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There exists an extensive literature estimating idiosyncratic labor income processes. While 
a wide variety of models are estimated, GMM estimators are almost always used. We 
examine the validity of using likelihood based estimation in this context by comparing the 
small sample properties of a Bayesian estimator to those of GMM. Our baseline studies 
estimators of a commonly used simple earnings process. We extend our analysis to more 
complex environments, allowing for real world phenomena such as time varying and 
heterogeneous parameters, missing data, unbalanced panels, and non-normal errors. The 
Bayesian estimators are demonstrated to have favorable bias and efficiency properties. 
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i. introduction 

Measuring individual income risk is essential to answering a wide range of 

economic questions. For the vast majority of individuals, labor income is 

overwhelmingly the largest component of total income. Accordingly, accurate and 

precise estimation of labor earnings dynamics is important for analyzing people’s 
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consumption and savings behavior, designing fiscal policy, and understanding the 

sources of and changes in inequality. 

Dating back to Lillard and Willis (1978), Lillard and Weiss (1979), MaCurdy 

(1982), and Abowd and Card (1989), there is a history of fitting ARMA models to 

panel data to understand the labor income risk facing individuals. Error component 

models in which labor income is the sum of a transitory and a persistent shock are 

extremely common. 1 While no shortage of models have been estimated, a striking 

feature of the literature is that, almost always, the estimation routine is based on a 

minimum distance estimator, namely GMM. 

Recent trends of increasing model complexity have led economists to depart 

from the simple GMM estimators that have dominated the literature. Sometimes 

these complex models are estimated by techniques similar to traditional GMM, 

like the Simulated Method of Moments.2 However, sometimes a very different 

likelihood based approach, Bayesian estimation, is employed. An early example 

using Bayesian estimation is Geweke and Keane (2000), who jointly estimate 

earnings process parameters and marital status to analyze the transition 

probabilities between income quartiles over the life cycle. More recently, Jensen 

and Shore (2010); Jensen and Shore (2011) estimate complex labor income 

processes with a focus on heterogeneity in idiosyncratic risk and its evolution over 

time. Given ongoing advances in computational power and Markov chain Monte 

Carlo (MCMC) techniques, we are likely to see a growing use of these estimators. 

While there exist decades of research that documents the properties of 

minimum distance estimators of labor income processes, there are no papers, to our 

knowledge, that systematically examine the small sample properties of likelihood 

based estimators on these types of error component models in panel settings. 3 

Although the benefits of Bayesian estimation are well known to theoretical 

econometricians, they are not widely understood across fields in the context of 

estimating labor income processes. Thus, as the profession adopts widespread 

1 Often the persistent component is assumed to follow a random walk as in MaCurdy (1982), Abowd and Card (1989), 
Gottschalk and Moffitt (1994), Meghir and Pistaferri (2004), and Blundell, Pistaferri, and Preston (2008).
2  For example, Browning, Ejrnaes, and Alvarez (2010) estimate a model with many dimensions of heterogeneity 
using the Simulated Method of Moments.
3 For example, a 1996 issue of the Journal of Business & Economic Statistics is dedicated to the small sample 
properties of GMM estimators, featuring notable papers on estimating covariance structures like Altonji and Segal 
(1996) and Clark (1996).
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use of Bayesian estimators for increasingly elaborate models, it is useful to 

document the properties of Bayesian estimators on simple income processes. 

This will provide a clear explanation of the Bayesian estimation routine, a better 

understanding of the source of estimation results, and a justification for its use in 

more complicated settings. 

In this paper, we examine the validity of using likelihood based estimation 

by comparing the small sample properties of a Bayesian estimator to those of 

GMM. First, as a stepping stone, we derive the maximum likelihood estimator 

by translating the labor income process into linear Gaussian state space (LGSS) 

form and applying standard filtering procedures. With this machinery established 

in an easy-to-understand framework, we provide a concise, but self-contained, 

derivation of the Bayesian estimator. We then conduct a Monte Carlo analysis of a 

Bayesian estimator and a GMM estimator on a commonly used simple labor income 

process. Although the asymptotic dominance of properly specified likelihood 

based estimators is textbook, we provide the first systematic analysis of the small 

sample properties of likelihood based estimators of labor income processes. While 

the difference between estimators is typically modest, the Bayesian estimator is 

more efficient: parameter estimates are unbiased with smaller standard errors. 

