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1. Introduction

The linear programming (LP) approach has gained popularity since the early 1990s
due to its ability to impose little a priori functional form, handle multiple outputs-
inputs without the need of price data, and accommodate weak and strong disposability
assumptions. However, the LP approach, due to its piecewise linear approximation
of the technology or theoretical frontier, is conditioned by the number of decision
making units (DMU) and the number of constraints (in our case the level of input
and output aggregation) in the model. The sensitivity of LP efficiency measures
due to output and input aggregation has been established (Thomas and Tauer 1994;
Tauer and Hanchar 1995; and Shaik 2007) and referred to as the “curse of
dimensionality” problem (see, e.g., Thanassoulis et al. 2008: 320). The “curse of
dimensionality” problem associated with an increase in the number of constraints
(or level of disaggregation), leads to an increase or decrease in the number of
reference points resulting in a decrease or increase in the efficiency and productivity
measures. These aggregation issues have been addressed in the literature (Blackorby
and Russell 1999; Fire and Zelenyuk 2003; and Simar and Zelenyuk 2003) with
the use of dual input, output prices. However, explaining the aggregation issue in
the primal framework without the explicit or implicit use of dual or shadow price
is challenging.

This paper addresses the “curse of dimensionality” issue by demonstrating that
the problem may be due to the shadow or dual values recovered from the constraints
of the LP approach. The dual values of the LP constraints should reflect technology
and economic behavior of individual DMUs (or states in this case). Theoretically
(Caves, Christensen and Diewert 1982a and 1982b), the computation of productivity
measures involves the use of market prices in the case of the ideal Fisher index
approach, marginal product in the case of the parametric approach, and shadow or
dual values in the case of LP approach. We also demonstrate the shadow or dual
values recovered from the LP constraints depend on how the return to scale constraint
is imposed in the estimation of the LP productivity measures. The input-based
Malmquist productivity index (IMP) or output-based Malmgquist productivity index
(OMP) impose constant returns to scale (CRS) or variable returns to scale (VRS)
restrictions simultaneously in the input and output constraints (see Fére et al. 1994;
Fire et al. 1998; and Grifell-Tatje and Lovell 1995). In contrast, the Malmquist total
factor productivity (MTFP) index model (see Bjurek 1996) imposes constant returns
to scale independently in input and output constraints. Other advantages of the
MTFP index (a Hicks-Moorsteen type index) over the standard Malmquist productivity
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index is that it always has a TFP interpretation, and that under weak assumptions
of VRS and strong disposability of inputs and outputs, it is not unbounded. One
can see the TFP discussion in Grifell-Tatjé and Lovell (1995) and in Bjurek (1996),
and the issues of infeasibilities and unboundedness in Bjurek (1996).
Specifically, this research demonstrates the sensitivity of the LP approach by
comparing the estimated productivity measures and the shadow or dual values
(relative to the market prices of the ideal Fisher index approach) of the constraints
of the LP model estimated at various levels of aggregation.! The following section
presents the time-series linear programming OMP, IMP and MTFP index methods.
In the Section III, a brief description of the U.S. state-level time series data from
1960-2004 is presented. Empirical application and the results along with the
performance of methods are presented in Section IV followed by conclusions.

II. Linear programming approach

For the nonparametric programming approach, technology that transforms input vector
X, = (X),%y,. .. X;) into output vector y, = (yy,Yy»- -, ¥;) for each state k= 1,2,...,K(48)
over time ¢ = 1(1960),2,...7(2004) can be represented by the output set:

P(x,k ) = { y*:x! can produce yf} , (1)
or input set:

L(y! ) = { x':yF is produced by x,"} , )
and follows the properties of strong disposability of outputs and inputs, and constant
returns to scale (CRS) or variable returns to scale (VRS) as in Fire et al. (1994),
Fire et al. (1998) and Grifell-Tatje and Lovell (1995).

