
Journal of
Applied
Economics

Volume XIV, Number 1, May 2011XIV

Edited by the Universidad del CEMA
Print ISSN 1514-0326

Online ISSN 1667-6726

Sherif Khalifa
Ihsan Kaler Hurcan

Undiscounted optimal growth with consumable 
capital: Application to water resources



Journal of Applied Economics. Vol XIV, No. 1 (May 2011), 145-166

UNDISCOUNTED OPTIMAL GROWTH WITH CONSUMABLE
CAPITAL: APPLICATION TO WATER RESOURCES

Sherif Khalifa*

California State University, Fullerton

Ihsan Kaler Hurcan
Mitsui & Co. Europe 

Submitted May 2008; accepted July 2009

This paper utilizes the geometric techniques developed in Khan and Mitra (2005, 2007) to
analyze the optimal intertemporal allocation of water resources in a dynamic setup without
discounting. The framework features two sectors: the first uses labor to purify water, while
the second uses labor and purified water for irrigation to produce an agricultural consumption
good. Purified water can also be used as potable water for drinking purposes. The planner
allocates the available factors of production between the two sectors every period, and
determines the optimal amounts of purified water, potable water, and irrigation water. The
geometry characterizes the optimal path depending on whether the irrigation sector is more
labor intensive than the purification sector. When the irrigation sector is labor intensive, the
optimal path is a non converging cycle around the golden rule stock of purified water, while
if the purification sector is labor intensive, there is a damped cyclical convergence to the
golden rule stock.
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I. Introduction

Ramsey (1928) addressed the problem of undiscounted optimal growth in which

the optimal program of capital accumulation was derived from the maximization

of a utility sum over an infinite time period. Samuelson and Solow (1956) extended
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the framework to a model with many capital goods. Atsumi (1965) and Von Weiszsaker

(1965) proposed the overtaking criterion approach. Under this criterion, Gale (1967)

and Brock (1970) showed the existence of an optimal path. Approaching a special

case of the two sector model proposed by Nishimura and Yano (1995, 1996, 2000),

Fujio (2005, 2008) employed geometric techniques developed in Khan and Mitra

(2007) to characterize the optimal policy. Khalifa (2009) employs the same geometric

techniques in an extension of Fujio (2005, 2008) to consider the case of consumable

capital; that is both the consumption good and capital can be consumed. The

framework extends the Leontief two sector optimal growth model, which analyzes

the optimal allocation of capital and labor to a consumption sector and an investment

sector in every period. However, the planner has preferences defined over both the

consumption good and the consumable capital. The utility function with two

arguments (the consumption good and the consumable capital) has implications on

the planner’s preferences, on the value-loss and on the optimal program.

This paper considers a specific application, to the case of water resources. Water

can be used in irrigation to produce an agricultural consumption good, and can also

be used directly for drinking purposes. Therefore, water can serve as capital that is

used in the production process of a consumption good, and can be consumable as

well. Worldwide, water used in agriculture and industry accounts for 90% while

domestic use accounts for 10% of total water withdrawal (WRI, 2003). The percentage

of water withdrawals used for domestic purposes in the developed world is close

to that used in the developing world. However, the latter has a higher percentage

of withdrawals used in agriculture, relative to industry, compared to the former.

Accordingly, the model features two sectors. The first utilizes labor to purify water.

Purified water can either be used for drinking purposes, or in an irrigation sector

along with labor to produce an agricultural consumption good.

We utilize the techniques developed by McKenzie (1968) and Brock (1970),

or alternatively the reduced form without discounting. Addressing the optimal

intertemporal allocation of water resources without discounting guarantees

intergenerational equity. In that case, we assume that future welfare levels are treated

equally as current ones. The discount factor takes the value of one. This is motivated

by Khan (2002) who noted that “to ensure sustainability and intergenerational equity

in managing natural resources, the optimal intertemporal allocation of resources

available to any collective ought not to be based on criteria that discount the weight

that is attached to future generations or cohorts of that collective.” This is also

motivated by the fact that the exploding world population is expected to continue

to exert an enormous pressure on the scarce water resources. The available resources
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have not only been depleted and over exploited in an attempt to satisfy the increasing

demand, but have been unequally distributed and inefficiently utilized as well.