Although the initial findings demonstrate the better small sample properties of 

the Bayesian estimator, the exercise was performed on a simple model with ideal 

dataset conditions. We then extend the analysis to more complex specifications 

that capture real world phenomena. First, we first look at an environment in which 

datasets are unbalanced panels and suffer from missing data. We modify the 

estimators to accommodate these realistic features of the dataset and study how 

the relative performance of the Bayesian estimator is affected. Second, we modify 

the labor income process to allow for time-variation in the shock variances. Time 

variation in the variances of the labor income process has been documented in 

many papers and is essential in understanding the changes in labor market risks.4 

Third, we allow parameter heterogeneity across individuals. Many papers have 

found substantial heterogeneity in various aspects of the labor income process 

and emphasized its importance for understanding the risks people face. Finally, 

4 See for example Gottschalk and Moffitt (1994), Heathcote, Perri, and Violante (2010), and Blundell, Pistaferri, and 
Preston (2008) for GMM based estimations of the sequence of variances.
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we extend the labor income process to allow for non-normal shocks (there is 

empirical evidence that labor income shocks are non-normal and have fat tails).5  

To both learn about the shape of the error distributions and to address the concern 

of distribution misspecification, we let shocks be distributed according to a 

mixture of normals, which allows for a very flexible error distribution structure. 

These extensions establish that the beneficial small sample properties of Bayesian 

estimators are maintained in more complicated scenarios—thus demonstrating the 

usefulness of this estimator for applied economists. 

We proceed in Section II to present the different estimators of the simple 

income process. Section III discusses their small sample properties and Section 

IV discusses extensions to the simple income process, including time varying 

variances, missing data, unbalanced panels, heterogeneous parameters, and 

distributional assumptions on errors. Section V concludes. 

ii. estimators of the labor income process 

It is well known from the labor economics literature (since Abowd and Card, 

1989) that labor income is well described by an error components model, where 

residual labor earnings are the sum of a transitory and persistent shock. Often 

the transitory shock is i.i.d and the persistent shock follows an AR(1) process. 

Because the model fits well and is relatively simple, it has become very commonly 

used in the Labor and Macro literatures. Thus, we adopt this pervasive simple 

income process and present the GMM and Bayesian estimators. These estimators 

are developed to be used on panel data sets such as the Panel Study of Income 

Dynamics (PSID). Accordingly, our baseline labor income process is given by: 

(1)

, (2)

5 See for example Hirano (1998) and Geweke and Keane (2000) for Bayesian estimations of income processes that 
allow for non-normal shocks.
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where yi,t is the residual from a log income regression for an individual i ∈ {i, ..., N} 

at time t ∈ {1, ..., T}.6 ϵi,t is the persistent component of income and is assumed to 

follow an AR(1) process. While  is observed,  is not. νi,t is the 

transitory component of income. ηi,t is the shock to the persistent component of 

income. νi,t and ηi,t are standard normal and Σν, Ση are the variances of the transitory 

and persistent innovations, respectively. We also estimate properties of the initial 

state, ϵi,0, which we assume is normally distributed with zero mean and variance 

ΣZ0. νi,t, ηi,t, and ϵi,0 are independent of each other for all i and t. Thus the parameter 

vector to be estimated is θ: = (ρ, Σν, Ση, ΣZ0). In the next subsections, we outline 

different techniques to estimate these parameters. 

a. Gmm 

The standard strategy in the literature for estimating labor income processes is to 

use GMM. The goal of GMM estimation is to choose parameters that minimize the 

distance between empirical and theoretical moments. Identification and estimation 

rely on moments constructed from cross-sectional income autocovariances.7 

We wish to estimate the system given by equations (1) and (2). There are      

moments, where T is the total number of time periods. The total number 

of individuals, N, does not affect the number of moments because the expectations 

are taken cross-sectionally over individuals.     

6  There are many ways to obtain residual labor income. To remove predictable components that are associated with 
the individual or the aggregate state of the economy, it is common to regress idiosyncratic labor income on a vector of 
observables such as individual demographics and variables that control for aggregates. There are different methods to 
remove aggregate components, such as using time dummy variables or a common correlated effect approach (Pesaran 
2006). While important for the macro implications of the idiosyncratic labor earnings process, our paper is concerned 
only with estimating the residual labor income process.
7 This section develops the already well-understood GMM estimation routine. For other sources see Blundell, 
Pistaferri, and Preston (2008), Heathcote, Perri, and Violante (2010), or Guvenen (2009). We present the general case 
in which ρ is estimated.
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where the upper right triangle of the matrix is redundant by symmetry. Particular 

entries in the moment matrix M(θ) map into particular functions of the parameters 

θ = (ρ, Σν, Ση, ΣZ0). Define the cross-sectional moment mt,j(θ) between agents at 

time t and t + j: 

where . Simple algebraic manipulation of the above 

equations reveal (over) identification of the parameters.8 

Define the estimator as

 

where  stacks the sample covariance from the data. 

To implement the estimator, we need to choose the weighting matrix, W. 

Altonji and Segal (1996) show that the Optimal Minimum Distance (OMD) 

estimator, where W is the optimal weighting matrix, introduces significant small 

sample bias. They study the small sample properties of the GMM estimator 

with several alternative weighting matrices and recommend using the Equally 

Weighted Minimum Distance (EWMD) estimator, where W is the identity matrix. 

