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This paper considers the use of two machine learning algorithms to identify the causal 
relationships among retail prices, manufacturer prices, and number of packages sold. The 
two algorithms are PC and Linear Non-Gaussian Acyclic Models (LiNGAM). The dataset 
studied comprises scanner data collected from the retail sales of carbonated soft drinks 
in the Chicago area. The PC algorithm is not able to assign direction among retail price, 
manufacturer price and quantity sold, whereas the LiNGAM algorithm is able to decide in 
every case, i.e., retail price leads manufacturer price and quantity sold.
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I. Introduction

This paper addresses price discovery at the interface between two manufacturers 

and one retailer of carbonated soft drink (CSD) products. We use two algorithms 

from the field of machine learning: the PC algorithm and a recently developed 

Linear Non-Gaussian Acyclic Model (LiNGAM). We apply both of them to infer 
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the causal relationship, if any, among retail price, manufacturer price, and quantity 

(number of packs) sold based on scanner data collected from the sale of carbonated 

soft drinks in the Chicago area.

We begin by summarizing the literature on manufacturer-retailer channel 

interactions and the corresponding channel power. Gardner (1975), who offers 

a theoretical treatment of the farm-retail price spread for food products, shows 

how the details of underlying demand and supply information affect the market-

generated retail-farm price spread. One drawback is that the Gardner treatment 

with observational data requires considerable knowledge of the underlying 

demand and cost (supply) structure. Haines (2007) shows that the manufacturer’s 

brand share and brand price premium have significant negative impacts on the 

amount a retailer buys and sells on promotion. One possible reason is that if more 

powerful brands offer fewer promotions and with smaller discounts, the percentage 

of brand volume the retailer buys or sells on promotion will be lower for the higher 

share brand. Moreover, the retailer share has a significant positive impact on the 

percentage bought by the retailer on promotion. Haines, however, only examines 

the influence of manufacturer or retailer power, i.e., manufacturer’s brand share, 

price premium or retailer share, on retailer response to trade discounts, and 

does not provide a method to measure the division of channel profits between 

manufacturer and retailer, where a higher share of channel profit is associated with 

greater channel power. Villas-Boas (2007), who investigates vertical relationships 

between manufacturers and retailers of yogurt when wholesale price data is 

unavailable, computes price-cost margins for retailers and manufacturers that are 

implied by alternative vertical contracting models and compares the margins with 

the estimated price-cost margins by using components of marginal costs to assess 

the fit of different vertical models. The result is consistent with the high bargaining 

power of retailers that are able to force wholesale prices down to marginal cost and 

thus the manufacturers’ implied price-cost margins are 0 for all products. Kadiyali 

et al. (2000) use a conduct parameter approach to address vertical relationships in 

the juice and tuna marketing channels through the notion of pricing power. Their 

empirical results demonstrate that the retailer has greater pricing power in the 

channel. The above approaches make heavy use of assumptions about the exact 

specification of structural equations. We note that these estimations are sensitive 

to misspecification in any equation. All of these assumed structural models need 

to be realistic, because an incorrect choice of functional form leads to biased and 

unreliable results (Huang, Rojas, and Bass 2008).
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Our paper explores two machine learning algorithms that attempt to uncover 

causal relationships between or among variables without assuming causal 

relationship a priori. The algorithms are constrained to search over acyclic graph 

structures and the resulting output is termed a Directed Acyclic Graph (DAG). 

DAG is widely used to represent causal relationships among non-temporal 

variables (Pearl 2009). Several algorithms have been used to generate DAG 

for the purpose of correctly describing the causal association among variables. 

The PC algorithm, an early contribution to the field, makes the assumption of 

Gaussian data and applies a conditional independence relation. The assumption of 

Gaussian data negates the need for information of higher-order moment structures 

(Shimizu, Hoyer et al. 2006). The PC algorithm, however, often leads to a set of 

indistinguishable causal patterns that are equivalent in their conditional probability 

structure (or probability structure). For example, when x, y, and z are normally 

distributed, the data cannot distinguish between the two graphs: x  y  z and  

x  y  z. In other words, both graphs are compatible with the same probability 

distribution, and therefore are indistinguishable and observationally equivalent 

(Pearl 2009). A key character of LiNGAM is the assumption of non-Gaussianity 

of the variables (or disturbances) (Shimizu, Hoyer et al. 2006). If the data are 

non-Gaussian, we can apply higher-order moment structures to identify causal 

patterns, some of which may not be distinguished by the PC algorithms. The 

further the data are from normality, the more accurate the ultimate causal patterns 

identified by LiNGAM (Shimizu and Kano 2008). In this paper, we elucidate the 

differences and similarities between the PC and LiNGAM algorithms. We reject 

normality for all of our data, and thus LiNGAM becomes a suitable candidate for 

identifying any underlying causal structure among our variables.

