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I. Introduction

The linear programming (LP) approach has gained popularity since the early 1990s

due to its ability to impose little a priori functional form, handle multiple outputs-

inputs without the need of price data, and accommodate weak and strong disposability

assumptions. However, the LP approach, due to its piecewise linear approximation

of the technology or theoretical frontier, is conditioned by the number of decision

making units (DMU) and the number of constraints (in our case the level of input

and output aggregation) in the model. The sensitivity of LP efficiency measures

due to output and input aggregation has been established (Thomas and Tauer 1994;

Tauer and Hanchar 1995; and Shaik 2007) and referred to as the “curse of

dimensionality” problem (see, e.g., Thanassoulis et al. 2008: 320). The “curse of

dimensionality” problem associated with an increase in the number of constraints

(or level of disaggregation), leads to an increase or decrease in the number of

reference points resulting in a decrease or increase in the efficiency and productivity

measures. These aggregation issues have been addressed in the literature (Blackorby

and Russell 1999; Färe and Zelenyuk 2003; and Simar and Zelenyuk 2003) with

the use of dual input, output prices. However, explaining the aggregation issue in

the primal framework without the explicit or implicit use of dual or shadow price

is challenging.

This paper addresses the “curse of dimensionality” issue by demonstrating that

the problem may be due to the shadow or dual values recovered from the constraints

of the LP approach. The dual values of the LP constraints should reflect technology

and economic behavior of individual DMUs (or states in this case). Theoretically

(Caves, Christensen and Diewert 1982a and 1982b), the computation of productivity

measures involves the use of market prices in the case of the ideal Fisher index

approach, marginal product in the case of the parametric approach, and shadow or

dual values in the case of LP approach. We also demonstrate the shadow or dual

values recovered from the LP constraints depend on how the return to scale constraint

is imposed in the estimation of the LP productivity measures. The input-based

Malmquist productivity index (IMP) or output-based Malmquist productivity index

(OMP) impose constant returns to scale (CRS) or variable returns to scale (VRS)

restrictions simultaneously in the input and output constraints (see Färe et al. 1994;

Färe et al. 1998; and Grifell-Tatje and Lovell 1995). In contrast, the Malmquist total

factor productivity (MTFP) index model (see Bjurek 1996) imposes constant returns

to scale independently in input and output constraints. Other advantages of the

MTFP index (a Hicks-Moorsteen type index) over the standard Malmquist productivity
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index is that it always has a TFP interpretation, and that under weak assumptions

of VRS and strong disposability of inputs and outputs, it is not unbounded. One

can see the TFP discussion in Grifell-Tatjé and Lovell (1995) and in Bjurek (1996),

and the issues of infeasibilities and unboundedness in Bjurek (1996).

Specifically, this research demonstrates the sensitivity of the LP approach by

comparing the estimated productivity measures and the shadow or dual values

(relative to the market prices of the ideal Fisher index approach) of the constraints

of the LP model estimated at various levels of aggregation.1 The following section

presents the time-series linear programming OMP, IMP and MTFP index methods.

In the Section III, a brief description of the U.S. state-level time series data from

1960-2004 is presented. Empirical application and the results along with the

performance of methods are presented in Section IV followed by conclusions.

II. Linear programming approach

For the nonparametric programming approach, technology that transforms input vector

xt = (x1t,x2t,…,xit) into output vector yt = (y1t,y2t,…, yjt) for each state k = 1,2,…,K(48)

over time t = 1(1960),2,…T(2004) can be represented by the output set:

, (1)

or input set:

, (2)

and follows the properties of strong disposability of outputs and inputs, and constant

returns to scale (CRS) or variable returns to scale (VRS) as in Färe et al. (1994),

Färe et al. (1998) and Grifell-Tatje and Lovell (1995).

In a given year, t, the concept of the output set can be represented by the output

distance function for k decision-making units as:

, (3)

P x y x yt
k

t
k

t
k

t
k( )={ }: can produce

L y x y xt
k

t
k

t
k

t
k( )={ }: is produced by

OD x y y P xt t
k

t
k

t
k

t
k, max :( ) = ∈ ( )−1

θ θ
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1 Other relative issues, slack and disposability are important but beyond the scope of the paper. We also
will not be dealing with non-marketable goods or assume weak disposability in estimating productivity
measures.
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Similarly, the concept of input set can be represented by input distance function

for k decision making units as:

. (4)

A. Time-series output and input-based Malmquist productivity indices
(OMP and IMP)

Following Shaik (1998) and Shaik et al. (2002), in time-series observations on a

single economic unit (such as North Dakota), an IMP in year t relative to the final

year T can be represented as follows. Consider the multiple of year t output that is

revealed to be possible relative to the set of all observations including year T, using

the year t bundle of inputs. If outputs could be doubled (the multiple is 2), then the

productivity at time t is the inverse of this multiple, or 0.5. This concept can be

represented by an output or input distance function evaluated for any year t using

reference production possibilities set T as:

(5a)

(5b)

where Yj = (yj
1, yj

1,………, yj
T) and X = (xi

1, xi
2,………, xi

T), the intensity variables

z ≥ 0(z = 0) identify the CRS (VRS) boundaries of the reference set.