In light of their result, many papers in the literature use the EWMD estimator.9 

Thus, we use the GMM estimator with identity weighting matrix throughout the 

paper. Extensions to different weighting matrices are straightforward.10  With 

all objects of the optimization problem defined, the estimates can be calculated 

8  The moments are only slightly modified when variances are time varying as in Section IV.B. See the Online 
Appendix for more general expressions. 
9 An alternative used by Blundell, Pistaferri, and Preston (2008) is the Diagonally Weighted Minimum Distance 
(DWMD) estimator, where W is the optimal weighting matrix with off-diagonal elements set to zero.
10 We examined the performance of the OMD and DWMD estimators in unreported exercises and found that the 
EWMD estimator tends to outperform the OMD and DWMD estimators across various data generating processes. The 
OMD and DWMD estimators are sometimes slightly more efficient for the persistence parameter than the EWMD 
estimator, but such improved efficiency in the estimate of the persistence parameter always comes with substantially 
deteriorated efficiency in the estimates of other parameters.
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computationally using an optimizer to choose parameters θ that minimize the 

distance between model and sample moments. 

B. likelihood based estimation 

The maximum likelihood estimator is presented before deriving the Bayesian 

estimator. This establishes the linear Gaussian state space structure, which is used 

in both estimators. For the simple income process, it is feasible to compute the 

maximum likelihood estimator (MLE). However, the MLE estimator fails to scale 

with model complexity, as for more complicated specifications the likelihood 

is difficult or impossible to write in closed form. Bayesian estimation becomes 

useful in exactly these cases. 

mle 

As its name suggests, the maximum likelihood estimate is defined as the parameter 

values that maximize the likelihood function and can be expressed as  

For the simple labor income process, we can analytically compute the 

likelihood for any given θ, and thus it is feasible to solve this maximization 

problem. Analytical derivation of the likelihood function is straightforward once 

we notice that the labor income process forms a linear Gaussian state space (LGSS) 

system. We can draw from the time series econometrics literature to construct the 

likelihood using the Kalman filter. 

Define the canonical form of a LGSS as 

(3)

(4)
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where 

vt  ~  N(0, Qt), wt  ~  N(0, Rt), and S0  ~  N(S0|0, P0|0).       

Equation (3) is the state equation (or transition equation) and equation (4) 

is the observation equation (or measurement equation). St is a vector of latent 

state variables, and Yt is the vector of observables. vt is a vector of innovations 

to latent state variables, and wt is a vector of measurement error. zt is a vector of 

observed exogenous variables. To map this model into our labor income process 

of an individual Yt is residual log income and St is the persistent component of 

income.1111  For notational convenience, let θt be a vector containing all parameters 

of the model (At, Bt, Ct, Dt, Qt, Rt, S0|0, P0|0). In many applications, parameters 

are time-invariant (θt = θ for all t), but this is not a necessary requirement. All 

processes discussed in this paper will hold At, Bt, Ct, Dt constant over time; later, 

when we discuss the time varying volatility case, Qt and Rt will vary. Thus, our 

simple labor income process can be mapped into canonical form as 

At = ρ,  Bt = 1,  Ct = 0, Dt = 1,  Qt = Ση,  Rt = Σν,  zt = 0,  S0|0 = 0,  P0|0 = ΣZ0,    

for all t, with parameter vector θ = (ρ, Σν, Ση, ΣZ0) as before. 

We can now use the Kalman filter to derive the log likelihood of a LGSS, 

which is provided in the Online Appendix. 12 As idiosyncratic shocks are defined 

to be uncorrelated across individuals, one can obtain the log likelihood of the 

income data for all individuals by summing the log likelihood of each individual

.

One obvious advantage of this methodology is the relative ease of estimating 

more complicated income processes, such as ARMA(p,q) processes, since they 

allow a LGSS representation. Given that the likelihood is defined in terms of 

11 For clarity of exposition, we set z
t
 to be zero and assume Y

t
 is residual income. However, z

t 
could include all of the 

traditional first stage conditioning variables like education, age, race, etc., to remove the predictable components of Y
t
. 

This would allow estimation to be run in one step, instead of running a first-stage regression to recover idiosyncratic 
residual income. The general case is presented in the Appendix.
12 For a detailed analysis, see chapter 13.4 in Hamilton (1994).
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canonical LGSS matrices, to estimate a different parameterization of the labor 

income process, all that remains is to map the process into state space form. 

With the analytical likelihood derived in the Online Appendix, we can now use 

an optimizer to numerically maximize the log likelihood to produce the MLE 

estimates. 

Bayesian estimation: Gibbs sampling 

In computing the maximum likelihood estimator, two conditions are crucial. One 

is that we can compute the likelihood function analytically and the other is that 

the likelihood function is well behaved.13 For the simple labor income process, 

these two conditions are satisfied and the MLE estimates can be easily computed. 

