the incremental pollution tax revenue.

The third is the (marginal) tax-interaction effect, ∂WI.  The pollution tax

raises the demand price of the good X.  When X and leisure are substitutes,

the higher price of X implies a reduction in the real wage, which implies an

increase in leisure.  This in turn exacerbates the welfare cost of the labor tax

by 
X

L ∂τ
∂τ l

. This also reduces labor tax revenues by 
X

L ∂τ
∂τ l

. The tax-

interaction effect is the welfare loss from these two impacts.

We can use the information in (10) to compare the magnitudes of the

revenue-recycling and tax-interaction effects. ∂WI can be manipulated (see

GPB) to give the following approximation for the tax-interaction effect:

MXW X
I

f¶ = ;   

LI
c
Yl

c
XL

LI
c
Xl

X

YX

Y

YX

X
hhh

hh
f

+
+

+
+

+
=

where         and          are the compensated elasticity of demand for  X  and  Y

with respect to the price of leisure, and  is the income elasticity of labor

supply.⊄
X
 is a measure of the degree of substitution between  X  and leisure

relative to that between aggregate consumption and leisure. ⊄
X
 equals unity

when X and Y are equal substitutes for leisure ( equals ) and is greater (less)

hXl
chYl

c

(12)
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than unity when X is a relatively strong (weak) substitute for leisure (that is,

when   is greater  (less) than ).  When          equals
 
       , equation (12) reduces

to ∂WI = MX. Equation (10) indicates that under these circumstances the tax-

interaction and revenue-recycling effects exactly cancel each other out if

pollution abatement is incremental, that is, if τ
X
  = 0.  However, for more than

incremental abatement (that is, for τ
X
 > 0), the tax-interaction effect is larger

than the revenue-recycling effect (by the amount 
X

X d

dX
M

τ
τ ).   The pollution

tax affects the relative prices of consumer goods, “distorting” the household’s

consumption choice as well as its labor-leisure choice.9  Recycling the

revenues help return the real wage to its original value and thereby mitigates

the labor-market distortion, but such recycling does not undo the change in

relative consumer good prices and the associated “distortion” in

consumption.10  For this reason the revenue-recycling effect only partly offsets

the tax-interaction effect when the level of abatement is non-incremental.

This means that pre-existing taxes usually imply that the overall efficiency

gains from environmental taxes are lower than in a first-best setting, unless

hXl
c

hYl
c

9 The word “distort” is in quotes to acknowledge that we are ignoring environment-related
benefits here.  The changes in relative prices of commodities occasioned by the pollution tax
may contribute to higher gross cots, but these same relative price changes may bring about
an overall efficiency improvement, since overall efficiency incorporates the environment-
related benefits that result from the relative price changes.

10 The tax-interaction effect exceeds the revenue-recycling effect to the extent that the rev-
enue-neutral reform causes relative prices to depart from their Ramsey optimum.  In this
model, if the two consumer goods are equal substitutes for leisure, the Ramsey optimum
calls for uniform taxation of these two goods or, equivalently, simply a tax on labor.  If the
two consumer goods are not equal substitutes for leisure, the Ramsey optimum will differ.
In particular, if the dirty good is a weaker substitute for leisure than the clean good, the
Ramsey optimum calls for (on non-environmental grounds) higher taxation of the dirty good
than the clean good.  Under these conditions, if initially the two goods were equally taxed
(or, equivalently, if the only tax in place were the labor tax), then imposing a new tax on the
dirty good could produce a tax-interaction effect of smaller magnitude than the revenue-
recycling effect.  For a more detailed discussion, see Bovenberg and Goulder (1998).
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the environmentally damaging good is a sufficiently weak substitute for leisure

(that is, unless φ
X
 is sufficiently below unity).  This is the first main result.

C. Impacts of Non-Auctioned Pollution Quotas (or Pollution Taxes with
Revenues Returned Lump-Sum)

Now consider, in contrast with the pollution tax case, the situation where

a binding, non-auctioned quota is imposed.  The analysis is formally the

same for a pollution tax policy, where the revenues are returned lump-sum

rather than in the form of marginal rate cuts.11  It is also the same for the case

of freely allocated (or grandfathered) emissions permits.12

We define this quota by a virtual tax τX
; that is, by the tax that would

induce the equivalent reduction in X as the quota. This quota produces rents

of  π = τ
X
X

 
  , which are retained by households (who own firms).  Here we

assume that these rents are not taxes, so that all of π becomes household

income.13  Therefore π appears as an exogenous lump-sum component of

income in the household budget constraint. The household demand functions

can now be summarized by:

(7’)

11  See GPB, appendix B.
12 This framework abstracts from the heterogeneity of production or abatement cost functions
across firms in a given industry:  all producers of a given good are regarded as identical.
Considerations of heterogeneity can importantly influence the choice among policy
instruments.  In particular, heterogeneous abatement cost functions make a policy of tradeable
pollution permits attractive relative to one of fixed pollution quotas, since trades can be a
key mechanism for creating production efficiency (equality of marginal abatement costs).
These heterogeneity issues are important, but can largely be examined separately from the
issues emphasized in this paper.
13 The taxation of rents does not change the qualitative results, except in the limiting case
where 100 percent of the rents are taxes.  This limiting case corresponds to the pollution tax
case already examined.  For further discussion of this issue, see GPB and Parry et al. (1998).

),,();,,();,,( pttpttptt YXLXLX YX l   
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The key compared with the previous case is that the quota policy generates

no revenue. Therefore the government budget constraint is:

TR = τ
L
 (T − l) (8’)

Again we consider a revenue neutral incremental increase in τ
X
. Following

the same procedure as for the pollution tax yields:

(9’)

Since X
I ¶t¶ /l  is (in general) positive, the revenue neutral quota induces

an overall increase, rather than a decrease, in the labor tax.

Following the analogous procedure as for the pollution tax yields the

following expression for the general equilibrium welfare change from the

policy:

(10’)

The quota policy leads to a Pigovian welfare effect and a tax-interaction

effect. The key difference between (10’) and (10) is that the quota does not

generate  a  revenue-recycling  effect   to  counteract the tax-interaction

effect.

D.  Welfare Implications of Policy Choice

The presence or absence of the revenue-recycling effect can importantly

L
L

X

I

L

X

L

Td

d

¶t

¶
t

¶t

¶
t

t

t

l
l

l

--
=

  

1

l

dU

dtX

= D - tX( ) -
dX

dtX

æ 

è 
ç ç 

ö 

ø 
÷ ÷ 

dWP

1 2 4 4 4 3 4 4 4 

- 1+ M( )t L

¶l

¶tX

¶WI

1 2 4 4 3 4 4 

291



JOURNAL OF APPLIED ECONOMICS

affect the efficiency outcomes of environmental policies.  The above results

indicate that given levels of pollution abatement are achieved at lower cost

through a pollution tax (with revenues returned through cuts in the labor

tax) than through a pollution quota. Under the two policies, the Pigovian

gain and tax-interactions are the same, but the revenue-recycling effect applies

only under the pollution tax.