Moreover, water resources are not always contained within the boundaries of the

countries dependent on them, but are usually shared by a number of nations. Thus,

the upsurge in demand for water transformed the problem into a survival issue and

a possible catalyst for future conflicts as countries dependent on external water

resources reorient their national strategies towards the protection of their rights to

water access by all means possible. In this context, Yoffe et al. (2004) use the

Transboundary Freshwater Dispute Database to provide evidence that the “likelihood

of intense dispute rises as the average precipitation within a basin decreases.”

Finally, this paper applies the techniques of Euclidean geometry developed by

Khan and Mitra (2005, 2007) to provide insights into the optimal paths and characterize

the optimal policy. The geometric analysis characterizes the optimal path depending

on whether the irrigation sector is more labor intensive than the purified sector. In

the former case, the optimal path is a nonconverging cycle around the golden rule

stock of purified water, while in the latter case it exhibits a damped cyclical

convergence to the golden rule stock. In this context, each trajectory is considered

optimal in its specific case. Therefore, it is optimal to follow a nonconverging cycle

when the irrigation sector is labor intensive, while it is optimal to follow a converging

cycle if the water purification sector is labor intensive. This implies that the

characterization of the optimal program has policy implications, as the model

specifies the optimal program to be adopted to ensure sustainability of the scarce

water resources. 

The remainder of the paper is organized as follows: Section II presents the model

and Section III contains our conclusions. 

II. Model

A. Technology

Our economy is represented by two sectors: water purification and irrigation. For

each date where is the set of nonnegative integers, production of one unit

of purified water requires a units of labor. One unit of labor and one unit of purified

water used in the irrigation sector produce one unit of the consumption good.

Moreover, purified water is consumed for drinking purposes. In every period, a

planner allocates a given amount of purified water and labor to either sector. There

is one technology available to each sector. For each date t, let the technologies be
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stationary and given by

(1)

(2)

where c(t+1) and z(t+1) denote the amounts of the consumption good and the

investment in water purification in period t+1, respectively. lr(t) and lp(t) denote

the labor employed in the irrigation sector for the production of the consumption

good and the labor employed in the water purification sector, respectively. wr(t)

denotes the amount of purified water used in the irrigation sector. The amount of

purified water used for drinking purposes in period t, or what is referred to as potable

water, is denoted wp(t). 

We also assume that the stock of purified water evaporates at a rate e∈(0,1).

In other words, from a given stock of purified water, a portion is used in both

sectors and the leftover evaporates at the given rate. The residual stock plus the

purified water produced in the same period form next period’s purified water

stock. If x(t) ≥ 0 denotes purified water stock available in period t, then

(3)

Therefore, investment in water purification replaces the evaporated water and

the amounts used for drinking and irrigation in the previous period.

Labor is normalized to unity in every period of time. The gross increase in

purified water stock z(t+1) requires lp(t)=a.z(t+1) units of labor in period t. The

labor required in the irrigation sector lr(t)= wr(t). Therefore, the labor constraint is

given by

(4)

Definition 1: A program from is a sequence {x(t),wr(t),wp(t)} with

such that x(0) = x0, and for all :

x t e x t w t w t w t wp r p r( ) ( ) ( ) ( ) ( ) , ( )+ ≥ − − −⎡⎣ ⎤⎦ ≤ +1 1 0 (( ) ( ),

( ) ( ) ( ) ( ) ( )

t x t

a x t e x t w t w tp r

≤

≤ + − − − −⎡⎣0 1 1 ⎤⎤⎦⎡
⎣

⎤
⎦ + ≤w tr ( ) .1

0 1 1≤ ⋅ + + = + ≤a z t w t l t l tr p r( ) ( ) ( ) ( ) .

x t e x t w t w t z tp r( ) ( ) ( ) ( ) ( ) ( ).+ = − ⋅ − −[ ]+ +1 1 1

z t
a

l tp( ) ( ),+ = ⋅1
1

c t w t l tr r( ) min ( ), ( ) ,+ = { }1
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Definition 2: Associated with any program {x(t),wr(t),wp(t)} is a gross stock increase

sequence {z(t+1)} with and a consumption sequence {c(t+1)} with

such that for all :

Definition 3: A program {x(t),wr(t),wp(t)} is called stationary if for all :

B. Preferences

The preferences of the planner are represented by a felicity function 

We assume that the felicity function v(c(t), wp(t))= v(wr(t), wp(t)) is separable in its

two arguments: potable water and the consumption good. Future welfare levels are

treated equally as current ones; that is the discount factor is assumed unity. Following

Khan and Mitra (2005), we work with the overtaking criterion of optimality.