However, they are not satisfied for more complex labor income processes. Bayesian 

methods are useful in those cases either because they do not require an analytical 

likelihood function or because the prior distribution smooths local maxima. For 

transparency of exposition, in this section we provide an overview of the Bayesian 

estimator for the standard income process, without the complications that it is well 

equipped to handle. 

The goal of the Bayesian estimation is to characterize the posterior distribution 

of parameters, which is defined as the distribution of parameters conditional on 

data, . The posterior distribution is related to two objects, the prior 

distribution and the likelihood function, by Bayes Theorem: 

 

where p(θ) is the prior distribution of parameters, which the researcher specifies. 

When the prior is uniform, the posterior is the same as the likelihood (as a function 

of parameters). The tighter the prior, the less the posterior reflects information 

from the data. Comparing the posterior to the prior provides a sense of how much 

the data informed the parameter estimates.14

13 If there exist multiple local maxima, the optimization routine may struggle to find the global maximum, i.e., the 
MLE estimates. This is especially true if the likelihood function is high dimensional.
14 See Geweke (2005) or Gelman et al. (2013) for a Bayesian statistics reference.
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To characterize the posterior distribution, the Bayesian estimator draws a large 

sample from , which can be used to compute statistics about the 

parameters of interest. Once we characterize the posterior distribution, we can 

compute a point estimate according to some loss function. Following other applied 

work in the Bayesian literature, we use the median of the posterior distribution as 

the point estimate.15

To obtain this sample from the posterior, we use the Gibbs sampling algorithm. 

The Gibbs sampling algorithm sequentially draws from the distribution of each 

parameter and latent variable conditional on the previous draws for all other 

parameters. Since each draw is conditional on the previous draws, the samples are 

not independent. However, the stationary distribution of the draws thus generated 

can be shown to equal the joint posterior distribution of interest.16 This algorithm 

is useful whenever the joint density of the parameters and data is unknown, but 

the conditional distribution of each parameter is known. See Online Appendix for 

details about the Gibbs sampling procedure. 

To sequentially draw from the conditional distributions of interest, there 

are three techniques employed. The first is estimating the variance of a normal 

distribution with known mean. For example, to draw Σν, realize  

Since yi,t is observed, conditioning on the epsilon sequence, we have a sample 

distributed N(0, Σν). Given a conjugate prior for Σν, the posterior for Σν can be 

calculated analytically, allowing this iteration’s Σν to be set equal to a draw from the 

conditional posterior of Σν. The same technique is used to draw from the conditional 

posterior of Ση. The second technique is estimating a linear regression model. To 

draw ρ, realize from equation (1) that ρ is the coefficient in a linear regression model 

with known independent and dependent regressors with error distributed N(0, Ση). 
Again, the conditional posterior of ρ can be calculated analytically, allowing this 

iteration’s ρ to be set equal to a draw from the posterior for ρ. 
The third technique is drawing the sequence of unobserved states in a LGSS. 

Given linearity and normality, the Kalman smoother provides the distribution of 

each state at each time conditional on all available data. However, because there is 

persistence in the states, knowing the particular draw of ϵi,t alters the conditional 

15 There is no a priori “correct” statistic to use as the point estimate. For example, one could use the mode, mean, or 
median of the posterior distribution. While the mode corresponds closely to the principle of maximum likelihood, the 
median is more robust computationally when sample sizes are limited.
16 See Robert and Casella (2004) for a comprehensive treatment of MCMC theory and practice.
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density of ϵi,t − 1.
17 Carter and Kohn (1994) develop an algorithm that recursively 

updates, backwards through time, the Kalman smoothed conditional densities of 

each state at time t given the draw of the state at time t + 1.18 With these three 

tools, we are able to sequentially draw from the conditional distributions of the 

parameters and latent variables of interest. 

iii. Small sample properties 

Now that the different estimators have been presented, we proceed to analyze 

the small sample properties of the estimators using Monte Carlo analysis. Our 

Monte Carlo simulation exercise is designed as follows. We simulate 100 panel 

datasets using the baseline labor income processes given by equations (1) and 

(2). 19 In the benchmark simulation, each data set contains 500 people and 10 

time periods (i.e., N=500 and T=10). However, to mimic the features of available 

panel datasets while also providing a more general depiction of the estimators’ 

performance, we consider alternative values of N ∈ {100, 2000} and T ∈ {5, 20}. 

Motivated by Blundell, Pistaferri, and Preston (2008), as a benchmark calibration 

we let the true parameter values be (ρ, Ση, Σν, ΣZ0) = (1.00, 0.02, 0.05, 0.15).
20 

For each of the 100 datasets generated, we compute the point estimates of the 

model parameters based on the Bayesian method and the GMM. When required 

by optimization or sampling, the same initial values are used across estimators. 