In fact, as indicated in the introduction, the presence or absence of the

revenue-recycling effect can determine the sign of the overall efficiency

impact.  An efficiency improvement will occur if and only if the combination

of the Pigovian gain and the revenue-recycling effect (if applicable) is larger

than the tax-interaction effect. The revenue-recycling effect may be

necessary to meet this condition. If the revenue-recycling effect is absent,

and the Pigovian gain is less than the tax-interaction effect, then the

environmental policy will be efficiency-reducing. Note that the tax-

interaction effect is non-incremental, even at the first incremental amount

of abatement, as can be seen from equation (10) or  (10’). This means that

when the revenue-recycling effect is absent, the Pigovian gain –or the

marginal environmental benefits from reducting pollution (net of direct

abatement costs)– must exceed a certain positive value to allow an efficiency

improvement.

Under traditional Pigovian analysis, the marginal cost of the first units

of pollution abatement is zero; hence environmental regulation can increase

welfare so long as the marginal environmental benefits are positive.  In a

second-best setting, if X is an average substitute for leisure, a pollution tax

with revenues recycled through income tax cuts also has the property that

the marginal cost of pollution abatement is zero at the first unit of abatement.

Thus in this case, the overall efficiency impact will be positive if marginal

environmental benefits are positive (and the amount of abatement is not

too great). However, in the pollution quota case, the absence of the revenue-

recycling effect means that the incremental welfare change from regulation

is positive only if marginal benefits from abatement exceed a certain
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threshold  value.  The  threshold  value  is  the  tax-interaction  effect  at

τ
X
 = 0.14

How large is this critical value?  With a value of 0.3 assumed for the

marginal welfare cost of labor taxation15, the analytical framework above

implies that the critical value of marginal environmental benefits is 60

percent, 30 percent, or 15 percent of firms’ marginal production costs,

when the elasticity of demand for the polluting good is 0.5, 1, or 2,

respectively.16  We look more closely at these critical values in Section IV,

where consider specific regulatory contexts.

As mentioned at the beginning of this section, the analysis of pollution

quotas is formally identical to that for a pollution tax whose revenues are

returned lump-sum, or for a set of freely offered or grandfathered polution

permits.  Also, the analysis for the pollution tax is the same as that for a set

of auctioned pollution permits.  Thus, the revenue-recycling effect accounts

for the differences between pollution taxes or auctioned pollution permits

(with revenues applied to labor tax cuts), on the one hand, and pollution

quotas, grandfathered pollution permits, or pollution taxes with revenues

returned lump-sum, on the other.

E.  A Graphical Illustration of the Main Findings

Some key results from the analytical model are:

1. For incremental pollution abatement through a pollution tax (with

revenues devoted to cuts in the labor tax), the marginal tax interaction

effect is exactly offset by the revenue-recycling effect (if X and Y are

equal substitutes for leisure).

14 It is implicitly assumed that marginal environmental benefits are constant or decreasing
in the amount of abatement.
15 This value is consistent with values obtained in empirical investigations.  See, in particular,
Ballard et al. (1985) and Browning (1987).
16 For further discussion, see GPB.
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2. For non-incremental pollution abatement through the pollution tax, the

marginal tax interaction effect is only partly offset by the revenue-recycling

effect.

3. The absence of the revenue-recycling effect puts pollution quotas (as

well as grandfathered pollution permits and pollution taxes with lump-

sum recycling of revenues) at an efficiency disadvantage relative to

pollution taxes with revenues devoted to cuts in the labor tax.

4. The marginal tax interaction effect is strictly positive, even at incremental

pollution abatement (that is, even for an incremental pollution tax).  The

marginal tax-interaction effect at incremental abatement is a critical value

for marginal environmental benefits.  If the marginal benefits are below

this value, any pollution abatement through a quota policy is efficiency-

reducing.

Figure 1 illustrates these results.  The figure shows the marginal efficiency

costs of pollution abatement, at different levels of abatement, where the

efficiency costs represented here are gross of the benefits from environmental

improvement.  The lowermost (dashed) line depicts the marginal costs of

abatement in a first-best setting, that is, in the absence of pre-existing

distortionary taxes.  In a first-best setting, the marginal costs of abatement

are the same regardless of whether a pollution tax or pollution quota is

imposed.  The other lines represent the marginal costs in a second-best setting

with pre-existing distortionary taxes.  The top line depicts the marginal costs

of abatement for a pollution quota, grandfathered pollution permits, or

pollution tax with lump-sum recycling of revenues.  At all levels of abatement,

the marginal costs of abatement under a quota are higher than in the first-

best case.  This is the case even at incremental abatement: the second-best

marginal cost curve has a positive intercept, whereas the marginal cost of

incremental abatement for the quota is zero (dashed line) in the first-best

case.  At any level of abatement, the tax-interaction effect is represented by

the vertical distance between the top and bottom (dashed) marginal cost

curve.
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The intercept of the top marginal cost curve represents the critical value

for marginal environmental benefits from pollution abatement through quotas

or grandfathered permits.  If the marginal benefits are (always) below this

value, then pollution reductions through one of these policies will always

involve costs that exceed the benefits.  Thus, these policies will be efficiency-

reducing regardless of the level of abatement.

Some efficiency costs can be avoided through policies that raise revenues

and devote them to reductions in the labor tax.  The middle line in Figure 1

represents the marginal costs of abatement for a pollution tax or set of

auctioned pollution permits with revenues used in this way.  The revenue-

recycling effect is represented by the vertical distance between the top and

middle marginal cost curves.  At incremental abatement, the  revenue-

recycling effect fully offsets the tax-interaction effect; hence, the marginal

cost of abatement is zero at incremental abatement (as in the first-best case).

However, for larger amounts of abatement, the revenue-recycling effect only

partly offsets the tax-interaction effect (for the reasons given in subsection

B above), and thus the costs of abatement exceed the costs of comparable

abatement in a first-best setting.