II. PC algorithm

A. Conditional independence statements and graphs

The PC algorithm, one of the earliest and widely-used machine learning algorithms, 

is based on the concept of conditional independence. For explanatory purposes, 

we describe the concept of a dependency model. Let X, Y, and Z denote three 

disjoint subsets of variables. “X is independent of Y given Z” can be denoted by the 

independency statement, I(X, Y|Z). Suppose M is a dependency model, which is a 

rule that determines whether I(X, Y|Z) is true. If there is a direct correspondence 
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between the variables of M and the set of vertices in V of an undirected graph  

G =(V,E)1,� then the topology of G reflects some properties of M. A subset Z of 

nodes in a graph G that intercepts all paths between the nodes of X and those of 

Y can be written as . When two sets of nodes X and Y are connected 

through a set Z, conditioning on Z can be understood as blocking these interactions 

(Pearl 1988; Kwon and Bessler 2011). This leads to the following definition.

Definition 1 (Pearl 1988) An undirected graph G is a dependency map (or 

dependence map, or D-map) of a dependency model M if there is a one-to-one 

correspondence between the variables of M and the nodes V of G, such that for all 

disjoint subsets X, Y, and Z of elements

Similarly, G is an independency map (or independence map, or I-map) of M if

G is said to be a perfect map (P-map) of M if it is both a D-map and an I-map. 

Therefore

Any probability distribution P is a dependency model, because for any triplet  

(X, Z, Y) the validity of I(X, Y|Z) can be tested using the following equation 

P(x| y,z) = P(x | z )whenever P(y,z) > 0, where x, y, and z represent the assigned 

values of the variables X, Y, and Z, respectively (Pearl 1988). Given a probability 

distribution P that satisfies the Causal Markov Condition and Stability condition, 

a DAG (or Bayesian Networks) G is a perfect map of P for the continuous normal 

distribution and for the discrete multinomial distribution (Pearl 1988; Kwon and 

Bessler 2011).

1 G=(V,E) is a graph consisting of nodes V in one-to-one correspondence with the variables, and edges (lines) E that 
connect the nodes. By undirected we mean there is no arrowhead at the end of the line indicating causal influence (X 
causes Y), but merely a line, X –Y , where X and Y are related, but the direction of causal flow is unknown. A directed 
graph has vertices whose edges are connected with arrows, e.g., XgY. A directed acyclic graph is a directed graph 
that contains no directed cyclic paths. A path represents a sequence of consecutive edges in the graph and blocking 
can be interpreted as stopping the flow of information (or dependency) between the variables that are connected by 
the paths (Pearl 2009).
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B. Causal Markov Condition and d-separation

The common distribution assumption used in the PC algorithm is Gaussian 

distribution for continuous variables. 2 In a more generalized way, a parameterized 

DAG for a set of variables is a pair (G, ΘG) where G is a DAG and ΘG is the set 

of free parameters mapping the graph onto a probability distribution. We note 

that  can be the coefficients as well as the means and variances of the error terms 

of the structural equations.3 In order for the parameters to specify a probability 

distribution, some restrictions must be imposed on the parameters, e.g., the 

standard deviations cannot be negative. Any parameter value that falls within the 

restricted range is termed a “legal” parameter value.  denotes the set 

of all distributions corresponding to legal parameter values.  denotes 

the set of conditional independence relations that holds in every distribution 

in  (Spirtes 2005). A DAG G represents any joint distribution over the variables 

X={X
1
,...,X

n
}  that can be factored according to the following rule

(1)

where  is the set of parents (direct causes) of node xi in G. The factorization of 
p according to G is equivalent to each variable X in the DAG being independent of 
all the variables that are neither parents nor descendants of X, and conditional on 
all of the parents of X in G. Any probability distribution that satisfies the property 
in Equation (1) is said to satisfy the Causal Markov Condition for G (Spirtes 
2005). For any  satisfying the Causal Markov Condition for G, all of 
the conditional independence relations in  hold. Pearl has proposed the 
concept of d-separation to determine which conditional independence relations 
are entailed by satisfying the Causal Markov Condition. A path is said to be 
d-separated by Sepset(X) (separating set) if and only if (iff) (1) a path contains a 
causal chain X

1
 X

2X
3
 or causal fork X

1X
2X

3
 such that X

2 
should be in the 

Sepset (X
1
,X

3
) because X

1
 and X

3
, which are unconditionally dependent, become 

independent once conditioned on X
2
, or (2) a path contains an inverted fork (or 

2 A reviewer has properly pointed out that one could actually use more general tests of independence and 
conditional independence to implement the PC algorithm. In this paper our use of the PC algorithm follows the 
current implementation as given in TETRAD (http://www.phil.cmu.edu/projects/tetrad/ ) under the assumption of 
Gaussianity. 
3  The structural equation XgY of  can be written as Y = θ

 xy
X + e

y
.
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unshielded collider, or v-structure) X
1X