For the Bayesian estimation, we need to specify prior distributions of 

parameters. We choose prior parameters such that the variance of the prior 

distribution is very large and thus the posterior distribution is mainly determined 

by the likelihood function. Specifically, we set the prior for ρ to be Normal with 

mean 0 and an arbitrarily large variance, truncated at support [-1,1]. For 

17 We could sample each  as a separate block. This is the approach taken by Jacquier, Polson, and Rossi (1994) when 
estimating a stochastic volatility model. However, this would lead to a highly auto-correlated, slowly converging 
Markov chain.
18 For some extensions, it is easy to replace the Carter and Kohn (1994) algorithm with the more computationally 
efficient algorithm developed by Durbin and Koopman (2002). 
19  Monte Carlo analysis is often based on a large number of datasets. However, due to the computational intensity 
of the Bayesian estimator, we present results with a smaller than usual number of simulations. A robustness check 
on the baseline specification with a larger number of datasets (500) replicated the results of the 100 sample exercise.
20 These parameter values are standard and similar to the estimates found throughout the traditional literature.
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ΣZ0, Ση, and Σν we use the inverse-gamma distribution with degree of freedom 2 
and location parameter equal 0.01. 

For each estimator, we then compute the mean, standard deviation, and the 
root mean square error (RMSE) of the point estimates across the 100 datasets. 
The difference between the mean and true parameter values measures the bias of 
the estimator, while the standard deviation measures the efficiency. The root mean 
square error measures the average squared deviation of the estimator from the 
true parameter value, combining information on the bias and standard deviation 
of the estimator. Accordingly, we emphasize root mean square error as the overall 
measure of the estimators’ efficiency. 

Table 1 shows the small sample properties of the two estimators. For each 
parameter and estimator, the first number is the mean of the point estimates across 
100 simulated datasets, the second number in the parentheses is the standard 
deviation of the point estimates, and the last number in the square brackets is the 

RMSE. 

Table 1. Finite-sample properties of the Bayesian and GMM Estimators: benchmark labor income 

process (N=500, T=10) 

Parameter True value Bayesian GMM MLE

ρ 1.0000 0.9953 0.9963 0.9995

(0.0032) (0.0047) (0.0037)

[0.0057] [0.0060] [0.0047]

ΣZ0 0.1500 0.1532 0.1543 0.1535

(0.0112) (0.0117) (0.0110)

[0.0116] [0.0125] [0.0115]

Ση 0.0200 0.0204 0.0210 0.0201

(0.0016) (0.0020) (0.0015)

[0.0016] [0.0023] [0.0015]

Σν 0.0500 0.0494 0.0481 0.0499

(0.0015) (0.0030) (0.0015)

[0.0016] [0.0035] [0.0015]

Note: For each parameter and each estimator, the top number is the mean of the estimates across samples, the 
number in parentheses is the standard deviation, and the number in square brackets is the root mean square 
error. 

The Bayesian estimator performs better than the GMM estimator in terms 

of RMSEs. For all parameter estimates, the RMSEs of the Bayesian estimator 

are smaller than those of the GMM estimator. While the differences tend to be 
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small as both estimators have very low RMSEs, they are sometimes non-trivial. 

For example, the RMSEs of the Bayesian estimator are about 30 percent and 

50 percent smaller than the GMM estimator for Ση and Σν. The outperformance 

of the Bayesian estimator comes from both smaller bias and smaller standard 

deviation. For all parameters, the mean of the Bayesian estimator is closer to the 

true parameter values than that of the GMM estimator and the standard deviation 

of the Bayesian estimator is smaller. 

Improved efficiency could result from using better moment conditions or from 

using informative priors. To demonstrate that the improved performance of the 

Bayesian estimator is not driven by the priors, we first re-estimate the model, setting 

the prior mean of ρ to 0.5 and scaling up the variances’ prior means by a factor of 

10. This very different prior specification did not significantly affect the posterior 

distribution. This means that the posterior distribution is mainly determined by 

the likelihood function. Second, we know that the GMM estimator with optimal 

orthogonality conditions is asymptotically and numerically equivalent to MLE, 

since the asymptotically optimal GMM estimator uses the score for moment 

conditions. For the baseline specification, we present the MLE estimates in Table 

1, which have very similar RMSEs to the Bayesian estimates.21. Thus, efficiency 

improvements come from using a likelihood based estimator, not from imposing 

informative priors. 

Outperformance of the Bayesian estimator is robust to different specifications 

of the data generating process. Table 2 reports the RMSEs for alternative values 

of N (=100, 2000), T (=5, 20), and ρ (=0.8). In most cases, the RMSEs of the 

Bayesian estimators are smaller or roughly equal for all parameter values. For ρ, 

the estimators give roughly equal RMSEs with alternative T and N. However, with 

ρ = 0.8, the Bayesian estimator delivers smaller RMSEs. For ΣZ0, one estimator 

does not consistently perform better than the other across different cases. For Ση 

and Σν, the RMSEs of the Bayesian estimator are consistently smaller, sometimes 

by a large amount. 