III.  Interpretations, Qualifications, and Extensions

A.  Can Pollution Taxes Deliver a “Double Dividend?”

In recent years there has been considerable debate about the possibilities

for “green tax reform,” that is, the substitution of taxes on pollution for

ordinary, distortionary taxes.  A general argument for such reform is that it

makes sense to concentrate taxes on “bads” like pollution rather than “goods”

like labor effort or capital formation (saving and investment).  To buttress

the case for green tax reform, some analysts have argued that the revenue-

neutral swap of pollution taxes for ordinary taxes will produce a “double

dividend:” not only (1) improve the quality of the environment but also (2)

reduce certain costs of the tax system.  This argument has occupied a
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prominent place in the debate about carbon taxes, as mentioned in the

introduction.  Few analysts deny the first dividend; it is the second dividend

that generates controversy.

Can environmental taxes generate the second dividend?  Different policy

analysts have meant different things by this dividend, and this has led to

confusion.  Goulder (1995a) distinguishes a “strong” and “weak” version of

the double dividend claim, as follows.  Let C(τ
E
, ∆τ

L   
) refer to the gross cost

of a revenue-neutral policy involving a new environmental tax τ
E
 that finances

the change (reduction) ∆τ
L
 in pre-existing distortionary taxes.17  Let C(τ

E
,

∆T) denote the gross cost of a revenue-neutral policy in which a new

environmental tax τ
E
 finances the lump-sum reduction in taxes, ∆T.  The

weak double dividend claim is:

C(τ
E 
, ∆τ

L
 )   <  C(τ

E 
, ∆T)

The above expression asserts that a reform in which the environmental

tax’s revenues are recycled through cuts in the rates of distortionary tax

involves lower gross costs than a policy in which the environmental tax’s

revenues are returned lump-sum.  This weak double-dividend claim is easy

to justify: environmental taxes, with revenues devoted to cuts in distortionary

taxes, do indeed lower the costs of the tax system relative to what the costs

would be if the revenues were returned lump-sum.  As shown in Goulder

(1995a), the weak double-dividend claim is upheld so long as the tax τ
L
  is

appropriately labeled as distortionary.  That is, the weak claim is upheld if

and only if the tax τ
L
 has a positive marginal excess burden.

In terms of Figure 1, the weak double-dividend claim is verified by the

fact that the marginal cost curve for the pollution tax with lump-sum revenue-

replacement lies above the curve for the pollution tax accompanied by cuts

17  In keeping with the analytical model of Section II, we use the subscript “L” to refer to the
distortionary factor tax.  The points raised here apply to economies in which there are several
distortionary taxes, including taxes on capital as well as labor.
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in the distortionary tax.  In essence, the weak double-dividend claim amounts

to the assertion that, in terms of efficiency, it pays to take advantage of the

revenue-recycling effect.  Thus it is closely related to the notion that pollution

taxes that finance cuts in distortionary taxes are preferable on efficiency

grounds to pollution quotas or grandfathered tradeable permits.

The stronger double-dividend claim is

C(τ
E 
, ∆τ

L
 )  ≤   0

that is, the revenue-neutral swap of an environmental tax for existing

distortionary taxes involves zero or negative gross costs.  This is equivalent

to asserting that the gross distortionary cost directly attributable to the

environmental tax is smaller than the avoided gross distortionary cost

stemming from the environmental-tax-financed cut in the distortionary tax.

If this strong double-dividend claim held for a carbon tax, then, as noted in

the introduction, the tax would be justified on efficiency grounds so long as

the environment-related gross benefits from the policy were non-negative.
Is the stronger claim justified?  Figure 1 sheds light on the answer.  For

the strong claim to be valid, the marginal cost curve for the pollution tax
accompanied by cuts in distortionary taxes would have to lie on or below the
horizontal axis.  Clearly the curve does not fulfill this requirement — except
at zero abatement.  To support the stronger double-dividend claim, the
revenue-recycling effect not only would have to fully offset the tax-interaction
effect, but also would have to overcome the usual, first-best abatement costs
represented by the dashed line.  Thus, the simple theoretical model of Section
II rejects the strong double-dividend claim.  For anything but an infinitesimal
amount of abatement (infinitesimal environmental tax) the gross costs of a
revenue-neutral environmental tax reform are positive.

Some qualifications are in order.  First, it should be kept in mind that this
analysis assumes that the “dirty” good is an average substitute for leisure.  If
instead the dirty good were a very strong complement with leisure, then the
double dividend could arise after all.  Further empirical work to gauge the
extent of subsitutability or complementarity could shed much light.
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Second, more complex theoretical models can provide more scope for

the strong double-dividend claim than is offered here.18  It may be noted, in

particular, that the model of Section II considered only one primary factor of

production — labor.  In theoretical models with both capital and labor, an

environmental tax reform can produce a the second dividend under certain

circumstances.  Specifically, if the tax system initially is highly inefficient in

the sense that one factor is overtaxed relative to the other19 , and if the

environmental tax reform (the combination of the tax itself and the recycling

of the revenues) serves to shift the tax burden from the overtaxed to the

undertaxed factor, then the reform will produce a tax-shifting effect that works

toward a more efficient tax system.  If the beneficial tax-shifting effect is

large enough, it (combined with the revenue-recycling effect) can entirely

compensate for usual “first-best”  abatement costs and the tax-interaction

effect.20  Thus, under these circumstances, the strong double-dividend

materializes after all.

Most empirical studies indicate that in the U.S., capital is overtaxed (in

efficiency terms) relative to labor.21 With these initial conditions, an

environmental tax reform will produce a favorable tax-shifting effect if it

shifts the burden away from capital and toward labor.  Bovenberg and Goulder

(1997) examine two environmentally motivated, revenue-neutral tax reforms

— a BTU tax applied to fossil fuels and an increase in the Federal gasoline

tax — and find that the latter policy produces a tax-shifting effect that

18 Bovenberg (1996), Goulder (1995a), and Bovenberg and Goulder (1998) analyze a range
of complicating issues.

19 In efficiency terms, one factor of production is overtaxed relative to another if the tax on
this factor has a larger marginal excess burden per dollar of revenue than the tax on the other
factor.

20 For a theoretical treatment of the tax-shifting issue, see Bovenberg and de Mooij (1994b),
and Bovenberg and Goulder (1997).