2X
3
 such that X

2 
 Sepset (X

1
,X

3
) and 

any of X2’s descendants4 are not in Sepset (X1,X3) because X1 and X3, which are 

unconditionally independent, become dependent once conditional on X2or its 

descendants (Spirtes et al. 2001; Pearl 2009). If I (X1,X3| X2)p is satisfied whenever  

X1 is d-separated from X3 conditional on X2 in G, then P satisfies the Causal Markov 

Condition (Spirtes 2010). Following Drewek (2010), the PC discovery algorithm 

can be summarized as shown in Algorithm 1.5

Table 1. Algorithm 1: PC discovery algorithm

1. Form a complete undirected graph G on the vertex set .

2. Set  k=0 and repeat the following two steps 

i. Test for all ordered pairs of adjacent vertices  in G with  if a 

subset   exists that fulfills 

If so, remove edge  from G and save S as   

ii. Set  k=k + 1 and go back to 2i.

3. For each ordered triple of vertices  such that pairs  and  are adjacent, 
but   is not adjacent, check if . If so, orient the edges as .

4. Orient as many of the remaining undirected edges, such that neither a new v-structure nor a directed 
cycle is created.   

However, even given the Causal Markov and Faithfulness Assumptions and the 

assumption of sufficiency,6 we note that the true causal model is underdetermined 

because of the hierarchy of equivalence relations. For example, causal chain and 

4 The edge  XgY represents X is a parent of Y. Y is a descendant of X if there is a directed path from X to Y (Spirtes 
2010).
5   Calculates the cardinality of the neighborhood of the X

i
’s edge without X

j
.

6 Suppose  is represented by a DAG G, then P is stable (or faithful) to G iff  is entailed (by 
d-separation) by G for any set of the free parameters. In other words, the stability condition states that no  
can be destroyed as we vary the parameters from ΘG to Θ Ǵ (Spirtes 2005; Pearl 2009). A set of variables X  is causally 
sufficient iff the error terms are mutually independent. The system does not omit any variables that are direct causes 
of any pair of variables in X (Spirtes et al. 2004). 
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causal fork represent exactly the same set of probability distributions so these 
two DAGs are distributionally equivalent. In addition,  and  are conditional 
independence equivalent iff both graphs entail the same set of conditional 
independence relations,  (i.e., they have the same set 
of d-separation) (Spirtes et al. 2004; Spirtes 2005). In the case of multivariate 
normal distributions, under the condition of sufficiency, conditional independence 
equivalence does entail distributional equivalence (Spirtes 2005). In most of the 
PC results, more than one causal graph is conditional independence equivalent 
and is compatible with a given probability distribution (distributional equivalent), 
and thus, without further background knowledge, no reliable statistical inference 
from the data can distinguish between them (e.g., causal chain and causal fork). 
Therefore, the resultant graph is not unique (Moneta et al. 2013). Such equivalences 

are characterized by undirected edges in the graph (Drewek 2010).

III. Linear Non-Gaussian Acyclic Models (LiNGAM)

In general, the PC algorithm searches the causal pattern based on conditional 
independence, whereas the LiNGAM algorithm discovers the causal directionality 
based on functional composition (Pearl 2009). LiNGAM identification relies on 
independent component analysis (ICA).7 For Gaussian variables, ICA cannot find 
the correct mixing matrix because many different mixing matrices yield the exact 
same Gaussian joint density (Hyvärinen et al. 2001). ICA is only feasible on non-

Gaussian data. We can use higher-order statistics of the variables to obtain stronger 

identification results if the data are non-Gaussian.8 The details are as follows.

A. Independent component analysis (ICA)

The Central Limit Theorem (CLT) states that any mixture of independent source 

signals usually has a distribution that is closer to a normal distribution than any 

7  We apply ICA-LiNGAM in this paper. Shimizu et al. proposed the second estimation algorithm for LiNGAM which 
is known as DirectLiNGAM (Shimizu et al. 2011). DirectLiNGAM is an alternative estimation method that does not 
make use of ICA.
8 In the PC algorithm, the variables are assumed Gaussian. Under the assumption of Gaussianity, we cannot use 
higher-order moment structure to identify the causal direction between two variables because the data are not skewed 
(Dodge and Rousson 2001).
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of the constituted original variables (Stone 2004). Assuming that we observe the 

mixtures, X=(X
1
,...,X

n
) of the independent signals S=(S

1
,...,S

n
) 9, we have

X = As, (2)

where s are mutually independent components. According to the CLT, any of the 

s is less Gaussian than the mixture variables X. We can rewrite the independent 

components as the linear combination of the mixture variables inversely. The 

objective of ICA is to find the “demixing matrix” W where W maximizes the sum 

of the non-Gaussianity of the mutually statistically independent components of 

S where S = WX  and W = A–1(Hyvärinen et al. 2001; Shimizu, Hyvärinen et al. 

2006). 