21 In comparing the MLE and Bayesian estimates, it should be noted that we use the median of the posterior as 
the Bayesian point estimate, where the mode of the posterior more closely corresponds to the MLE estimate. This 
difference becomes especially important when comparing truncated parameters, like ρ.
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Table 2. RMSEs of the Bayesian and GMM estimators for alternative calibrations 

N=500, T=5 N=500, T=20
Parameter Bayesian GMM Bayesian GMM
ρ 0.0121 0.0122 0.0028 0.0029
ΣZ0 0.0138 0.0133 0.0141 0.0152
Ση 0.0032 0.0050 0.0010 0.0017
Σν 0.0028 0.0048 0.0011 0.0042

N=100, T=10 N=2000, T=10
Parameter Bayesian GMM Bayesian GMM
ρ 0.0116 0.0116 0.0025 0.0024
ΣZ0 0.0305 0.0322 0.0063 0.0065
Ση 0.0035 0.0059 0.0007 0.0012
Σν 0.0037 0.0092 0.0008 0.0019

ρ = 0.8 (N=500, T=10)

Parameter Bayesian GMM
ρ 0.0140 0.0171
ΣZ0 0.0176 0.0165
Ση 0.0021 0.0025
Σν 0.0019 0.0025

While the Bayesian estimator performs well in small samples on a properly 

specified model, how do its small sample properties compare to the GMM estimator 

when the model is misspecified? We address this question with two exercises. 

First, we estimate the model given by equations (1) and (2) assuming that ρ = 1, 

when the true data generating process has ρ = 0.95. As displayed in Table 3, the 

Bayesian estimator has significantly lower RMSEs for both Ση (0.005 vs. 0.014) 

and Σν (0.004 vs. 0.023) and a modestly lower RMSE for ΣZ0 (0.031 vs. 0.033). 

Table 3. Finite-sample properties of the Bayesian and GMM estimators: ρ-misspecified model 

(N=500, T=10) 

Parameter True value Bayesian GMM

ΣZ0 0.1500 0.1203 0.1183
(0.0088) (0.0092)
[0.0310] [0.0326]

Ση 0.0200 0.0155 0.0055
(0.0012) (0.0014)
[0.0047] [0.0144]

Σν 0.0500 0.0537 0.0729
(0.0017) (0.0029)
[0.0041] [0.0230]

Note: The model defined by equations (1) and (2) is estimated assuming ρ = 1, but the true data generating process is given 
by equations (1) and (2) with ρ = 0.95. For each parameter and each estimator, the top number is the mean of the estimates 
across samples, the number in parentheses is the standard deviation, and the number in square brackets is the root mean 
square error. 
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Second, we estimate the same model assuming errors are normally distributed, 

when they are in fact distributed according to a mixture of normals, using the data 

generating process detailed in Section IV.D. As shown in Table 4, the Bayesian 

and GMM estimators perform similarly, with the Bayesian estimator resulting in 

moderately smaller RMSEs on Ση (0.0021 vs. 0.0026), Σν (0.0026 vs. 0.0042), and 

ΣZ0 (0.0127 vs. 0.0135), and an identical RMSE for ρ (0.0048). 

Table 4. Finite-sample properties of the Bayesian and GMM estimators: mixture-misspecified 

model (N=500, T=10) 

Parameter True value Bayesian GMM

ρ 1.0000 0.996 0.9998

(0.002) (0.0039)

[0.005] [0.0048]

ΣZ0 0.1500 0.149 0.1506

(0.013) (0.0135)

[0.013] [0.0135]

Ση 0.0200 0.021 0.0213

(0.002) (0.0023)

[0.002] [0.0026]

Σν 0.0500 0.050 0.0476

(0.003) (0.0035)

[0.003] [0.0042]

Note: The model defined by equations (1) and (2) is estimated assuming that the error terms are distributed according to Normal 
distributions, but the true data generating process is given by equations (1) and (2) with the error terms distributed as mixtures 
of Normal distributions, as outlined in Section IV.D. Thus, the “True” variances are the implied true variances of η and ν given the 
Mixture DGP. For each parameter and each estimator, the top number is the mean of the estimates across samples, the number 
in parentheses is the standard deviation, and the number in square brackets is the root mean square error. 

Thus, even though the Bayesian estimator heavily relies on parametric 

assumptions, it can still have as good or better small sample properties when the 

model is misspecified. 
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iV. robustness to extended labor income processes 

The previous section showed that the Bayesian estimator outperforms the 

GMM estimator in finite samples on a simple labor income process. However, 

when using real data, researchers often need to modify the simple process to 

address unique features of the dataset or to incorporate additional features into the 

model. Since some of these modifications are quite common or even necessary, 

it would be useful to know how robust are the findings based on the simple labor 

income process. Accordingly, this section considers four such modifications to the 

baseline earnings model and documents the performance of the Bayesian estimator 

in each setting. The modifications we consider are (1) unbalanced panel with 

missing data, (2) time-varying volatilities, (3) heterogeneous parameters, (4) non-

normal shocks. Adjusting for an unbalanced panel with missing data is necessary 

whenever one estimates the model using real data. Time-varying volatilities are 

particularly common in the literature, regardless of the estimation methods used. 