21 See, for example, Ballard, Shoven, and Whalley (1985), Fullerton and Mackie (1987),
Jorgenson and Yun (1990), Lucas (1990), and Goulder and Thalmann (1993).
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significantly reduces the gross costs. However, the tax-shifting effect is

generally not strong enough to make the gross costs zero or negative, except

under extreme values for behavioral parameters.  Although the results are

somewhat mixed, other simulation studies have tended to support the idea

that it is difficult to generate the strong double dividend under plausible

parameter values and realistic policy specifications.22

The absence of the strong double dividend does not vitiate the case for

green tax reform.  It only means that the positive sign of the environmental

benefits is not a sufficient condition for justifying such reform.  If there is no

(strong) double dividend, policymakers are obliged to consider the

magnitudes of the environmental benefits and compare them with the

(positive) gross costs.  Also, the absence of a double dividend does not

repudiate our intuition that it makes sense to orient the tax system, to a degree,

on “bads” (polluting activities) rather than “goods” (labor and capital).  Even

if the strong double-dividend claim fails, it is still the case that “Pigovian

considerations”  should be part of the design of an efficient tax system: other

things equal, the tax on a given good or activity should be higher, the larger

the environmental externalities associated with that good or activity.  Higher

environmental benefits justify higher taxes on polluting activities.  It is the

larger environmental benefits — not the presumption of zero gross costs —

that justify  the greening of the tax system.

B.  Significance of the Scale of Abatement for the Choice between Taxes
and Quotas

The theoretical model indicated that the pollution taxes and auctioned

pollution permits have an efficiency advantage over pollution quotas and

grandfathered pollution permits to the extent that the former policies exploit

the revenue-recycling effect.  However, the size of the efficiency advantage

generally declines with the amount of abatement.  In fact, this advantages

22  Goulder (1995a) surveys these studies.
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approaches zero as the extent of abatement approaches 100 percent.This is

illustrated by Figure 2, which is borrowed from the GPB study.   Marginal

costs rise faster for the pollution tax (or auctioned pollution permit) policy.

Eventually — when the extent of abatement is substantial — marginal costs

under this policy exceed those for the pollution quota (or grandfathered

permit) policy.  Why is this so?  Consider the pollution tax.  Because of this

policy’s negative impact on labor supply and on emissions, marginal tax

revenue declines as the emissions tax rate rises.  This means that, with greater

abatement, the ability to exploit the revenue-recycling effect diminishes.

Eventually, the point is reached where, at the margin, additional abatement

(via an incrementally higher pollution tax) raises no more revenue than is

raised under the quota policy.23

That is the point where the pollution tax and pollution quota marginal

cost curves cross.  To the right of that point, at the margin the tax policy is

more costly than the quota policy, because at the margin it has a negative

revenue-recycling effect (as compared with the negligible revenue-recycling

effect of the quota policy).  Indeed, if one pursues emissions reductions to

the point of 100 percent abatement, the total costs of the two types of policies

are identical.  This makes sense, since at 100 percent abatement neither policy

earns any revenue, and thus there is no effective difference between a tax

and a quota at that point.  Thus the areas under the marginal cost curves

from 0 to 100 percent abatement are the same for both policies.

These results demonstrate that the relative superiority (in terms of lower

cost) of policies that exploit the revenue-recycling effect diminishes with

the extent of abatement.  At low levels of abatement (as would be appropriate

if marginal environmental benefits are low), these policies have a considerable

cost advantage. But at high levels of abatement (as would be justified when

marginal environmental benefits are high) the advantage of these policies is

23 The quota policy does not necessarily raise zero revenue.  This policy will tend to raise
revenue insofar as quota rents are taxed, and will tend to lose revenue insofar as the policy
causes a loss of overall real income and a reduction in the labor tax base.
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much smaller.  In the limiting case of 100 percent abatement, these policies

have no cost advantage.

C.  Impacts of Other Environmental Policies in a Second-Best Setting

Thus far, all of the discussion in this paper has centered on pollution

taxes, quotas, and permits.  Recent papers by Fullerton and Metcalf (1997)

and Goulder, Parry, Williams, and Burtraw (1998) examine the impacts of

other policy instruments (in addition to pollution taxes and quotas) in a

second-best setting.24  Among the additional instruments considered in these

recent papers are some “command-and-control” policies:  namely, mandated

technologies and performance standards.

Goulder et al. (1998) show that pre-existing taxes also raise the costs of

the command-and-control policies relative to their costs in a first-best world.

Like emissions taxes and quotas, the command-and-control policies raise

production costs and lead to higher output prices.  If there are prior

distortionary taxes in factor markets, the higher output prices give rise to a

tax-interaction effect, which implies higher costs relative to the costs in a

first-best setting.

Although second-best considerations raise the costs of all instruments,

they do not increase costs in the same proportion.  Indeed, when the amount

of pollution-abatement is incremental or “small,” pre-existing taxes especially

raise the costs of non-auctioned quotas or permits, and can put non-auctioned

quotas or permits at a cost-disadvantage relative to command-and-control

policies.  Economists have long favored market-based policies as being more

cost-effective than the command-and-control alternatives.  Yet in a second-

best setting, certain market-based policies can be at a disadvantage.  The

recent studies by Fullerton and Metcalf and Goulder et al. indicate that the

24 See also Ng (1980), who analyzed environmental subsidies in the presence of prior tax
distortions.
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marginal abatement costs of performance standards and technology mandates

resemble those of the emissions tax in that marginal costs are zero at the first

increment of abatement.25   This contrasts with the strictly positive costs of

initial abatement under a non-auctioned quota.  Thus, for “low” amounts of

abatement, a command-and-control policy can be less costly than

grandfathered permits.   However, it should be kept in mind that the command-

and-control policies eventually involve higher costs as the amount of

abatement becomes very extensive.  As discussed in Goulder et al. (1998),

this reflects the inability of these alternative instruments to provide the

appropriate prices of inputs and outputs.

It is worth considering further why the marginal cost curves of these

alternative instruments emerge from the origin (as in the case of the pollution

tax or auctioned quota — with revenues devoted to marginal rate reductions),

while the marginal cost curves of grandfathered quotas (or emissions taxes

with revenues returned lump sum) do not.  Since the mandated technology

and performance standard do not raise revenue, it is clear that raising revenue

per se is not necessary for the zero-marginal-cost-at-initial-abatement

property to obtain. One can explain these differences in terms of whether

the tax-interaction and revenue-recycling effects cancel at initial abatement.

At the first incremental amount of abatement, emissions taxes (with revenues

returned through marginal rate cuts) produce strictly positive tax-interaction

effect that is exactly offset by the strictly negative revenue-recycling effect.

Hence the marginal abatement costs are zero at initial abatement.  The

mandated technology and performance standard produce neither a tax-

interaction effect nor a revenue-recycling effect.  Hence the marginal costs

25 This point was first demonstrated by Fullerton and Metcalf.  This was shown for a
“technology restriction” policy, which was a constraint on the ratio of labor input to emissions.
In their model, this is functionally equivalent to a policy involving a constraint on the ratio
of emissions to output.
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of abatement are again zero at initial abatement.26   In contrast, under

grandfathered quotas there is a strictly positive tax-interaction effect and no

offsetting revenue-recycling effect.  Hence marginal costs are strictly positive.