Definition 4: A program starting from x(0) is called optimal

if there does not exist any ε > 0 and a time period tε such that

for all 

That is an optimal program is one in comparison to which no other program for

the same initial stock is eventually significantly better, for any given level of

significance. A program is said to be stationary if it is constant over time. A program

is said to be a stationary optimal program if it is stationary and optimal.

C. Reduced form

Following McKenzie(1968), we convert the above model into its reduced form.

The latter is summarized by the transition possibility set Ω as a collection of pairs

(x,x′), such that it is possible to have x′ of the amounts of the purified water in the

next period from the x amounts of purified water available in the current period.

Formally,

(5)

T t≥ ε .v w t w t v w t w tr p r pt

T
( ( ), ( )) ( ( ), ( ))* *−⎡⎣ ⎤⎦ ≥

=∑ 1
ε

x t w t w tr p t

* * *( ), ( ), ( ){ }
=

∞

0

x t w t w t x t w t w tr p r p( ), ( ), ( ) ( ), ( ), ( ){ }= + + +{ }1 1 1 ..

z t x t e x t w t w t c tr p( ) ( ) ( ) ( ) ( ) ( ) , (+ = + − − ⋅ − −[ ]1 1 1  ++ = { }1) min ( ), ( ) .w t l tr r
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Using this formulation, we can keep track of the transition dynamics of only

the state variable, x(t), overtime. For any one can consider the amounts

(wp,wr) available for drinking and irrigation purposes, respectively. 

Formally, we have a correspondence given by

(6) 

Finally, the reduced form utility function, is defined on Ω such that 

(7)

D. Geometry

In Figure 1A, the x-axis stands for the amount of purified water available today,

while the x′-axis stands for the amount of purified water available tomorrow. To

proceed with the geometric analysis, we impose the following assumptions on the

felicity function with respect to its two arguments (potable water and the consumption

good): (1) the marginal utility of the consumption good is constant, and as the

amount of the consumption good is equal to the amount of irrigation water, then

the marginal utility of purified water used in irrigation is constant as well; (2) the

marginal utility of purified water used for drinking is larger than the marginal utility

of water used in irrigation up to a threshold x = A < (1/a); (3) the marginal utility

of potable water is negative after the threshold wp = A. 

These assumptions ensure that if the initial stock is less than the threshold A,

the planner prefers to use all the available stock for drinking, and none for irrigation.

While if the initial stock is higher than the specified threshold, the planner prefers

to drink an amount that exactly equals the threshold A only. These assumptions can

be justified by the actual percentages of withdrawals dedicated to domestic purposes

corresponding to every level of total water withdrawals, in addition to the trend.

The declining trend can provide a justification to our assumption that if the available

stock of water is lower than a threshold A, the planner prefers to use all the available

stock for drinking and accordingly the percentage that is used for water consumption

is high. However, as the available stock gets larger than the threshold, the planner

prefers to use the exact amount A for drinking purposes. This means that as the

stock gets larger, the percentage dedicated for water consumption gets smaller,

consistently with the observed trend. This ensures that the main assumptions of the

model are based upon real world observations.

u x x v w w w w x xp r p r( , ') max ( , ):( , ) ( , ') .= ∈{ }Ψ

( , ') ,x x ∈Ω
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In this context, the line OVM plays a central role in our geometric investigation.

First of all, it is referred to as the full employment-no excess capacity line, as it

provides us with the set of plans with fully utilized labor and purified water. At the

segment with an initial stock of purified water , the planner prefers to use

all the available purified water today for the purpose of drinking. This is because

the utility of using an additional unit of purified water for drinking is higher than

the utility of using it for irrigation, as long as the initial amount available is less

than A. Then, the planner uses all the available labor in purifying (1/a) units of

water for the next period. That is why the line OV is horizontal at x′ = (1/a) for all

. If the initial stock of purified water the planner decides

to use only a portion A from the available purified water today for drinking purposes.