Recent papers have documented evidence suggesting substantial heterogeneity 

in income process parameters across individuals. While non-normality is often 

ignored in GMM estimation, previous studies using Bayesian methods often 

estimated the income process allowing for non-normality and found significant 

improvements in model fit. 

Of course, there are many other interesting extensions to the labor income 

process. These include a richer modeling of volatility evolution (such as GARCH 

or stochastic volatility), time or age variation in other parameters (such as the 

autoregressive coefficient), and a richer decomposition of labor income (such as 

ARMA(p,q)).22. There has also been a growing interest in allowing for different 

dimensions of heterogeneity, in income profiles, initial levels, autoregressive 

coefficients, variances of idiosyncratic shocks, and more.23 Most of these extensions 

can be handled within the LGSS structure and can thus be estimated given the 

methods previously discussed. However, our purpose in this section is not to be 

comprehensive, but to investigate how some common complications of the income 

processes may affect the relative performance of the Bayesian estimator. Thus, we 

focus on the aforementioned four extensions. 

22  It is important to properly model measurement error, as documented by French (2004).
23  See Browning, Hansen, and Heckman (1999) and Jensen and Shore (2010) for a discussion.
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a. Data structure 

Most panel datasets used for estimating labor income processes are unbalanced. 

That is, the dataset contains different cohorts and does not necessarily measure 

the initial labor market experiences of all cohorts. They are also known to contain 

many missing observations. This can be due to a variety of reasons, such as 

misreporting, attrition of the participants, and top-coding. 

To examine how the Bayesian estimator performs on an unbalanced panel 

dataset with missing observations, we modify the baseline data generating 

process in two ways. First, we assign a 5 percent probability of being missing 

to each of the T*N observations. Second, we let a fraction (30 percent) of the 

population enter the dataset when they are age 4 and leave at age 10 to make the 

data unbalanced. As in the benchmark calibration of the previous simple labor 

income process, we set N=500 and T=10, and let the true parameter values be 

(ρ, Ση, Σν, ΣZ0) = (1.00, 0.02, 0.05, 0.15). The Gibbs sampling algorithm needs 

to be modified to take missing data into account, but the estimation of a LGSS 

model with missing observations has been well studied and the modification is 

straightforward. The details on how to modify the Gibbs sampling procedure are 

given in the Online Appendix. Prior distributions are specified in the same way as 

in the baseline labor income process. 

Table 5 compares the Bayesian estimator and the GMM estimator with this 

data structure. The Bayesian estimator continues to perform better than the GMM 

estimator. While the RMSEs for ΣZ0 are roughly equal across the two estimators 

(0.0147 for the Bayesian estimator and 0.0157 for the GMM estimator), the 

RMSEs associated with the Bayesian estimator are substantially smaller than 

those from the GMM estimator for ρ, Ση, and Σν. As in the baseline exercise, 

the smaller RMSEs of the Bayesian estimator comes from its smaller bias and 

smaller standard deviation. For all parameters except ρ, the mean of the Bayesian 

estimator is closer to the true parameter values than that of the GMM estimator. 

For all parameters, the standard deviation of the Bayesian estimator is smaller. 

The overall outperformance of the Bayesian estimator remains robust to 

different probabilities of missing observations and different fractions of the second 

cohort, as well as to alternative values of N, T, and ρ. These robustness results are 

available from the authors upon request. 
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Table 5. Finite-sample properties of the Bayesian and GMM Estimators: unbalanced panel dataset 

with missing observations (N=500, T=10) 
Parameter True value Bayesian GMM

ρ 1.0000 0.9952 0.9955

(0.0025) (0.0056)

[0.0055] [0.0072]

ΣZ0 0.1500 0.1551 0.1551

(0.0139) (0.0148)

[0.0147] [0.0157]

Ση 0.0200 0.0205 0.0213

(0.0016) (0.0033)

[0.0017] [0.0036]

Σν 0.0500 0.0493 0.0478

(0.0017) (0.0036)

[0.0018] [0.0043]

Note: For each parameter and each estimator, the top number is the mean of the estimates across samples, the 
number in parentheses is the standard deviation, and the number in square brackets is the root mean square 
error. 

B. time varying variances 

There is ample evidence that the variances of labor income shocks are time-

varying. Many authors have documented a significant low frequency rise in the 

variances of income shocks over time. For example, Blundell, Pistaferri, and 

Preston (2008) and Gottschalk and Moffitt (1994) analyze the PSID and find 

increasing variances of shocks during the 1980s. Heathcote, Perri, and Violante 

(2010) conduct extensive analysis on wage inequality and show the continuous 

rise in income volatility over the past 40 years. Others have found that there is 

a fluctuation in shock volatility at the business cycle frequency. For example, 

using the PSID, Storesletten, Telmer, and Yaron (2004) found that the variance 

of income shocks is larger during recessions than during booms. Understanding 

the evolution of volatility in the labor income process is important in itself, as it 

allows us to understand the change in the risk environment facing workers. It is 

also important in analyzing many macroeconomic topics, such as the welfare cost 

of business cycles or the degree of self-insurance and market incompleteness. 