Thus, the tax-interaction and revenue-recycling effects can explain one way

to explain why marginal costs start out strictly positive under non-auctioned

permits or quotas, and start out at zero under the other policies.

These differences at initial abatement can also be linked to the presence

or absence of a lump-sum transfer.  The government effectuates a lump-sum

transfer to individuals when it introduces a pollution tax and returns the

revenues lump-sum, when it implements a pollution quota (thus generating

quota rents that are not entirely taxed away), or when it introduces a pollution

tax and recycles the revenues through cuts in the marginal tax rate on a

perfectly inelastically supplied factor of production.27   In a second-best world,

such transfers involve an efficiency cost because they must ultimately be

financed through distortionary taxes.  In contrast, under the pollution tax or

fuels tax (with revenues financing cuts in prior taxes), or under the mandated

technology or performance standard, there is no such transfer.  Thus the

presence or absence of a positive intercept of the marginal cost function

corresponds to the presence or absence of this lump-sum transfer.28

26 More precisely, the technology mandate produces two tax-interaction effects and two
revenue-recycling effects.  As indicated by Fullerton and Metcalf, the mandated technology
is equivalent to the combination of  a subsidy to the use of the clean input and a tax on
emissions.  The subsidy and tax components respectively account for negative (in efficiency
terms) and positive revenue-recycling effects, which cancel out, and positive and negative
tax-interaction effects, which also cancel out (at the first unit of abatement).

27 This last case is examined by Bovenberg and de Mooij (1996) and Williams (1998).

28 Fullerton and Metcalf (1997) point out that pollution regulation through grandfathered
permits creates scarcity rents that remain in private (that is, the regulated firm’s) hands, and
indicate that this accounts for the fact that the marginal costs of incremental abatement are
strictly positive.  The creation of scarcity rents is an example of the government’s bringing
about a lump-sum transfer to the private sector.
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IV.  Some Numerical Results

Thus far we have only considered results from analytical models.

Analytical tractability comes at a price in that it necessitates the use of fairly

simple models.  In this section we briefly display results from some numerical

models.29

First we present some results that pertain to the double-dividend issue.

Here we display and briefly interpret results from the disaggregated

computable general equilibrium model employed in Bovenberg and Goulder

(1997).  We will only sketch the results here; the reader is referred to

Bovenberg-Goulder article for details.  In this discussion we also present a

sampling of results from other numerical models.

Next we display numerical results indicating how pre-existing taxes affect

the choice between auctioned and grandfathered emissions permits, in the

context of sulfur dioxide (SO
2
) and carbon dioxide (CO

2
) emissions

reductions in the U.S.

A.  Numerical Explorations of the Double-Dividend Issue

1.  Results from Bovenberg-Goulder (1997)

Here we examine simulations in which a fossil fuel Btu tax or a consumer

gasoline tax increase is implemented in revenue-neutral fashion, with the

revenues devoted to reductions in the income tax.  An important item to

keep in mind when interpreting the results is the relative taxation of capital

and labor.  In the baseline, or reference equilibrium (and under central values

for parameters), the marginal excess burden (MEB) of capital taxes is .43,

while the MEB of labor taxes is .31.  This means that the tax-shifting effect

29 Real-world environmental taxes and other regulations involve “large,” as opposed to
incremental, changes in the level of pollution.  Numerical simulation is usually necessary to
evaluate the efficiency implications of these changes.
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(see III.A above) works in favor of the second dividend when policies shift

the burden of taxation from (overtaxed) capital to (undertaxed) labor.  In

this regard, note that while the Btu tax tends to fall more or less evenly on

capital and labor, the gasoline tax tends to fall mainly on labor (by virtue of

its being akin to a consumption tax).  Hence the gasoline tax has more

potential for tax-shifting that supports the second dividend.

Figure 3 shows results when these taxes are introduced with lump-sum

replacement of the revenues.  Figure 3a shows that in the short term, the

environmental (Btu and gas) taxes entail a greater GDP sacrifice than the

personal income tax.  Figure 3b shows that the gasoline tax has a much

smaller investment cost than does the Btu tax or income tax.  This reflects

the fact that the gasoline tax tends to ease the tax burden on capital.

Table 1 shows the effects of these policies on factor prices and quantities.

It indicates that the combination of gasoline tax increase and reduction in

personal income tax reduces capital’s tax burden and raises labor’s.  In

contrast, the combination of Btu tax and cut in personal income tax does not

significantly alter the relative taxation of capital and labor.  Thus, the revenue-

neutral policy involving the gasoline tax produces a more significant tax-

shifting effect.

Table 2 shows welfare effects.  These are the monetary equivalent (using

the equivalent variation) of the change in utility associated with the policy

change.  These welfare measures disregard welfare impacts associated with

the changes in environmental quality; they refer only to the cost side of the

benefit-cost ledger.

Comparing the left and right columns indicates the importance of the

revenue-recycling effect; that is, of returning revenues through cuts in

marginal tax rates instead of through lump-sum tax cuts.  The welfare costs

of the revenue-neutral reforms are significantly higher when revenues are

returned in lump-sum fashion.

Concentrate now on the right column, which displays results from revenue-

neutral policies in which the environmental tax revenues finance reductions

in the personal tax.  There are two main results from this column.  First, the
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Figure 3. Aggegate of Energy and Income Tax Policies

Revenue Replacement via Lump-Sun Tax Cuts
(percentage changes from reference case)

(a)

Real

GDP

(b)

Real

Private

Fixed

Investment
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Table 1. Impacts of Taxes on Factor Prices and Supplies
(Percentage Changes from Baseline)

                                                                      Years after Policy Introduction

1 2 5 30

“ Single Tax”  Policies:

BTU Tax lump-sun replacement
W -0.250 -0.390 -0.446 -0.655
r -0.083 -0.239 -0.179 -0.084
L -0.124 -0.140 -0.121 -0.049
K -0.017 -0.035 -0.092 -0.364

Gasoline tax increase. lump-sum replacement
W -0.722 -0.069 -0.058 -0.983
r 0.095 -0.007 -0.027 -0.005
L -0.265 .0.335 -0.331 -0.298
K -0.011 -0.019 -0.031 -0.069

Personal tax increase lum-sum replacement
W -0.333 -0.347 -0.404 -0.655
r -0.104 -0.108 -0.105 -0.053
L -0.015 -0.274 -0.265 .0.212
K -0.015 -0.030 .-0.072 -0.313

Substitution of Environmental Tax for Personal Tax:

BTU tax, personal tax replacement
W 0.083 -0.042 -0.042 0.014
r 0.031 -0.125 -0.074 -0.053
L 0.157 0.139 0.149 0.163
K -0.001 -0.005 -0.019 -0.037

Gasoline tax increase, personal tax replacement
W -0.375 -0.694 -0.571 -0.307
r 0.216 0.111 0.076 0.057
L 0.013 -0.057 -0.061 -0.084
K 0.004 0.012 0.041 0.252

Note: W, r, L, and K respecrçtivery, reter to the after tax real wage, after tax real rate of
return, aggregate treal labor supply, and aggeçregate real capital stock.
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second dividend does not arise:  the gross welfare costs (i.e., the costs before

netting out the environmental benefits) are positive.  Second, the welfare

cost is lower for the gasoline tax reform, despite the narrower base of the

gasoline tax.  This reflects the tax-shifting effect:  as Table 1 indicated, under

the gasoline tax reform the tax burden is shifted from capital to labor, which

tends to reduce the gross costs.  However, the tax-shifting effect is not strong

enough to undo the cost associated with the tax-interaction effect.