In a given year, f, the concept of the output set can be represented by the output
distance function for k decision-making units as:

oD, (x* yF) ' =max 6: 6y e P(x"), 3)

! Other relative issues, slack and disposability are important but beyond the scope of the paper. We also
will not be dealing with non-marketable goods or assume weak disposability in estimating productivity
measures.
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Similarly, the concept of input set can be represented by input distance function
for k decision making units as:

IDf(y* ,x/ )" =min A: Ax} e L(y")- @)

A. Time-series output and input-based Malmquist productivity indices
(OMP and IMP)

Following Shaik (1998) and Shaik et al. (2002), in time-series observations on a
single economic unit (such as North Dakota), an IMP in year ¢ relative to the final
year T can be represented as follows. Consider the multiple of year ¢ output that is
revealed to be possible relative to the set of all observations including year 7', using
the year ¢ bundle of inputs. If outputs could be doubled (the multiple is 2), then the
productivity at time ¢ is the inverse of this multiple, or 0.5. This concept can be
represented by an output or input distance function evaluated for any year ¢ using
reference production possibilities set 7 as:

-1
OD(x, ,y,) =max 0,st. 0y, <zY;,2X, < x,,220, (5a)
ID(y, ,x,)_l =min A, sty <2V, Ax,22X,,22 0, (5b)
where ¥;= !, y/th il ,y/)and X = (x, XPpeainnn ,x;7), the intensity variables

7 = 0(z = 0) identify the CRS (VRS) boundaries of the reference set.
Hence, the OMP measure for a single economic unit, between two time-periods
t and t+1, given technology, is defined as:

OD(x,.,.Y,11)

OMP;HI — ,
OD(x,.y,)

(6)

and the IMP measure for a single economic unit, between two time-periods # and
t+1, given technology, is defined as:

ID(yrH "xt+1 )

IMRI+1 —
ID(y, ,x,)

)
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B. Time-series Malmquist total factor productivity index

Following Bjurek (1996), the time-series Malmquist total factor productivity index
(MTFP), an alternative to the time-series OMP or IMP index, is the ratio of Malmquist
output index (MO) and Malmquist input index (MI). The MO index measures the
scalar change in outputs assuming the inputs are constant over time. Here inputs
are constant, meaning that input usage does not change. Hence this would reflect
the computation of an ideal Fisher output quantity index. Similarly the MI index
measures the scalar decrease in inputs assuming the outputs are constant over time.
Here outputs are constant, meaning that output produced does not change. Hence
this would reflect the computation of an ideal Fisher input quantity index.

This concept of MO and MI indices can be represented by modifying equation
(5a) and equation (5b) evaluated for any year ¢ for a single firm employing a reference
production possibility set 7*

OD(x, (=constant)y, )_] =max 6.st. 0y, <zY; x,,22X,,220,x=constant,  (8a)

ID(yl (=constant)x, )_I =rrllin A, st Ax;, 22Xy, <z2Y, 2>0,y=constant, (8b)
e

where ¥, = (v, y/'seinnnns s yHand X = (x!, x2,........ ,x;7), the intensity variables
z7=0(z=0) identify the constant (variable) return to scale boundaries of the reference
set.

The MTFP index for a single economic unit maintaining the index productivity
notion is represented as:

MO OD(xt + (z constant),y, +l) ID(y, (: constant),xl )

MTFP= = .
Mi OD(x, (=constant),y, ) ID(yt (=constant),x, +l)

€))

To illustrate the sensitivity of the nonparametric program approach to the level
of commodity aggregation, we compare the share-weights recovered from the dual
values implicit in the linear programming constraints. For comparison, the share-
weights are recovered from the dual values (dv) of the output (input) constraints
defined in equation (5a) of OD (equation 5b of ID) as well as from the output (input)
constraints in equation (8a) of MO (equation 8b of MI) of MTFP.

The dv of the linear programming input equations (5b) and (8b) and output
equations (5a) and (8a) constraints are normalized to one, and are equivalent to the
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share-weights. Following Shaik (1998) and Shaik et al. (2002), the nonparametric
implicit output and input share-weights in terms of dv are represented as:

RS =1, (10)
! zjdvf

and

cs = (11)

zidvi |

where RS; and CS; are the implicit output and input share-weights recovered from
the linear programming constraint and dv are the dual values obtained from the
output and input linear programming constraints.

III. U.S. agriculture data

The U.S. Department of Agriculture’s Economic Research Service (ERS) constructs
and publishes the state and aggregate production accounts for the farm sector.? The
features of the state and national production accounts are consistent with the gross
output model of production and are well documented in Ball et al. (1999). Output
is defined as gross production leaving the farm, as opposed to real value added
(quantity index, base 1960=100). All inputs are quantity index with 1960=100.
Finally, quantity indexes are constructed as the weighted sum of the rate of growth
of the components, where the weights are the respective value (output or input)
shares. As such, the indexes measure the annual rates of change in the output or
input aggregate.