Hence, the OMP measure for a single economic unit, between two time-periods

t and t+1, given technology, is defined as:

, (6)

and the IMP measure for a single economic unit, between two time-periods t and

t+1, given technology, is defined as:

. (7)

ID y x x L yt
k

t
k

t
k

t
k

t
k( , ) min : ( )− = ∈1 λ λ

OD x y y zY zX xt t
z

j t j i i, max , ,
,

, ,( ) = ≤ ≤−1

θ
θ θ s.t. tt z, ,≥ 0

ID y x y zY x zXt t
z

j t j i t, min , ,
,

, ,( ) = ≤−
≥

1

λ
λ λ s.t. ii z, ,≥ 0

OMP
OD x y

OD x yt
t t t

t t

+ + +=1 1 1( , )
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IMP
ID y x

ID y xt
t t t

t t

+ + +=1 1 1( , )

( , )
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B. Time-series Malmquist total factor productivity index

Following Bjurek (1996), the time-series Malmquist total factor productivity index

(MTFP), an alternative to the time-series OMP or IMP index, is the ratio of Malmquist

output index (MO) and Malmquist input index (MI). The MO index measures the

scalar change in outputs assuming the inputs are constant over time. Here inputs

are constant, meaning that input usage does not change. Hence this would reflect

the computation of an ideal Fisher output quantity index. Similarly the MI index

measures the scalar decrease in inputs assuming the outputs are constant over time.

Here outputs are constant, meaning that output produced does not change. Hence

this would reflect the computation of an ideal Fisher input quantity index. 

This concept of MO and MI indices can be represented by modifying equation

(5a) and equation (5b) evaluated for any year t for a single firm employing a reference

production possibility set T:

(8a)

(8b)

where Yj = (yj
1, yj

1,………, yj
T) and X = (xi

1, xi
2,………, xi

T), the intensity variables

z ≥ 0(z = 0) identify the constant (variable) return to scale boundaries of the reference

set.

The MTFP index for a single economic unit maintaining the index productivity

notion is represented as:

. (9)

To illustrate the sensitivity of the nonparametric program approach to the level

of commodity aggregation, we compare the share-weights recovered from the dual

values implicit in the linear programming constraints. For comparison, the share-

weights are recovered from the dual values (dv) of the output (input) constraints

defined in equation (5a) of OD (equation 5b of ID) as well as from the output (input)

constraints in equation (8a) of MO (equation 8b of MI) of MTFP.

The dv of the linear programming input equations (5b) and (8b) and output

equations (5a) and (8a) constraints are normalized to one, and are equivalent to the

OD x constant y y zt t
z

j t=( )( ) = ≤
−1

max ,
,

,θ
θ θ s.t. YY x zX z x constantj i t i, , , ,, ≥ ≥ =0

ID y constant x x zt t
z

i t=( )( ) =
−

≥
1

min ,
,

,λ
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t t
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=
=
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share-weights. Following Shaik (1998) and Shaik et al. (2002), the nonparametric

implicit output and input share-weights in terms of dv are represented as:

, (10)

and

, (11)

where RSj and CSi are the implicit output and input share-weights recovered from

the linear programming constraint and dv are the dual values obtained from the

output and input linear programming constraints.

III. U.S. agriculture data

The U.S. Department of Agriculture’s Economic Research Service (ERS) constructs

and publishes the state and aggregate production accounts for the farm sector.2 The

features of the state and national production accounts are consistent with the gross

output model of production and are well documented in Ball et al. (1999). Output

is defined as gross production leaving the farm, as opposed to real value added

(quantity index, base 1960=100). All inputs are quantity index with 1960=100.

Finally, quantity indexes are constructed as the weighted sum of the rate of growth

of the components, where the weights are the respective value (output or input)

shares. As such, the indexes measure the annual rates of change in the output or

input aggregate.