Is it possible to make the tax-shifting effect large enough to give the second

dividend?  Yes.  The tax-shifting effect will be stronger to the extent that (1)

the initial inefficiencies in the relative taxation of capital and labor are large,

and (2) the policy shifts the burden from the overtaxed to the undertaxed

factor.  To enhance the first condition, we have performed simulations with

very elastic capital supply assumptions.  Specifically, we assume that the

elasticity of substitution in consumption (which affects the household’s

interest elasticity of saving) is “high” relative to most estimates.  To enhance

the second condition, we consider a policy in which a gasoline tax is

introduced and all the revenues from this tax are recycled through cuts in

capital taxes only.  This combination produces a large enough tax-shifting

effect to yield the second dividend if the intertemporal elasticity of substitution

is 1.8 or more.  Although this shows that the second dividend can arise,

producing this dividend seems to require implausibly high values for the

Table 2. Welfare Impacts

                   Welfare Cost per Dollar of Revenue

Lump Personal X
Sum Tax IncomeTax

Replacement Replacement

BTU tax 0.656 0.318

Consumer levcel gasoline tax increase 0.594 2.253
Personal income tax increase 0.379 --

Comportate income tax increase 0.438 0.093
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Table 3. Numerical Assessments of Welfare Impacts of
Revenue-Neutral Environmental Tax Reforms

Model Reference Country Type of Method of Welfare
Environmental Revenue Effect

Tax Replacement

DRI Shackleton U. S. Phased-in Personal Tax
et al. (1996) Carbon Taxa Cut -0.39b

Goulder Coulder (1995b) U. S. $ 35/ton Personal Tax
Carbon Tax Cut -0.33c

« Goulder (1994) U.S. Fossil Fuel Personal Tax
Btu Tax Cut -0.28c

Jorgenson- Shackleton U.S. Phased-in Capital Tax
Wilcoxen et. al (1996) Carbon Taxa Cut 0.19d

LINK Shackleton U.S. Phased-in Personal tax
et. al (1996) Carbon Taxa Cut -0.51b

MSE...

Proost- Proost and Belgium Hybrid of Payroll (Social -3.45d

Regemorter Regemorter Carbon and Security) Tax
(1995) Energy Tax Cut

Shah- ShaH AND U.S. $ 10/ton Personal Tax
Larsen Larsen (1992) Carbon Tax Cut -1049.e

« « India « « -129.
« « Indonesia « « -4.
« « Japan « « -269.
« « Pakistan « « -23.

Notes: (a) Beggining at $ 15/ton in 1990 (operiod 1), growing at five percent annuality to
$ 39.80 per ton in 2010 (period 21), and remaining at that level thereafter. (b) Percentage
change in the present value of consumption; the model does not allow for utility-based
welfare measures. (c) Welfare cost per dollar of tax revenue, as measured by the equivalent
variation. (d) Equivalent variation as a percentage of benchmark oçprivate wealth. (e)
Compensating variation in levels (millions of U.S. dollars).
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intertemporal elasticity of substitution (most estimates are between 0 and

unity30).

2.  Results from a Sampling of Other Models

Table  3 summarizes results from numerical studies of a revenue-neutral

carbon tax policy. The table presents results from seven numerical models.

These are the Goulder and Jorgenson-Wilcoxen intertemporal general

equilibrium models of the U.S., the Proost-Regemorter general equilibrium

model of Belgium, the DRI and LINK econometric macroeconomic models

of the U.S., and the Shah-Larsen partial equilibrium model, which has been

applied to five countries, including the U.S.31  The results in Table 3 are for

the revenue-neutral combination of an environmental tax (usually a carbon

tax) and reduction in the personal income tax, except in cases where this

combination was not available.

All welfare changes abstract from changes in welfare associated with

improvements in environmental quality (reductions in greenhouse gas

emissions).  Thus they correspond to the gross cost concept discussed above.

In the Goulder, Jorgenson-Wilcoxen, and Proost-Regemorter models, welfare

changes are reported in terms of the equivalent variation; in the Shah-Larsen

30 Using time-series data, Hall (1988) estimates that this elasticity is below 0.2.  A cross-
section analysis by Lawrance (1991) generates a central estimate of 1.1.  Estimates from
time-series tend to be lower than those from cross-section analyses.
31 For a more detailed description of these models, see Goulder (1995b), Jorgenson and
Wilcoxen (1990, 1996), Shackleton et al. (1996), Proost and Regemorter (1995), and Shah
and Larsen (1992).  The Shah-Larsen model is the simplest of the models, in part because it
takes pre-tax factor prices as given.  Despite its simplicity, the model addresses interactions
between commodity and factor markets and thus incorporates some of the major efficiency
connections discussed earlier.
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model, the changes are based on the compensating variation.32   In the DRI

and LINK macroeconomic models, the percentage change in aggregate real

consumption substitutes for a utility-based welfare measure.33

In most cases, the revenue-neutral green tax swap implies a reduction in

welfare, that is, entails positive gross costs.  This militates against the double