The state-wise annual growth rate of the variables’ employed in the estimation of
productivity for the period 1960-2004 is presented in Table 1. The annual growth rate
is defined as [Xyy04/X1960)!"—1]*100, where x is input or output variable and r is the
number of years in the time period. Within outputs, the average annual growth rate
across all the states for crops is 1.464 followed by livestock with 0.942 and other farm
revenue with 0.715. In the input category, capital (-0.339), land (-0. 881) and labor
(-2.187) had a negative average annual growth rate across all the states compared to
positive average annual growth rate of energy (0.444), material (0.7) and chemicals

2 The data are available at the USDA/ERS website http://www.ers.usda.gov/data/agproductivity/.
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(2.014). The productivity computed based on the average annual growth rate of output
(1.315) and input (-0.342) leads to average annual productivity growth rate of 2.136.

IV. Empirical application and results

To illustrate the sensitivity of the LP to the level of aggregation, equation (5a), the
output based Malmquist productivity measures OMP, and equations (8a) and (8b),
the Malmquist total factor productivity measures MTFP, are estimated for various
levels of commodity and input aggregations using state-level data from 1960-2004.
First, productivity measures estimated by alternative models are compared to the ideal
Fisher index productivity measure. Second, the shadow or dual values of the LP
constraints for disaggregate Malmquist productivity index and the Malmquist total
factor productivity index are compared to the market prices used in the Fisher index.

The state-wise annual productivity growth rate estimated for the period 1960-
2004 using OMP and MTFP index time series models for various levels of aggregation
are presented in Table 2.3 Specifically, two levels of dis-aggregation were considered:
(1) single output and single input (SOSI) model with an aggregate input and aggregate
output; and (2) multiple output and multiple input (MOMI) model with 6 inputs
and 3 outputs.*

For aggregate or SOSI technology, the OMP estimated an annual growth rate
of 2.136 for CRS (1.55 for VRS) that is identical (different) to the ideal Fisher index
measure. Since the SOI or aggregate technology is immune to the divergences in
productivity, measures such as share-weights are not used in the estimation process
of the LP model. In contrast, the MTFP index for the SOSI model estimated an
annual productivity growth rate of 1.9127 for CRS and VRS technology. Even
though the MTFP index has a TFP interpretation, the productivity measures estimated
under CRS or VRS assumptions are expected to be identical given equation (9) was
estimated under constant input (output) for MO (MI). This is different from the
ideal Fisher index productivity measure of 2.136 (Table 2). The annual productivity
measures estimated by the ideal Fisher productivity index, the OMP index, and the
MTFP index for the SOSI models are graphically presented for a single state, North
Dakota, in Figure 1.

3 The detailed annual productivity measures computed can be obtained from the authors.

4 Results from other levels of disaggregation, (1) single output and multiple input (SOMI) model with
an aggregate output and 6 inputs; and (2) multiple output and single input (MOSI) model with an
aggregate input and three outputs, are available from the authors.
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Figure 1. North Dakota: annual TFP estimated by Fisher, OMP and MTFP indices for Single Output
Single Input (SOSI), 1960-2004
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Notes: OMP is the output Malmquist productivity index, MTFP the Malmquist total factor productivity index, crs (vrs) the constant
(variable) returns to scale.

Results for disaggregate or multiple output and multiple input (MOMI) model
with 6 inputs and 3 outputs are also presented in Table 2. The OMP index estimated
an annual productivity growth rate of 1.0244 for CRS (1.0074 for VRS), while the
MTFP index estimated an annual growth rate of 1.3612 for CRS and VRS technology.
These annual productivity growth rates for the MOMI models were different from
ideal Fisher index measure. Further, the estimated annual productivity growth rate
from the MOMI model is different from the SOSI model. Figure 2 presents the annual
productivity measures estimated by the ideal Fisher productivity index, the OMP
index, and the MTFP index for the MOMI models for a single state, North Dakota.

This difference in the annual productivity growth rates due to “curse of
dimensionality” problem is consistent with the efficiency (Hanchar and Tauer 1995;
and Tauer and Thomas 1994) measures. In a productivity framework it is obvious
that the “curse of dimensionality” problem leads to decreased productivity growth
measures and the results in Table 2 support the argument. In addition, results also
show the sensitivity of the use of CRS and VRS technology due to the composition
of the theoretical frontier (or envelope).
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Figure 2. North Dakota: annual TFP estimated by Fisher, OMP and MTFP indices for Multiple Output
Multiple Input (MOMI), 1960-2004
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Notes: OMP is the output Malmquist productivity index, MTFP the Malmquist total factor productivity index, crs (vrs) the constant
(variable) returns to scale.