The state-wise annual growth rate of the variables’ employed in the estimation of

productivity for the period 1960-2004 is presented in Table 1. The annual growth rate

is defined as [x2004/x1960)1/n–1]*100, where x is input or output variable and n is the

number of years in the time period. Within outputs, the average annual growth rate

across all the states for crops is 1.464 followed by livestock with 0.942 and other farm

revenue with 0.715. In the input category, capital (-0.339), land (-0. 881) and labor

(-2.187) had a negative average annual growth rate across all the states compared to

positive average annual growth rate of energy (0.444), material (0.7) and chemicals

RS
dv

dvj
j

jj

=
∑

CS
dv

dvi
i

ii

=
∑
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2 The data are available at the USDA/ERS website http://www.ers.usda.gov/data/agproductivity/.
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(2.014). The productivity computed based on the average annual growth rate of output

(1.315) and input (-0.342) leads to average annual productivity growth rate of 2.136.

IV. Empirical application and results

To illustrate the sensitivity of the LP to the level of aggregation, equation (5a), the

output based Malmquist productivity measures OMP, and equations (8a) and (8b),

the Malmquist total factor productivity measures MTFP, are estimated for various

levels of commodity and input aggregations using state-level data from 1960-2004.

First, productivity measures estimated by alternative models are compared to the ideal

Fisher index productivity measure. Second, the shadow or dual values of the LP

constraints for disaggregate Malmquist productivity index and the Malmquist total

factor productivity index are compared to the market prices used in the Fisher index.

The state-wise annual productivity growth rate estimated for the period 1960-

2004 using OMP and MTFP index time series models for various levels of aggregation

are presented in Table 2.3 Specifically, two levels of dis-aggregation were considered:

(1) single output and single input (SOSI) model with an aggregate input and aggregate

output; and (2) multiple output and multiple input (MOMI) model with 6 inputs

and 3 outputs.4

For aggregate or SOSI technology, the OMP estimated an annual growth rate

of 2.136 for CRS (1.55 for VRS) that is identical (different) to the ideal Fisher index

measure. Since the SOI or aggregate technology is immune to the divergences in

productivity, measures such as share-weights are not used in the estimation process

of the LP model. In contrast, the MTFP index for the SOSI model estimated an

annual productivity growth rate of 1.9127 for CRS and VRS technology. Even

though the MTFP index has a TFP interpretation, the productivity measures estimated

under CRS or VRS assumptions are expected to be identical given equation (9) was

estimated under constant input (output) for MO (MI). This is different from the

ideal Fisher index productivity measure of 2.136 (Table 2). The annual productivity

measures estimated by the ideal Fisher productivity index, the OMP index, and the

MTFP index for the SOSI models are graphically presented for a single state, North

Dakota, in Figure 1.

Journal of Applied Economics178

3 The detailed annual productivity measures computed can be obtained from the authors.

4 Results from other levels of disaggregation, (1) single output and multiple input (SOMI) model with
an aggregate output and 6 inputs; and (2) multiple output and single input (MOSI) model with an
aggregate input and three outputs, are available from the authors.
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Results for disaggregate or multiple output and multiple input (MOMI) model

with 6 inputs and 3 outputs are also presented in Table 2. The OMP index estimated

an annual productivity growth rate of 1.0244 for CRS (1.0074 for VRS), while the

MTFP index estimated an annual growth rate of 1.3612 for CRS and VRS technology.

These annual productivity growth rates for the MOMI models were different from

ideal Fisher index measure. Further, the estimated annual productivity growth rate

from the MOMI model is different from the SOSI model. Figure 2 presents the annual

productivity measures estimated by the ideal Fisher productivity index, the OMP

index, and the MTFP index for the MOMI models for a single state, North Dakota.

This difference in the annual productivity growth rates due to “curse of

dimensionality” problem is consistent with the efficiency (Hanchar and Tauer 1995;

and Tauer and Thomas 1994) measures. In a productivity framework it is obvious

that the “curse of dimensionality” problem leads to decreased productivity growth

measures and the results in Table 2 support the argument. In addition, results also

show the sensitivity of the use of CRS and VRS technology due to the composition

of the theoretical frontier (or envelope).