B. Linear Non-Gaussian Acyclic Models (LiNGAM)

Shimizu, Hoyer et al. (2006) developed LiNGAM to implement a causal search 

on non-Gaussian distributed variables based on the assumption of independently 

distributed non-Gaussian disturbances.10 Assume that causal relationships exist 

among the vector X=(X
1
, X

2
,...,X

n
) and can be represented by the structural 

equation model

(3)

where k(i) denotes a causal order of xi and xj is a direct cause of xi. The 

disturbances ei are mutually independent and non-Gaussian distributed with non-

zero variances. If each variable xi  has a zero-mean, we are left with the following 

system of equations:

9 The original assumption of the ICA model is that the number of observed variables must be greater than or equal to 
the number of independent signals.
10 More details about LiNGAM appear in Shimizu, Hyvärinen et al. (2005) and Shimizu, Hoyer et al. (2006).
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(4)

where B is the coefficient matrix of the model. Solving for X in equation (4) gives

(5)

that is, equation (5) and the above non-Gaussianity of disturbances form the 

classical linear ICA model (Hyvärinen et al. 2001; Shimizu, Hyvärinen et al. 

2006).The error terms  in equation (5) can be viewed as sources or signals s. We 

can rewrite equation (5) as

(6)

In general, the LiNGAM algorithm is processed by first conducting ICA 

estimation11 to estimate the mixing matrix A, and then permuting and normalizing 

it appropriately before computing B.12 Following Shimizu, Hoyer et al. (2006), the 

discovery algorithm can be briefly summarized as shown in Algorithm 2.

Table 2. Algorithm 2: ICA-LiNGAM discovery algorithm

1. Given an m x n data matrix X, where each column contains one sample vector x, subtract the mean from 
each row of X, apply an ICA algorithm to obtain a decomposition X = AS, and calculate W = A–1.

2. Find a permutation of rows of W yielding a matrix W without any zeros on the main diagonal. 

3. Divide each row of W by its corresponding diagonal element to yield a new matrix W ’with all ones on the 
diagonal.

4. Compute an estimate B  = I–W of B.

5. Permute B  until it is strictly lower triangular to gain the causal order.

11 In most cases, ICA decomposition is implemented by using the FastICA algorithm.
12 More details of permutation and normalization appear Shimizu and Kawahara (2010).
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Note that some remaining estimated edges between variables may be weak and are 

probably zero in the generating model. The Wald test can be used to determine if 

some remaining connections should be pruned.13 

C. Determining the direction of causality14

Suppose 

Model 1: y = bx  + e
y
,

Model 2: x = ηy  + e
x
,

where the explanatory variable is independent of the error in each model. Let x
k 

and y
k
(k = 1,...,N) be observations on x and y with mean zero. Define the moment 

structure as

Because E(x) = E(y)=0, we do not consider the first-order moment of observed 

data. 

The model-predicted second-order moment structure of Model 1 is

(7)

where t2 is the number of parameters, in this case, . Note that 

the number of the distinct sample moments and the number of t2 are both 3. Also 

note that Model 1 and Model 2 have the same second-order moment structure. 

Under the above conditions, therefore, Model 1 and Model 2 are equivalent, which 

means that Model 1 cannot be identified from Model 2 if we only consider second-

13 The detail of pruning edges appears in Shimizu, Hoyer et al. (2006).
14 The detail of finding the causal direction between non-Gaussian x and y appears in Kano and Shimizu (2003), and 
Shimizu and Kano (2008). Our treatment in this section closely follows these original authors.
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order moment structures. However, if the relevant variables and disturbance terms 

are non-normally distributed, we can apply the higher-order moments of Model 1 

and Model 2 to detect the causal direction. For example, the third-order moment 

of Model 1 can be expressed as

(8)

where . The fourth-order moment structure can be defined in 

a similar way. Let 

In this case, there are twelve sample moments and seven parameters so we can 

evaluate the model fit. The null and alternative hypotheses of testing the overall 

model fit become

(9)

The test statistic is based on the difference between m and s  by F , T
1
,  and 

T
2
, where 

.15 

Suppose, compared to Model 2, that Model 1 has a smaller chi-square value of the 
statistic T

2
 and does not reject H

0
 as shown in equation (9). This implies that Model 1 

has better model-data consistency, and for this reason, we consider it the best-fitting 
model. Therefore, Model 1 reflects the correct causal ordering between variables (x 
causes y) (Kano and Shimizu 2003; Shimizu and Kano 2008). The LiNGAM algorithm 
applies the above test statistics to examine an overall model fit (Shimizu, Hoyer et al. 

2006). Noticeably, this method is only feasible when the data is non-Gaussian.

15  is a weight matrix in GLS estimation that converges in probability to a certain positive definite matrix V.



184                                      Journal of Applied Economics

D. Structural vector autoregressive (SVAR) model

The discussion offered above makes no mention of the time ordering of observations 

and their possible complications. Generally, such problems are addressed through 

the use of a vector autoregression (or its derivative error correction representation). 