The leftover (x-A) is combined with labor in the irrigation sector to produce the

consumption good. The remaining labor [1-(x-A)] are employed to invest

of purified water for the next period. At x = 1+A, the

planner consumes A and uses the remaining 1 unit of water with all the available

labor (that is normalized to unity) in the irrigation sector, in order to produce the

consumption good. Nothing is left for investment, and thus the planner ends up

with z = 0 = x′. It is clear in Figure 1A that the slope of the full employment-no

excess capacity line is zero at OV, while the slope of the VM line is given by

(8)

To obtain the equation of the line VM, we pick any point, say S = (x,x′) as in

Figure 1A. Since ΔMVQ and ΔMSSx are similar triangles, we have

(9)

Thus, the equation for the VM line is given by

. (10)

The equation for the full employment-no excess capacity line OVM is

(11)

x A∈ ]( ,0

x
A

a
x for all x A A

a
for all x
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, .
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⎝⎜
⎞
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+ ∈ + ](

∈

1
1

1
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If the consumption of potable water is at a level of wp = x, with a zero

level of the consumption good. Therefore, the consumption good is not influencing

the utility of the planner in this segment which is solely determined by the amount

of potable water. On the other hand, if the consumption of potable

water is constant at A. Therefore, potable water is not influencing the utility of the

planner in this segment which is solely determined by the amount of the consumption

good. Therefore, the planner’s indifference map over (x,x′)-plane can be easily

configured. 

As we can see in Figure 1B, the indifference map of the planner if is

a set of vertical curves parallel to I1. The reason is that at this segment, the level of

potable water in any plan in an indifference curve is exactly equal to the available

purified water x while the level of the consumption good equals to zero. In addition,

any horizontal movement to the right of a plan on an indifference curve is accompanied

by a higher level of potable water and accordingly a higher level of utility. The

indifference curves are, however, kinked on the VM line as shown in Figure 1B.

Consider the line I4 on the VM line. By specification and construction, the amounts

of labor and purified water used in the consumption good sector are all identical to

the amount of the consumption good. If we move vertically downwards on I4 from

the highest x′, this implies a decrease in the terminal stock of purified water x′ and

a consequent increase in the labor available to the consumption good sector. However,

this sector is constrained by available purified water and hence no increase in the

consumption good and thereby in utility is possible. On the other hand, consider a

horizontal move from the highest x′ on I4 in a direction parallel to QM. This move

represents an increase in the initial purified water stock x and a consequent increase

in the purified water available to the consumption good sector. But no labor is being

released and this sector now faces a labor constraint. Hence, no increase in either

the consumption good or in utility is possible. Obviously, because the planner

chooses to drink an exact amount A of potable water, it does not affect our indifference

curves. Thus, we obtain an indifference curve I4 of the Leontief type with a kink at

its intersection with VM. If the initial purified water stock is increased and the

terminal stock decreased, relative to I4, as at I5 and I6 for instance, an increased

amount of both purified water and labor is made available to the consumption sector,

resulting in a higher level of the consumption good and thereby utility. The line VM

thus takes on a new identity; it pegs a map of kinked indifference curves in the

initial-terminal purified water (x,x′)-plane.

x A∈( , ]0

x A A( ) ( , ],0 1∈ +

x A∈( , ],0
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E. Benchmarks

We first derive a golden rule capital stock, x̂, and a golden rule price level, p̂, and

then we define a value loss for every single plan in terms of x̂ and p̂.

Second, we show that the VM line is the zero-value-loss line and that lines parallel

to VM are iso-value-loss lines. Finally, we show that a value loss of a single plan

is measured by the amount of vertical deviation from the plan on the VM line.

The golden rule stock is defined as a point of maximal sustainable utility, where

the terminal purified water stock must be as large as the initial stock. The level of

the golden rule stock, at which the maximal utility is sustainable every period, is

derived as a solution to the problem

(12)

Figure 2A shows the golden rule stock to be the unique one period plan G =

(x̂, x̂) obtained by the intersection of the 45° line with VM. In this case, x̂ can be

derived as the solution to which yields

(13)

Since ( x̂, x̂) is the solution to the problem, appealing to Uzawa (1964)‘s version

of the Kuhn-Tucker theorem, there exists a golden rule price level p̂ such that

(14)

Proposition 1: The golden rule price system is given by Proof: included

in Appendix.