Journal of Applied Economics182
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Figure 1. North Dakota: annual TFP estimated by Fisher, OMP and MTFP indices for Single Output

Single Input (SOSI), 1960-2004

Notes: OMP is the output Malmquist productivity index, MTFP the Malmquist total factor productivity index, crs (vrs) the constant
(variable) returns to scale.
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Next, we identify the “curse of dimensionality” problem in reference to the

shadow or dual values of the LP constraints. We also demonstrate the weights or

shadow prices recovered depend on how the CRS or VRS constraint is imposed in

the estimation of the OMP and MTFP indexes. To accomplish this objective, we

compare the endogenous share-weights recovered from the dual values of the linear

programming constraints of the OMP and MTFP programming method for various

levels of commodity and input aggregation. Also, we compare the endogenous

share-weights recovered from the programming approach to the exogenous share-

weights of the ideal Fisher index approach from 1960-2004.The average input and

output shares of the ideal Fisher index approach, the OMP programming approach,

and the MTFP programming approach for the disaggregate model are presented in

Table 3.5 Results in Table 3 indicate that the average shadow shares of the OMP

and MTFP programming approach are different from the exogenously observed
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Figure 2. North Dakota: annual TFP estimated by Fisher, OMP and MTFP indices for Multiple Output

Multiple Input (MOMI), 1960-2004

Notes: OMP is the output Malmquist productivity index, MTFP the Malmquist total factor productivity index, crs (vrs) the constant
(variable) returns to scale.

5 The annual shadow or dual prices recovered from the linear program approach can be obtained from
the authors.
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market shares of the ideal Fisher index approach.6 For example, in the ideal Fisher

index approach, the average land, labor, capital, chemicals, energy and materials

share are 9%, 27%, 13%, 6%, 4% and 41%, respectively. Compared to the ideal

Fisher index approach, the average shadow or dual values input shares computed

for OMP programming approach with VRS technology are 30%, 16%, 20%, 9%,

12% and 13% respectively for land, labor, capital, chemicals, energy and materials.

Similar average shadow or dual values input shares with CRS technology are 15%,

24%, 9%, 15%, 12% and 26% respectively for land, labor, capital, chemicals, energy

and materials. This is different from the shares used in the ideal Fisher index approach

and recovered from the LP approach with VRS technology.

Similarly, the average shadow or dual values output shares computed from OMP

programming approach with VRS (CRS) are 28%, 50% and 23% (28%, 54% and

18%) respectively for crops, livestock and other farm revenue. However, they are

different from the output shares used in the ideal Fisher index. In the ideal Fisher

index approach, crop and livestock had a share of 49% and 46%, respectively, with

the remaining attributed to other farm revenue. In contrast, the output and input

shares recovered by the MTFP programming approach under CRS and VRS

technology were identical. These shares were different from the shares used in the

ideal Fisher index approach and recovered from the OMP programming approach

with VRS and CRS technology.

One of the main reasons for the difference in the productivity measures across

models is the use of share-weights to form the technology or theoretical frontier

(envelope). Unlike the ideal Fisher index approach, the average share-weights or

shadow prices used in the programming approach are driven by the number of input

and output constraints used in the estimation. For example, with a 6 input-3 output

disaggregation model, the OMP or MTFP linear programming approach allocates

maximum share-weight on a single input with a huge positive rate-of-change,

resulting in a very low productivity measure. Alternatively, if the OMP or MTFP

linear programming approach allocates maximum share-weight on a single input

with a lowest rate-of-change, then the productivity measures would be very high.

Journal of Applied Economics184

6 Due to the piecewise linear approximation of the programming approach for some inputs or outputs,
the shares approximated from the linear programming constraints might attach zero or 100 percent
weight. The shares present in the Table 3 are averaged across the whole time period.
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V. Conclusions

This paper examines the sensitivity of nonparametric programming productivity

measures to the choice of commodity/input aggregation and imposition of CRS/VRS

technology compared to the traditional ideal Fisher index approach using U.S. state-

level data from 1960-2004. The importance of share-weights in explaining the

sensitivity of the nonparametric productivity measures is illustrated by comparing

the implicit shadow shares recovered from the dual values of the linear programming

constraints in the OMP and MTFP programming methods to the observed shares

of the ideal Fisher index.

The analyses at the U.S. state level indicates productivity measures estimated

from the OMP programming approach with CRS technology is identical to the ideal

Fisher index productivity measures for aggregate (single output and single input)

technology. Divergence in productivity measures is observed not only due to choice

of method –OMP and MTFP methods and various levels of commodity and input

aggregation, but also between CRS and VRS technology. Due to the piecewise

linear approximation of the nonparametric programming approach, the shadow

share-weights are skewed leading to the difference in the productivity measures

across methods, models and various levels of commodity aggregation.

The importance of the results reported in this paper will depend upon the

researcher’s objectives and the availability of data. If prices are available utilizing

the price information (as share-weights) in the computation of productivity measures,

either by the index and or linear programming approach will provide similar

productivity measures. However, for the unpriced, non-market goods, like

environmental pollution, the unavailability of price information would motivate

researchers to apply the programming approach to estimate the productivity measures

as well as to recover the shadow prices.
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