Since the vector autoregressive model (VAR model) as proposed by Sims (1980) 

does not provide enough information to study the causal influence on economic 

variables in contemporaneous time, the structural vector autoregressive model 

(SVAR) is used instead. In order to get information in contemporaneous time, we 

use these machine learning algorithms to infer aspects of the SVAR model on the 

basis of the statistical distribution of the estimated VAR residuals (Swanson and 

Granger 1997; Moneta et al. 2013).

Following Hyvärinen et al. (2010), suppose there are n related variables at 

time t, X
t
=(X

1t
,...,X

n,t
). Define the VAR model as

(10)

where p is the number of time lags used and B
0
 shows the instantaneous effects and 

reflects the causal orderings of variables in contemporaneous time. From an SVAR 

model derive the reduced form VAR model as

(11)

Calculating the residuals by

(12)

gives

(13)

Graphical-model applications to SVAR identification seek to discover the matrix 

B
0 
of equation (13). When using the PC algorithm, the process starts from tests on 

conditional independence relations among . If the error terms are non-normally 

distributed, perform the LiNGAM algorithm to find the matrix B
0
. 
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IV. Data and results

A. Database description

We use weekly scanner data from Dominick’s Finer Foods (DFF), one of the two 

largest supermarket chains in the Chicago area, courtesy of the “University of 

Chicago’s Kilts Center.” The data derives from 88 stores for the period 09/14/89-

07/20/94 (253 weeks).16 DFF prices its products by 16 zones in 4 price tiers: Cub-

Fighter, low, medium, and high. DFF’s database is an unbalanced panel data.  

Stores 21, 78, and 101 have the most complete data on sales of Coke Classic 

and Pepsi-Cola 12-pack and 24-pack, our investigated products. While store 

45’s data is not as complete, its observations still are over 200.  Our purpose of 

demonstrating differences in these two machine learning algorithms over a modest 

number of observations (>200) is well-served by this disaggregate analysis. 17 

Kadiyali et al. (2000), who aggregate DFF’s data across all stores, treat all DFF 

stores as a common retailer. Villas-Boas (2007), however, defines different retail 

stores as different retailers, i.e., in her paper store 1 is unique in the metropolitan 

area, whereas stores 2 and 3 belong to two retail chains. Note that we treat our 

case as two manufacturers interacting with one retailer because these stores belong 

to the same retail chain. We assume implicitly that the two manufacturers set a 

wholesale price for each store. We calculate the CSD manufacturers’ selling prices 

via the provided gross margin measure, a salient characteristic for exploring the 

relationship between CSD manufacturers and one retailer in a consumer product 

supply chain.  The variables are: (1) retail price (P
r
), (2) manufacturer price (P

m
), 

and (3) quantity (Q) number of packs sold. The manufacturers are Coca-Cola 

Company and PepsiCo.

Generally, the series of the number of packs sold has the highest kurtosis for 

each store and each product. In most cases, the retail price series has the lowest 

kurtosis. Moreover, the series of packs sold still has the highest skewness. These 

16 The simulation result from Shimizu, Hyvärinen et al. (2006) indicates that about 80% of causal orderings for three 
variables can be recovered when the trial number equals 250.
17 Use of an unbalanced panel specification to identify store-level fixed or random effects would make for an 
interesting extension; however, it would be beyond the scope of this paper which is to illustrate two machine learning 
algorithms in a “real world” economic setting.
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statistics reveal that the series of Q is far from a normal distribution. The price 

series positively correlate with each other, whereas there is a negative correlation 

between price and quantity. The highest correlation is between retail price and 

manufacturer price, whereas the lowest correlation is between retail price and 

packs sold in each case.

B. Empirical results

For the LiNGAM algorithm, the prune factor approach is a simplified version of 

bootstrapping. First, the data are divided into m equally sized groups and then 

LiNGAM is run on each group to produce a B matrix for each. Then the b
ij
 values 

are averaged and their standard deviation is calculated. If the absolute value of the 

mean is less than the prune factor times the standard deviation for that (i, j) entry, 

the b
ij 
value is set to zero. The number of pieces into which the data are divided is 

set at 10. Thus, the prune factor indicates the number of standard deviations can be 

away from the mean bootstrap values. The default value is 1.18 

We first estimate a reduced-form VAR model (11) and subsequently analyze 

the estimated residuals on the equation . We use the Schwarz 

Information Criterion (SIC) to choose the optimal time lag for the best multivariate 

time series fit. We use the raw data of Coke Classic 12-pack for store 45 and store 

101 as well as the raw data of Pepsi 12-pack for store 101 directly rather than 

the residuals, because these series have no lagged effects. Empirically, almost all 

of the variables series reject the null hypothesis of non-stationarity by using the 

Augmented Dickey-Fuller test. We verify that the raw data of Coke Classic 12-

pack P
r
 for store 45 and store 101 and Pepsi 12-pack P

r
 for store 101 series reject 

the Augmented Dickey-Fuller test with constant drift at a 0.05 significance level. 