Then, we can define a value-loss such that (Figure 2B represents the iso-value-

loss lines)

(15)

Proposition 2: The VM line is the zero value-loss line, that is for 

any (x,x′) such that Proof: included in Appendix.x
A

a
x´ .=

+
+

1
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δ ˆ , ˆ ( , ´)p x x x[ ] = 0

δ ˆ , ˆ ( , ´) ( ˆ, ˆ) ( , ´) ˆ( ´ )p x x x u x x u x x p x x[ ] = − − −   foor all  ( , ´) .x x ∈Ω

u x x p x x u x x x x( , ´) ˆ ( ´ ) ( ˆ, ˆ) ( , ´)+ ⋅ − ≤   for all  ∈∈Ω.

ˆ .x
A

a
=

+
+

1

1

ˆ (( ) / ) ( / ) ˆx A a a x= + − ⋅1 1

max ( , ´) ´ ( ,u x x x x x x  subject to    for all  ≥ ´́) .∈Ω

( , ')x x ∈Ω
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We also show that even though the OV line is not a zero value-loss line, it is the

line at which the value loss is minimized for an initial capital stock .

Proposition 3: For any initial stock , any terminal plan where x′ >(1/a)

is not feasible, and any plan with x′ <(1/a) has a higher value loss compared to one

with x′=(1/a). Proof: included in Appendix.

Proposition 4: A line parallel to VM, say V′M′, is an iso-value-loss line, and the

value loss of a plan on V′M′ can be measured by the difference of the golden rule

utility level and the utility level of a plan at which V′M′ and the 45° line intersect.

Proof: included in Appendix.

Proposition 5: For any plan such that the more a plan is

vertically deviated from the plan on the zero-value-loss line VM the more value loss

it suffers. Proof: included in Appendix.

Proposition 6: The sum of the value losses of two plans equals the value loss of

the sum of two plans. Proof: included in Appendix.

F. Optimal policy

In this section, we present a complete characterization of optimal programs. An

optimal program is one that minimizes the aggregate value loss and converges to

the golden rule stock. Alternatively, any program that minimizes the aggregate of

the sequence of all value losses over the long run is an optimal trajectory. Using

cob web diagrams in today-tomorrow plane, every program starting from any initial

capital stock can be tracked period by period, and its associated value loss per period

and then its aggregate value loss can be calculated. In this way, we can compare

the aggregate value losses of two different programs starting from the same initial

capital stock and find an optimal program which has the minimum aggregate value

loss. We consider two cases: when a ≤ 1, or when ξ ≤ -1. This is the case when the

irrigation sector is more labor intensive than the purification sector. The other case

is when a > 1, or when ξ > -1. This is the case when the purification sector is more

labor intensive than the irrigation sector. Irrigation activities occur within the

agricultural sector which is labor intensive, while water purification plants rely on

water treatment machinery, which implies it is capital intensive. The model in this

paper is, however, an extension of the Leontief two sector optimal growth model,

x A A∈ +( ], ,1x x, '( )∈Ω

x A0 0( )∈( ),

x A0 0( )∈( ),
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which analyzes the optimal allocation of capital and labor to a consumption sector

and an investment sector. The optimal policy, in this literature, is found to depend

upon the factor intensity of the two sectors. Therefore, it is imperative to discuss

all possible cases, even in this specific application.

Proposition 7: If ξ ≤ -1, an optimal program converges to a cycle. The size of the

cycle depends on the value of ξ. Proof: consider Figures 3, 4 and 5 below.

We have three possible scenarios. The first case is when a = 1, and ξ = -1, and

thus 1+A = (1/a)+A. As shown in Figure 3A, we have convergence to a cycle. If we

start at any plan where , we choose x′=(1/a) at the OV line to minimize

value loss. Then we end up in a nonconverging cycle of producing a stock of purified

water of (1/a) in one period and [((1+A)/a)-(1/a)²]=A in the other, and so on. Therefore,

in this segment, we start with a stock of x which is used completely for drinking

purposes, and all the labor is employed in purifying (1/a) units of water. Then, in

the second period a stock of (1/a) is available, a portion A of it is used for drinking

purposes, and the remainder ((1/a)-A) is used in irrigation to produce the consumption

good, while the remaining labor [1-((1/a)-A)] is employed to invest in water

purification. So we end up with z=(1/a)[1-((1/a)-A)]=[((1+A)/a)-(1/a)²]=x′. However,

as a = 1, then x′=[((1+A)/a)-(1/a)²]=A. Therefore, we start the third period with a

stock of A. As this amount is used entirely for drinking purposes, all the labor is

employed in purifying (1/a) units of water. The subsequent periods rotate in the

same nonconverging cycle thereafter.