dividend claim.  Results from the Jorgenson-Wilcoxen model, however,

support the double dividend notion.  Relatively high interest elasticities of

savings (a high capital supply elasticity) and the assumption of perfect capital

mobility across sectors may partially explain this result, at least in the case

where revenues from the carbon tax are devoted to cuts in marginal taxes on

capital.  These assumptions imply large marginal excess burdens from taxes

on capital, considerably larger than the MEBs from labor taxes.  As indicated

above, if the MEB on capital significantly exceeds that on labor, and the

environmental reform shifts the tax burden on to labor, the double dividend

can arise.  Thus, the large MEBs from capital taxes help explain why, in the

Jorgenson-Wilcoxen model, a revenue-neutral combination of carbon tax

and reduction in capital taxes involves negative gross costs, that is, produces

a double dividend.Identifying the sources of differences in results across

models is difficult, in large part because of the lack of relevant information

on simulation outcomes and parameters.  Relatively few studies have

performed the type of analysis that exposes the channels underlying the overall

impacts.  There is a need for more systematic sensitivity analysis, as well as

closer investigations of how structural aspects of tax policies (type of tax

base, narrowness of tax base, uniformity of tax rates, etc.) influence the

32 The equivalent variation is the lump-sum change in wealth which, under the “business-as-
usual” or base case, would leave the household as well off as in the policy-change case.
Thus a positive equivalent variation indicates that the policy is welfare-improving.  The
compensating variation is the lump-sum change in wealth that, in the policy-change scenario,
would cause the household to be as well off as in the base case.  In reporting the Shah-
Larsen results we adopt the convention of multiplying the compensating variation by -1, so
that a positive number in the table signifies a welfare improvement here as well.
33 The demand functions in these models are not derived from an explicit utility function.
Hence they do not yield utility-based measures.
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outcomes.  In addition, key behavioural parameters need to be reported.

Serious attention to these issues will help explain differences in results and,

one hopes, lead to a greater consensus on likely policy impacts.

B. Pre-Existing Taxes and the Choice between Auctioned and Non-
Auctioned Pollution Permits

Here we display numerical results that bear on the importance of pre-

existing taxes for the choice between auctioned and non-auctioned (or

grandfathered) pollution permits. As the discussion in Section II indicates,

these results display the significance of the revenue-recycling effect. Thus the

principles here are somewhat broader than the choice between auctioned or

grandfathered permits.  The results for auctioned permits also would apply to

emissions taxes that exploit the revenue-recycling effect by using the revenues

to finance cuts in marginal rates of pre-existing factor taxes.  Likewise, the

results for non-auctioned permits apply to emissions taxes that fail to exploit

the revenue-recycling effect by returning the revenues in a lump-sum fashion.

1.  Sulfur Dioxide Abatement

The GPB study includes an assessment of the costs of reducing emissions

of sulfur dioxide (SO
2
) from U.S. coal-fired electric power plants. Provisions

of the 1990 Clean Air Act Amendments call for such reductions and introduce

a system of grandfathered SO
2
 emissions permits to achieve them.

Two questions arise.  First, how much higher are the costs of reducing

SO
2
 emissions as a result of pre-existing taxes?  And how much of the increase

in abatement costs could be avoided if the reductions were achieved through

a policy that auctioned the permits (or imposed an SO
2
 tax) and exploited

the revenue-recycling effect, rather than through a policy that grandfathered

the permits?  Figure 4 gives GPB’s best estimates of the answers to these

questions.  The two solid lines in the figure are the ratios of total costs in a

second-best setting (with a positive pre-existing tax rate on labor equal to

0.4) to total costs in a first-best setting (with no pre-existing tax on labor).

314



ENVIRONMENTAL POLICY MAKING IN A SECOND-BEST SETTING

F
ig

ur
e 

4.
 R

at
io

 o
f 

S
ec

on
d-

B
es

t 
to

 F
irs

t-
B

es
t 

To
ta

l C
os

ts
, 

S
O

2 
C

as
e

315



JOURNAL OF APPLIED ECONOMICS

In the case of auctioned permits (or pollution taxes), the line is almost perfectly

horizontal:  this ratio is approximately constant throughout the entire range

of possible emissions reductions (0 to 20 million tons).  Second-best

considerations raise the costs of auctioned permits by about 30 percent,

regardless of the extent of emissions abatement.  For the actual policy of

grandfathered emissions permits, the ratio of total cost is very sensitive to

the extent of abatement.  Under this policy the ratio begins at infinity, in

keeping with the fact that the intercept of the marginal cost function is positive

for this policy in a second-best world and zero in first-best world.  As the

level of abatement approaches 100 percent, the ratio of total costs approaches

the ratio for auctioned permits.  This is in keeping with the point made in

Section III that the efficiency disadvantage of policies that forgo the revenue-

recycling effect disappears at 100 percent abatement.

The 1990 Clean Air Act Amendments call for a 10-million-ton (or

approximately 50 percent) reduction in SO
2
 emissions.  There may be

significant distributional or political objectives that are served by

grandfathering, but Figure 4’s results indicate that they come at a high price

in terms of the social cost of abatement.  At 10 million tons of abatement,

annual total costs under the actual policy are estimated to be 71 percent (or

$907 million) higher than they would be in a first-best world.  As indicated

in this figure, over half of this extra cost could be avoided by auctioning the

permits or employing an SO
2
 tax.  The difference in cost between the two

types of policy is $533 million.34  These results indicate that pre-existing

34 The costs of a 10-million-ton reduction are $2182 and $1649 million under the
grandfathering and auctioning of emissions allowances, respectively.  Although this paper
points out the efficiency drawbacks of the grandfathering element of SO

2
 emissions regulation

under the 1990 Clean Air Act Amendments, it is not intended to be a wholesale critique of
this legislation.  We would note that the 1990 legislation achieved major reforms in
environmental regulation by introducing a flexible, incentive-based approach to regulation
in the form of emissions allowance trading.  This approach has a number of theoretical
advantages over the traditional, less flexible methods (see, for example, Tietenberg [1985]),
and empirical studies already indicate that this approach will yield a dramatic reduction in
overall compliance costs, compared to conventional approaches  (see, for example, Burtraw
[1996], and Ellerman and Montero [1996]).
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taxes and the presence or absence of revenue-recycling have a very substantial

impact on the costs of environmental policies.

Figure 5 brings in the benefit side in considering the overall efficiency

gains from SO
2
 abatement. The overall gains obviously depend on the

marginal benefits from SO
2
 reductions, and these are highly uncertain.  Most

estimates are in the range of $100-600 per ton, but some recent estimates are

as high as $1000 per ton. Figure 5 displays the net efficiency gains as a

function of different values for the marginal benefits, ranging from zero to

$1000 per ton.35  The figure shows the efficiency gains that result under

optimal levels of abatement, that is, abatement levels that equate marginal

benefits with marginal costs.  For low and intermediate values of the marginal

benefits, the efficiency gains are considerably larger when SO
2
 permits are

auctioned than when they are grandfathered, in keeping with the lower

marginal costs of abatement in the former case.  Indeed, net gains under

grandfathered permits are zero if marginal benefits are below $104 per ton,

because in this circumstance the optimal policy is not to regulate SO
2
; that

is, the optimal reduction in SO
2
 is zero.  For very high values of the marginal

benefits, there is less difference in the net efficiency gains.  In fact the net

efficiency gains are identical for marginal benefits greater than or equal to

about $680 per ton.  When marginal benefits beyond this level, the optimal

policy is to eliminate SO
2
 emissions entirely.  At this point it makes no

difference whether permits are grandfathered or auctioned, since no permits

are actually provided and thus no revenue can be raised in either case.