The relevant statistic is shown in Table 3.

18 This introduction of the prune factor is shown in LiNGAM’s MATLAB coding.



        Price discovery between carbonated soft drink manufacturers and retailers	 187

Table 3. Test statistic and P-values of the Augmented Dickey-Fuller test for the structural residuals 

or the raw data

Product Store Q Pr Pm Store Q Pr Pm

Coke Classic 12-pack

Store 21

–15.808

(0.001)

–16.801

(0.001)

–18.231

(0.001)

Store 45

–11.909

(0.001)

–1.631

(0.097)

–2.658

(0.008)
Pepsi 12-pack –15.526

(0.001)

–16.982

(0.001)

–19.019

(0.001)

–15.819

(0.001)

–15.383

(0.001)

–15.882

(0.001)
Coke Classic 24-pack –15.817

(0.001)

–15.547

(0.001)

–18.645

(0.001)

–15.434

(0.001)

–15.396

(0.001)

–17.662

(0.001)
Pepsi 24-pack –15.993

(0.001)

–15.865

(0.001)

–18.899

(0.001)

–14.963

(0.001)

–14.815

(0.001)

–17.805

(0.001)

Coke Classic 12-pack

Store 78

–15.876

(0.001)

–15.825

(0.001)

–18.244

(0.001)

Store 101

–12.116

(0.001)

–1.808

(0.067)

–2.699

(0.007)
Pepsi 12-pack –15.800

(0.001)

–16.226

(0.001)

–19.135

(0.001)

–11.455

(0.001)

–1.727

(0.08)

–2.448

(0.014)
Coke Classic 24-pack –15.922

(0.001)

–15.790

(0.001)

–19.449

(0.001)

–15.796

(0.001)

–15.619

(0.001)

–17.140

(0.001)
Pepsi 24-pack –15.850

(0.001)

–15.885

(0.001)

–18.887

(0.001)

–15.875

(0.001)

–15.534

(0.001)

–17.727

(0.001)

In addition, we test the structural residuals for non-Gaussianity with the 

Kolmogorov-Smirnov and Jarque-Bera tests at the 0.05 significance level.19 The 

Kolmogorov-Smirnov test yields P-values much smaller than 0.001 for all three 

variables. In the Jarque-Bera test result, the structural residuals of Coke Classic 

12-pack and Pepsi 12-pack P
r
 for store 21 do not reject the null hypothesis of 

normal distribution. We note that this is not a problem of the ICA-LiNGAM 

estimation, i.e., “In the case of just one Gaussian component, we can estimate the 

model, because the single Gaussian component does not have any other Gaussian 

components that it could be mixed with” (Hyvärinen et al. 2001: 163). In other 

words, we can reliably discover a unique correct LiNGAM result when at most 

one error term is Gaussian (Shimizu, Hoyer et al. 2006). Thus, we conclude that 

it is appropriate to apply the LiNGAM algorithm. Tables 4 and 5 indicate that the 

PC algorithm is not sufficient to provide full information of the SVAR models of 

these variables.

19  In MATLAB, the null hypothesis of the Kolmogorov-Smirnov test is that the sample in vector x has a standard 
normal distribution and the null hypothesis of the Jarque-Bera test is that the sample in vector x has a normal 
distribution with unknown mean and variance.
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Table 4. Test statistic and P-values of the Kolmogorov-Smirnov test for the structural residuals or 

the raw data

Product Store Q P
r

P
m

Store Q P
r

P
m

Coke Classic 12-pack

Store 21

0.727

(0.001)

0.222

(0.001)

0.245

(0.001)

Store 45

0.995

(0.001)

0.988

(0.001)

0.904

(0.001)
Pepsi 12-pack 0.691

(0.001)

0.226

(0.001)

0.223

(0.001)

0.710

(0.001)

0.296

(0.001)

0.164

(0.001)
Coke Classic 24-pack 0.760

(0.001)

0.321

(0.001)

0.255

(0.001)

0.702

(0.001)

0.239

(0.001)

0.204

(0.001)
Pepsi 24-pack 0.753

(0.001)

0.272

(0.001)

0.191

(0.001)

0.715

(0.001)

0.182

(0.001)

0.165

(0.001)
Coke Classic 12-pack

Store 78

0.744

(0.001)

0.309

(0.001)

0.244

(0.001)

Store 101

1.000

(0.001)

0.988

(0.001)

0.904

(0.001)
Pepsi 12-pack 0.744

(0.001)

0.290

(0.001)

0.221

(0.001)

1.000

(0.001)

0.992

(0.001)

0.924

(0.001)
Coke Classic 24-pack 0.731

(0.001)

0.295

(0.001)

0.220

(0.001)

0.774

(0.001)

0.288

(0.001)

0.270

(0.001)
Pepsi 24-pack 0.752

(0.001)

0.243

(0.001)

0.158

(0.001)

0.705

(0.001)