The second case is if 1+A=(1/a). In this case, we have convergence to a cycle

as well. The cycle, however is larger compared to the previous case. If we start at

any plan where , we choose x′=(1/a) at the OV line to minimize value

loss. Then we end up in a non-converging cycle of producing a stock of purified

water of (1/a) in one period and zero in the other, and so on, as shown in Figure

3B. Therefore, in this segment, we start with a stock of x which is used completely

for drinking purposes, and all the labor is employed in purifying (1/a) units of water.

Then, in the second period a stock of (1/a)=1+A is available, a portion A of it is

used for drinking purposes, and the remainder 1 is used in irrigation to produce the

consumption good, using all the available labor. Therefore, no labor is employed

to invest in water purification. So we end up with z=0=x′. Therefore, we start the

third period with a stock of zero. No water is used for drinking purposes, and all

the labor is employed in purifying (1/a) units of water. The subsequent periods

rotate in the same non-converging cycle thereafter.

x A0 0( )∈( ],

x A0 0( )∈( ],
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The remaining case is in between the previous two. If we start at any plan where

, we choose x′=(1/a) at the OV line to minimize value loss. This is

because, as in Proposition 3, any terminal plan above (1/a) is not feasible, while

any plan vertically downwards has a higher value loss. Then we end up in a non-

converging cycle of producing a stock of purified water of (1/a) in one period and

[((1+A)/a)-(1/a)²] in the other, and so on, as shown in Figure 4. Therefore, in this

first segment, we start with a stock of x which is used completely for drinking

purposes, and all the labor is employed in purifying (1/a) units of water. Then, in

the second period a stock of (1/a) is available, a portion A of it is used for drinking

purposes, and the remainder ((1/a)-A) is used in irrigation to produce the consumption

good, while the remaining labor [1-((1/a)-A)] is employed to invest in water

purification. So we end up with z=(1/a)[1-((1/a)-A)]=[((1+A)/a)-(1/a)²]=x′. Therefore,

we start the third period with a stock of [((1+A)/a)-(1/a)²]. As this amount is less

than A, it is used entirely for drinking purposes, and all the labor is employed in

purifying (1/a) units of water. The subsequent periods rotate in the same non-

converging cycle thereafter. 

As shown in Figure 5, any plan in the second segment

we have x′=((1+A)/a)-(1/a)x, then we move to the 45° line where we start the cycle

as we did with the first segment. The only segment left is where 

In this case, there are two subsegments. The first is if 

then you cycle out towards a sequence of purified water in the remaining 

segment where plans in there end up in the previous

segment and continue from there in a similar manner. Only if x(0) = x̂, then there

is convergence to the golden rule stock.

Proposition 8: If ξ > -1, an optimal program from any initial stock converges to

the golden rule stock in a damped cyclical way. Proof: consider Figure 6.

In this case, if we start at any plan where x(0) = A, we have a damped cyclical

convergence to the golden rule stock as shown in Figure 6. If we start at any plan

where , we choose x′ = (1/a) at the OV line to minimize the value loss.

Therefore, in this segment we start with a stock of x which is used completely for

drinking purposes, and all the labor is employed in purifying (1/a) units of water.

Then, in the second period a stock of (1/a) is available, a portion A of it is used for

drinking purposes, and the remainder ((1/a)-A) is used in irrigation to produce the

consumption good, while the remaining labor [1-((1/a)-A)] is employed to invest

in water purification. So we end up with z=(1/a)[1-((1/a)-A)]=[((1+A)/a)-(1/a)²]=x′.

x A A aA a a A∈ + − − +( ), ,1 2

x A0 0( )∈( ],

A aA1+ − ⎤⎦,

x A aA a a A0 1 2( )∈ + − − +⎡⎣ ,

x A A aA∈ + −[ ], .1

x A aA A0 1 1( )∈ + − +[ ], ,

x A0 0( )∈( ],
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The difference from the case with ξ ≤ -1 is that [((1+A)/a)-(1/a)²]>A in this case,

while [((1+A)/a)-(1/a)²]<A in the previous case. Therefore, the optimal program

converges to the golden rule stock in a damped cyclical way.