Next, we identify the “curse of dimensionality” problem in reference to the
shadow or dual values of the LP constraints. We also demonstrate the weights or
shadow prices recovered depend on how the CRS or VRS constraint is imposed in
the estimation of the OMP and MTFP indexes. To accomplish this objective, we
compare the endogenous share-weights recovered from the dual values of the linear
programming constraints of the OMP and MTFP programming method for various
levels of commodity and input aggregation. Also, we compare the endogenous
share-weights recovered from the programming approach to the exogenous share-
weights of the ideal Fisher index approach from 1960-2004.The average input and
output shares of the ideal Fisher index approach, the OMP programming approach,
and the MTFP programming approach for the disaggregate model are presented in
Table 3.5 Results in Table 3 indicate that the average shadow shares of the OMP
and MTFP programming approach are different from the exogenously observed

3 The annual shadow or dual prices recovered from the linear program approach can be obtained from
the authors.
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market shares of the ideal Fisher index approach.® For example, in the ideal Fisher
index approach, the average land, labor, capital, chemicals, energy and materials
share are 9%, 27%, 13%, 6%, 4% and 41%, respectively. Compared to the ideal
Fisher index approach, the average shadow or dual values input shares computed
for OMP programming approach with VRS technology are 30%, 16%, 20%, 9%,
12% and 13% respectively for land, labor, capital, chemicals, energy and materials.
Similar average shadow or dual values input shares with CRS technology are 15%,
24%,9%,15%,12% and 26% respectively for land, labor, capital, chemicals, energy
and materials. This is different from the shares used in the ideal Fisher index approach
and recovered from the LP approach with VRS technology.

Similarly, the average shadow or dual values output shares computed from OMP
programming approach with VRS (CRS) are 28%, 50% and 23% (28%, 54% and
18%) respectively for crops, livestock and other farm revenue. However, they are
different from the output shares used in the ideal Fisher index. In the ideal Fisher
index approach, crop and livestock had a share of 49% and 46%, respectively, with
the remaining attributed to other farm revenue. In contrast, the output and input
shares recovered by the MTFP programming approach under CRS and VRS
technology were identical. These shares were different from the shares used in the
ideal Fisher index approach and recovered from the OMP programming approach
with VRS and CRS technology.

One of the main reasons for the difference in the productivity measures across
models is the use of share-weights to form the technology or theoretical frontier
(envelope). Unlike the ideal Fisher index approach, the average share-weights or
shadow prices used in the programming approach are driven by the number of input
and output constraints used in the estimation. For example, with a 6 input-3 output
disaggregation model, the OMP or MTFP linear programming approach allocates
maximum share-weight on a single input with a huge positive rate-of-change,
resulting in a very low productivity measure. Alternatively, if the OMP or MTFP
linear programming approach allocates maximum share-weight on a single input
with a lowest rate-of-change, then the productivity measures would be very high.

% Due to the piecewise linear approximation of the programming approach for some inputs or outputs,
the shares approximated from the linear programming constraints might attach zero or 100 percent
weight. The shares present in the Table 3 are averaged across the whole time period.
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V. Conclusions

This paper examines the sensitivity of nonparametric programming productivity
measures to the choice of commodity/input aggregation and imposition of CRS/VRS
technology compared to the traditional ideal Fisher index approach using U.S. state-
level data from 1960-2004. The importance of share-weights in explaining the
sensitivity of the nonparametric productivity measures is illustrated by comparing
the implicit shadow shares recovered from the dual values of the linear programming
constraints in the OMP and MTFP programming methods to the observed shares
of the ideal Fisher index.

The analyses at the U.S. state level indicates productivity measures estimated
from the OMP programming approach with CRS technology is identical to the ideal
Fisher index productivity measures for aggregate (single output and single input)
technology. Divergence in productivity measures is observed not only due to choice
of method -OMP and MTFP methods and various levels of commodity and input
aggregation, but also between CRS and VRS technology. Due to the piecewise
linear approximation of the nonparametric programming approach, the shadow
share-weights are skewed leading to the difference in the productivity measures
across methods, models and various levels of commodity aggregation.

The importance of the results reported in this paper will depend upon the
researcher’s objectives and the availability of data. If prices are available utilizing
the price information (as share-weights) in the computation of productivity measures,
either by the index and or linear programming approach will provide similar
productivity measures. However, for the unpriced, non-market goods, like
environmental pollution, the unavailability of price information would motivate
researchers to apply the programming approach to estimate the productivity measures
as well as to recover the shadow prices.
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