0.271

(0.001)

0.192

(0.001)

Table 5. Test statistic and P-values of the Jarque-Bera test for the structural residuals or the raw 

data

Product Store Q P
r

P
m Store Q P

r
P

m

Coke Classic 12-pack

Store 21

6470.851

(0.001)

2.545

(0.234)

258.760

(0.001)

Store 45

539.005

(0.001)

35.447

(0.001)

105.209

(0.001)
Pepsi 12-pack 4851.141

(0.001)

3.392

(0.146)

68.399

(0.001)

603.817

(0.001)

48.284

(0.001)

90.773

(0.001)
Coke Classic 24-pack 1043.772

(0.001)

253.373

(0.001)

350.698

(0.001)

279.538

(0.001)

65.192

(0.001)

398.893

(0.001)
Pepsi 24-pack 10129.877

(0.001)

182.178

(0.001)

187.540

(0.001)

1492.669

(0.001)

45.550

(0.001)

187.310

(0.001)

Coke Classic 12-pack

Store 78

2792.544

(0.001)

40.634

(0.001)

222.903

(0.001)

Store 101

1138.068

(0.001)

19.452

(0.002)

103.201

(0.001)
Pepsi 12-pack 1942.896

(0.001)

33.694

(0.001)

63.683

(0.001)

1189.658

(0.001)

21.805

(0.002)

117.343

(0.001)
Coke Classic 24-pack 1926.943

(0.001)

221.088

(0.001)

264.036

(0.001)

1306.867

(0.001)

90.927

(0.001)

424.459

(0.001)
Pepsi 24-pack 1478.221

(0.001)

146.606

(0.001)

158.030

(0.001)

1996.936

(0.001)

55.076

(0.001)

288.449

(0.001)

Figure 1 presents histograms with overlaid Gaussian distributions of the 
empirical distributions of the structural residuals or the raw data. In general, 
the histograms lead us to reject the hypothesis of Gaussian distributions. In 
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most cases, the quantity residuals (or the raw data) are right-skewed (positively 
skewed), whereas both the retail and manufacturer prices residuals (or the raw 
data) are slightly left-skewed (negatively skewed). The structural residuals of 
Coke Classic 12-pack and Pepsi 12-pack P

r
 for store 21 fail to reject the null 

hypothesis of normal distribution in the Jarque-Bera test, but successfully reject 
the null hypothesis of normal distribution in the Kolmogorov-Smirnov test. Based 
on the graphs of these two variables, we find the peak around the mean and a 
tendency for the remaining distributions to be symmetrical. 

Figures 2 and 3 show that the PC algorithm with 0.120 significance level often 
returns undirected edges. On the other hand, the results of VAR-LiNGAM indicate 
the pricing pattern, i.e., P

r P
m
. In other words, DFF has the ability to affect the 

price charged by these two prominent CSD manufacturers. According to our 
interpretation, this means that the retailer has greater pricing power.21 This finding 
aligns with Kadiyali et al. (2000), who calculated pricing power by studying DFF 
scanner data for refrigerated juice products in the period 09/14/89-11/25/93, which 
is similar to our time period. They concluded that even though Tropicana, the brand 
with higher market share (39.86%), had a higher estimated manufacturer channel 
profit share than Minute Maid, the brand with lower market share (29.64%), DFF 
obtained a larger share of total channel profit than both manufacturers in this 
market, i.e., for Tropicana, DFF received a calculated 58.67% channel profit share 
and for MinuteMaid, it received a calculated 66.03% channel profit share. We note 
that the CSD market structure is similar to the yogurt market structure in that two 
manufacturers, Dannon and General Mills account for almost 62% of the total US 
yogurt sales. A study by Villas-Boas (2007) of the yogurt market concluded that 
retailers had greater bargaining power over yogurt manufacturers.22 The flow  is 
always anticipated and we can see this outcome in the results.23 When applying 
the same methodology to other stores’ data, P

r P
m
 or P

r Q
 
is seen often, which 

implies that different manufacturers undergo a similar pricing pattern.

20 Spirtes et al. (2001) suggest the proper significance level of the PC algorithm should be 0.1 with sample sizes 
between 100 and 300.
21  It is intuitive that the manufacturer with lower market share has less bargaining power. We perform VAR-LiNGAM on 
store 78’s and store 101’s Canada Dry 2 liter product that has much lower market share than Coke and Pepsi. Both results 
showing the causal pattern  further support the existence of retailer channel power that dominates manufacturer power.
22 A reviewer has properly pointed out that the size of the manufacturer or retailer matters. We note, however that 
our results support other empirical studies applying the structural modeling method, i.e., retailer’s channel power 
dominates the power of manufacturers even when the oligopolistic manufacturers have large market share.
23  When we reduce the prune factor to 0.5 alternatively, many causal patterns for P

r
gQ, P

r
 gP

m
, and even P

m
gQP

r
 

appear in LiNGAM’s outcomes. One possible reason for P
m
gQ is that the prices charged by CSD manufacturers to 

retailers usually determine the shelf location for products. The condition, P
r
gQ, is always assumed in most demand 

analysis and the results show the existence of such a connection. 
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Figure 1. Histograms of the structural residuals or the raw data with overlaid Gaussian distribution 

with corresponding mean and variance

Coke Classic 12-pack

Pepsi 12-pack

Coke Classic 24-pack

Pepsi 24-pack

Coke Classic 12-pack

Pepsi 12-pack

Coke Classic 24-pack

Pepsi 24-pack
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Figure 1. Histograms of the structural residuals or the raw data with overlaid Gaussian distribution 

with corresponding mean and variance (continued) 