III. Conclusions

This paper uses a variant of the Leontief two sector optimal growth model, which

analyzes the optimal allocation of capital and labor to a consumption sector and an

investment sector in every period. The paper, however, attempts to extend the

previous analysis in Fujio (2005, 2008) to the case of consumable capital; that is

both the consumption good and capital can be consumed. Accordingly, a planner

has preferences defined over both the consumption good and consumable capital.

Future welfare levels are treated equally as current ones, that is the discount factor

is assumed unity. The utility function with two arguments: the consumption good

and the consumable capital, has implications on the planner’s preferences, on the

value-loss and accordingly on the optimal program.

An example of consumable capital is water resources. Water can be used in

irrigation to produce an agricultural consumption good, and can also be used directly

for drinking purposes. Therefore, water can serve as capital that is used in the

production process of a consumption good, and can be consumable as well. In this

context, the model features two sectors. The first utilizes labor to purify water.
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Purified water can either be used for drinking purposes or in an irrigation sector

along with labor to produce an agricultural consumption good. The geometric

analysis characterizes the optimal path depending on whether the irrigation sector

is more labor intensive than the purified sector. In this case, the optimal path is a

non-converging cycle around the golden rule stock of purified water, while in the

other case it exhibits a damped cyclical convergence to the golden rule stock.

This paper is not only an extension to a theoretical setup, but also an application

to a specific case. The paper is motivated by a real world problem concerning the

depletion of the scarce water resources due to the increasing world wide demand.

In addition, the model assumptions are supported by observations from world data

extracted from the Food and Agriculture Organization AQUASTAT. Finally, the

model has policy implications, especially to developing countries that have significant

agricultural and irrigation sectors, as it determines the optimal program to be adopted

to ensure sustainability of water resources.

Appendix

Proof of Proposition 1. Substituting the zero consumption plan V=(A,(1/a)), and as

the level of the consumption good is given by (x-A) for all we substitute

into equation (14) to obtain and

then Similarly, substituting the zero investment plan M = (1+A,0), and

into equation (14), we have 

and Therefore, The weak inequalities

are equalities in this expression because since

and 

so using the fact that x̂ A− ⎤⎦⋅ ,, ˆ ˆ ˆx A A x A x A−( )⋅ +( )= − +( )−⎡⎣ ⎤⎦⋅1 1 ˆ ˆ.x
A

a a
x=

+
− ⋅

1 1

ˆ ˆx A A A x
a

A−( )⋅ +( )= +( )−⎡⎣ ⎤⎦⋅ − +( )⎡⎣1 1
1

1

ˆ
ˆ

.p
A x

A
≥

+( )−⎡⎣ ⎤⎦
+

1

1

ˆ ˆx A p A−( )− ≥ ⋅ − +( )( )1 0 1u x x u A x A( ˆ, ˆ) ( , ) ( ˆ )− + = − −[ ]1 0 1

u x x u A a x A( ˆ, ˆ) ( , / ) ( ˆ )− = − −[ ]1 0

x A A∈ +( ),1
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Proof of Proposition 2. From Figure 2A, we can rewrite ξ using the golden rule

price system as 

Therefore, we can write Similarly, we have

that . Therefore, we obtain

the equation of the VM line with some constant D as Since the

VM line goes through the golden rule stock G = (x̂,x̂), we also have 

Substituting one into the other yields: 

We now compute the value loss of the VM line:

Thus the VM line is the zero value-loss line.

Proof of Proposition 3. The OV line is not a zero value loss line. However for any

initial stock in the segment , any terminal plan where x′ > (1/a) is not

feasible. We can also show that any plan with x′ < (1/a) has a higher value loss

compared to one with x′ = (1/a). We know that the value loss of any plan in this

area is given by Comparing any plan

(x,(1/a)) for all to any other plan where x′ < (1/a), we find that they have

a similar because at the two plans the planner consumes wp = x

and wr = 0. However, for the plan with a higher x′, is higher and thus it

has a lower value loss compared to the one with lower x′. Therefore, any deviation

vertically downwards from any point on the OV line increases the value loss. So, for

any planner, if the current purified water stock is somewhere in the segment

, the only option to minimize the value loss is to choose x′ = (1/a).