2.  Carbon Dioxide Abatement

Recent work by Parry, Williams, and Goulder (1998) examines these issues

in the context of carbon dioxide (CO
2
) emissions abatement in the U.S.

Figures 6 and 7, based on results from this study, provide for CO
2
 abatement

35 The marginal benefits are assumed to be constant, that is, independent of the level of
abatement.
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policies the same sort of information as was displayed for SO
2
 policies in

figures 4 and 5.

Figure 6 presents the ratio of second-best (τ
L
 = .4) and first-best (τ

L
 = 0)

total costs, under a carbon (CO
2
) tax and a carbon (CO

2
) quota.36 The carbon

tax policy exploits the revenue-recycling effect:  revenues from the tax are

devoted to cuts in the pre-existing distortionary (labor) tax.  The results are

qualitatively similar to the results that were shown in Figure 4.  For the carbon

tax, the ratio of total costs is virtually unaffected by the extent of carbon

emissions abatement.  For the carbon quota, in contrast, the ratio of total

costs is highly sensitive to the amount of abatement, for the same reasons as

were discussed earlier.

Figure 7 shows Parry, Williams, and Goulder’s best estimates for net

efficiency gains from carbon abatement policies, for a range of values for

the marginal benefits from CO
2
 abatement.  Efficiency gains are considerably

larger under the carbon tax than under the carbon quota.  In fact, efficiency

gains are zero (the optimal amount of abatement is zero) if marginal benefits

are below $25 per ton.  This reflects the fact that the (gross) marginal costs

of CO
2
 abatement begin at $25 per ton under the quota policy.  Thus, any

emissions abatement by way of this type of policy will be efficiency-reducing

if the marginal benefits are below this value.  Most estimates of the marginal

environmental benefits from carbon abatement obtain values below $25 per

ton.37 Thus, these results suggest that any carbon abatement by way of a

36 The tax and quota policies actually would be oriented toward the use of carbon-based
fuels (oil, coal, and natural gas) rather than emissions of CO

2
 itself.  Emissions from the

combustion of these fuels are strictly proportional to carbon content, so that taxing or
regulating the use of these fuels is virtually equivalent to taxing or regulating CO

2
 emissions.

A complication is posed by non-combustion or feedstock uses of these fuels.  In the U.S.,
such uses represent a very small share (less than four percent) of total use.
37 See, for example, Nordhaus (1991), Peck and Teisberg (1993), and Fankhauser (1994).
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quota (or freely offered set of carbon permits) will be efficiency reducing!38

Thus, in the context of regulating SO
2
 and CO

2
 emissions, second-best

interactions have a very substantial effect on the gross costs and net efficiency

gains.  Pre-existing taxes significantly raise the costs of achieving emissions

reductions relative to the costs in a first-best setting.  And they put policies

involving emissions quotas or grandfathered permits policies at a very

significant cost disadvantage relative to policies that raise revenue and finance

cuts in pre-existing taxes.  Second-best interactions have first-order

consequences.

V.  Conclusions

This paper examines the significance of pre-existing factor taxes for

various environmental policies.  It indicates that, under plausible assumptions,

prior factor-market distortions raise the costs of revenue-neutral

environmental policies, despite the potential to use the revenues from

environmental taxes to finance cuts in the marginal rates of pre-existing factor

taxes.  It also shows that prior factor taxes amplify the costs of other

environmental policies, including pollution quotas and tradeable pollution

permits, relative to what the costs would be in a first-best world.

Two effects underlie these results.  The tax-interaction effect is the adverse

impact in factor markets arising from reductions in after-tax returns to factors

(labor) brought about by environmental regulation.  In a world with prior

taxes on factors, this effect leads to significantly higher costs of regulation

relative to what would apply in a first-best world with no pre-existing taxes.

By generating revenues and using them to reduce pre-existing tax rates,

pollution taxes and auctioned pollution permits exploit a revenue-recycling

38 Several studies suggest that the marginal climate-related damages increase with CO
2

concentrations.  If this is the case, and if CO
2
 concentrations increase through time, then

marginal damages from CO
2
 emissions (or marginal benefits from CO

2
 emissions abatement)

will increase over time.  Under such circumstances the prospects for efficiency gains under
a quota policy improve with time.
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effect that offsets some of the tax-interaction effect.  In contrast, pollution

quotas and grandfathered permits enjoy no such offset.  Thus the costs of

achieving given reductions in pollution are higher under these latter policies.

Even when they take advantage of the revenue-recycling effect, pollution

abatement policies through pollution taxes or auctioned permits generally

entail positive gross costs.  If the good responsible for pollution emissions is

an average substitute for leisure, the revenue-recycling effect only partly

offsets the gross costs attributable to the tax-interaction effect.  This implies

that pollution-abatement through these policies is more costly in a second-

best setting than it would be in a first-best world, and that the double dividend

claim (in its strong form) is not upheld.

The interactions with factor markets affect the choice among alternative

policy instruments.  In particular, they put pollution quotas and grandfathered

pollution permits at a serious efficiency disadvantage relative to revenue-

raising policies whose revenues finance reductions in the marginal rates of

existing taxes.  Indeed, if the marginal environmental benefits from pollution

reductions are below a certain threshold value, then any level of pollution

abatement through quotas or grandfathered permits is efficiency-reducing.

These results emerge from simple analytical models and are confirmed by

numerical investigations in specific regulatory contexts.

In recognizing the efficiency advantages of these pollution-tax and

auctioned-permit policies over policies involving pollution quotas or

grandfathered permits, one should not lose sight of related equity issues.

The decision whether to exploit the revenue-recycling effect fundamentally

affects the distribution of wealth between taxpayers, on the one hand, and

owners and employees of polluting firms, on the other.  Clearly, there are

important equity issues associated with the differences in distribution.  The

second-best considerations raised in this paper do not reduce the importance

of the equity issues, but at the same time they indicate that the efficiency

costs of forgoing the redistribution toward taxpayers are greater than what

would be suggested by a first-best analysis.

The tax-interaction effect is relevant to government regulation outside
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the environmental area. To the extent that government regulations of

international trade or agricultural production raise the costs of output and

thereby reduce real factor returns, these regulations exacerbate the labor

market distortions from pre-existing taxes and thus involve higher social

costs than would be indicated by partial equilibrium analyses.39
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