Coke Classic 12-pack

Pepsi 12-pack

Coke Classic 24-pack

Pepsi 24-pack

Coke Classic 12-pack

Pepsi 12-pack

Coke Classic 24-pack

Pepsi 24-pack

Note: Column 1 refers to histograms on quantity sold, column 2 to histograms on retail price, column 3 to histograms on 
manufacturer price.
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Figure 2. Empirical graphs of VAR-PC and VAR-LiNGAM estimates for Coke Classic and Pepsi 

12-packs

Figure 3. Empirical graphs of VAR-PC and VAR-LiNGAM estimates for Coke Classic and Pepsi 

24-packs 
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Figure 3. Empirical graphs of VAR-PC and VAR-LiNGAM estimates for Coke Classic and Pepsi 

24-packs (continued)

V. Conclusions

This paper explored two machine learning algorithms, the PC algorithm and 

the LiNGAM algorithm, that attempt to uncover causal relationships among the 

variables, retail price, manufacturer price, and quantity sold, to determine the party 

with the greater pricing power. Our VAR-LiNGAM graphs indicated clearly that 

the retail price influenced the prices charged to DFF by the two major carbonated 

soft drink manufacturers of the drink products under study. By extension, our 

findings suggest that the retailer’s substantial pricing power may derive from 

its market share in the supermarket industry, its sales of private label products, 

or from the intense competition between the two CSD manufacturers (Kadiyali 

et al. 2000; Villas-Boas 2007). Absent the data to estimate inter manufacturer 

competition, however, we could not verify the latter conjecture. Related research 

on manufacturer-retailer channel interactions in the soft drink or yogurt category 

support our findings, e.g., Kadiyali et al. (2000), who estimated a structural model 

of manufacturer-retailer interactions to determine where pricing power lies in the 

interaction and concluded that retailers had stronger pricing power as measured 

by markup than the manufacturer for each national brand of refrigerated juice. 

Unfortunately, the DFF database lacked information about the manufacturer’s 

margin that could have provided additional verification of our results. Similar to 

the CSD market, yogurt is produced by a few leading manufacturers. Villas-Boas 

(2007), who investigated the vertical relationships between yogurt manufacturers 
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and retailers, found that the retailers had higher bargaining power relative to the 

yogurt manufacturers. The finding is consistent with our VAR-LiNGAM results. 

We also note that Kadiyali et al. (2000) found that the proposed vertical Nash 

model, the manufacturer Stackelberg model, and the retailer Stackelberg models 

all were rejected empirically by the Vuong test, which implies that real channel 

interactions are more complex than what theory assumes. Although our LiNGAM 

estimation reveals the causal relationship among manufacturer price, retailer price, 

and sold amount, we caution that it may be inappropriate to conclude that such 

results can represent a specific pricing game as proposed by theory. At a minimum, 

the results of LiNGAM show that most retailers have stronger pricing power than 

CSD manufacturers. Noting that all of the estimated error terms rejected the 

normality test, the question remains whether the error terms are far enough from 

the normal distribution to induce a correct estimation in LiNGAM. Hyvärinen et 

al. (2010) have suggested bootstrapping rather than testing the normality when 

measuring the accuracy of the estimation. We suggest that future research should 

examine causal inference under non-Gaussian data.

Finally, this paper provided an overview of an extension of LiNGAM. Lacerda 

et al. (2008) proposed LiNG-D based on LiNGAM, and added the assumption 

of stability as an estimation method for cyclic cases that correspond to dynamic 

systems. When the data are cyclic, and given all (or all but one) non-Gaussian 

error terms, there is a distribution-equivalent class containing more than one 

cyclic Structural Equation Model (SEM). Although LiNG-D narrows the class to 

a distribution-equivalence class of SEMs, it is still possible to have multiple SEMs 

(Lacerda et al. 2008), in which case the assumption of stability can be used to rule 

out most of them. Lacerda et al. (2008) provided sufficient conditions for only one 

SEM in the output of LiNG-D to be stable (the cyclic model to be identifiable): 

(i) the variables are in equilibrium, i.e., the largest eigenvalue of the coefficient 

matrix B is smaller than 1 in absolute value; (ii) the cycles are disjoint; and (iii) 

there are no self-loops.
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