x A∈( )0,

x A∈( )0,

ˆ ( ´ )p x x⋅ −
u x x u x x( ˆ, ˆ) ( , ´)−

x A∈( )0,

δ ˆ , ˆ , ´ ˆ, ˆ , ´ ˆ ´ .p x x x u x x u x x p x x( ) ( )= ( )− ( )− ⋅ −( )

δ ˆ , ˆ , ´ ˆ, ˆ , ´ ˆ ´ ˆ
p x x x u x x u x x p x x( ) ( )= ( )− ( )− ⋅ −( )= xx A x A p x p x

p x x p x A x

−( )− −( )− ⋅ + ⋅

= ⋅ + − ⋅ −[ ]− −

ˆ ´ ˆ

ˆ ´ ˆ AA p x p x( )− ⋅ + ⋅ =ˆ ´ ˆ .0

ˆ ˆ ´ ˆ .x p x x p x= ⋅ + − ⋅
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Proof of Proposition 4. We also show that the value loss of a plan on V′M′ in Figure

2B can be measured by the difference of the golden rule utility level and the utility

level of a plan at which V′M′ and the 45º line intersects, such as The

equation of V′M′ is obtained with some constant D such that With

the same procedure as before, we have Substituting one into

the other yields For any plan on V′M′, 

Therefore, 

For any plan on V′M′, the value loss is thus given by

that is

equal to 

It is now clear that any plan on V′M′ has the same value loss. Since the utility

level of a plan such as T is always less than the golden rule utility level, the value

loss is always positive. If V′M′ shifts outwards from VM, then a point T gets far

away from G which implies that the value loss increases. The same argument goes

through for any plan in the triangle VQM.

Proof of Proposition 5. In the area VQM (Figure 2B), the value loss of a plan is

given by Then a marginal change in the

value loss with respect to x′ for any given x is Therefore, if

a plan deviates vertically downwards from the plan on VM the value loss increases,

and if it deviates by Δx′ < 0, the value loss associated with that plan is – Δx′· p̂ > 0.

On the otherhand, above the VM line, So, the value loss of any

plan in this area is given by 

Then, a marginal change in the value loss with respect to x′ for any given x is given

δ ˆ , ˆ , ' ˆ, ˆ
´

p x x x u x x x A
z x

e( ) ( )= ( )− −( )+
−( )
−( )

⎡

⎣ 1⎢⎢
⎤

⎦
⎥ − ⋅ −( )ˆ ´ .p x x

c x A
z x

e
= −( )+

− ′( )
−( )1

.

∂ ( )
∂

= − <( )δ ˆ , ˆ , ´

´
ˆ .

p x x x

x
p 0

δ ˆ , ˆ , ´ ( ˆ, ˆ) ( ) ˆ ( ´ ).p x x x u x x x A p x x( ) ( )= − − − ⋅ −

u x x u x xT Tˆ, ˆ , .( )− ( )

= ( )− −( )−
−( )
−( )

− ⋅ −( )=u x x x A
z x

e
p x x u xˆ, ˆ

´
ˆ ´ ˆ, ˆ

1
xx x A p x p x

z x

e
( )− + + ⋅ − ⋅ −

−( )
−( )

ˆ ˆ '
´

1

+ −
−( )
−( )

A
z x

e

´
.

1
 δ ˆ , ˆ , ´p x x x( ) ( )

u x x u x x x A x A
z x

e
T T Tˆ, ˆ , ˆ

´( )− ( )= −( )− −( )−
−( )
−( )1

== −( )− ⋅ − + ⋅ˆ ˆ ´ ˆx A p x x p x

c x A
x z

e
= −( )−
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T x xT T= ( , ).
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by If a plan deviates vertically upwards from the plan on

VM, the value loss increases as well. If a plan deviates by Δx′ > 0, the value loss

associated with that plan is 

Proof of Proposition 6. Pick up any two plans, say P1 and P2 on a horizontal line

beginning at G in Figure 2B. The sum of these two plans is indicated by a plan P3.

Since ΔP1GM1 and ΔP3′M2M3 are congruent, the length of P3M3 is the sum of P1M1

and P2M2. This length stands for the magnitude of deviation from the zero-value-

loss plan, which is Δx′. Then, a value loss of the sum of two plans are the sum of

the value losses of two plans.
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