While there are many different ways to model time variation in the variances, 

the majority of the literature models heteroskedasticity by treating the variance 
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at each time as a different parameter.24 We follow the literature and modify the 

baseline labor income process so that each variance parameter is specific to the 

time period. That is, our new data generating process is described by 

(5)

(6)

where Σν,t, Ση,t are the variances of the transitory and persistent innovations at 

time t, respectively. We focus on the case with T=10 and calibrate the variances 

according to the estimates of Blundell, Pistaferri, and Preston (2008).25As before, 

we set N=500 and let the true parameter values for the rest of the parameters be 

(ρ, ΣZ0) = (1.00, 0.15). 

The linear Gaussian state space structure is designed to allow parameters to 

vary over time. The only critical modification in the estimation routine is to feed 

the correct parameter values into the Kalman filter at the right times. To map our 

new process into a LGSS, we need to define At, Bt, Ct, Dt, Qt, Rt for all t. We set 

At = ρ, Bt = 1, Ct = 0, Dt = 1 ∀ t, keeping these matrices constant over time as in 

the benchmark simple labor income process. We set Q1 = Ση,1, ..., QT = Ση,T and 

R1 = Σν,1, ..., RT = Σν,T. Estimation then proceeds as in the stationary variances case. 

Prior distributions for ρ and ΣZ0 are specified in the same way as in the baseline 

labor income process. For the prior distributions of Ση,t and Σν,t, we use the inverse-

gamma distribution with degree of freedom 2 and location parameter equal to 0.01 

for all t. 

Table 6 compares the performance of the two estimators. As in the previous 

cases, the Bayesian estimator tends to deliver smaller RMSEs than the GMM 

estimator. For the time specific shock variances, the Bayesian estimator delivers 

24 As a notable alternative, Meghir and Pistaferri (2004) model the evolution of the variance as a GARCH process.
25  Since the timing convention in our model is slightly different from that of Blundell, Pistaferri, and Preston (2008), 
Ση,1 and Ση,10 are not separately identified from ΣZ0 and Σν,10, respectively. Thus, we set Ση,1 and Ση,10 to their true values 
in the estimation.



140                                      Journal of applied economics

substantially---about 30-50 percent---smaller RMSEs than the GMM estimator, 

except for Ση,2 and Σν,1 where the differences are small between two estimators. 

The outperformance of the Bayesian estimator comes from both smaller bias and 

standard deviation. For the Ση,2 and Σν,1 as well as ρ and ΣZ0, the RMSEs of the two 

estimators are roughly the same. As before, these results are robust to alternative 

parameterizations of the data generating process, and the robustness results are 

available from the authors upon request. 

Table 6. Finite-sample properties of the Bayesian and GMM estimators: time-varying variances 

(N=500, T=10) 
Parameter True value Mean RMSE

Bayesian GMM Bayesian GMM

ρ 1.0000 0.9954 0.9970 0.0055 0.0050

ΣZ0 0.1500 0.1501 0.1497 0.0120 0.0121
Ση2 0.0207 0.0207 0.0213 0.0070 0.0068
Ση3 0.0301 0.0317 0.0325 0.0052 0.0081
Ση4 0.0274 0.0281 0.0282 0.0047 0.0063
Ση5 0.0293 0.0292 0.0284 0.0050 0.0077
Ση6 0.0222 0.0225 0.0240 0.0042 0.0074
Ση7 0.0289 0.0290 0.0288 0.0046 0.0067
Ση8 0.0157 0.0159 0.0181 0.0052 0.0080
Ση9 0.0185 0.0186 0.0202 0.0052 0.0081
Σν1 0.0415 0.0412 0.0399 0.0066 0.0070
Σν2 0.0318 0.0312 0.0300 0.0038 0.0067
Σν3 0.0372 0.0360 0.0351 0.0046 0.0070
Σν4 0.0286 0.0281 0.0275 0.0036 0.0062
Σν5 0.0286 0.0283 0.0265 0.0037 0.0067
Σν6 0.0351 0.0348 0.0338 0.0040 0.0070
Σν7 0.0380 0.0375 0.0354 0.0039 0.0072
Σν8 0.0544 0.0535 0.0520 0.0054 0.0087
Σν9 0.0369 0.0363 0.0354 0.0045 0.0087
Σν10 0.0506 0.0501 0.0509 0.0051 0.0096

For both estimators, the estimates of each variance parameter are not as precise as 

in the benchmark case. As an example, consider the RMSEs of Σν in the benchmark 

DGP and Σν,10 in the DGP with time-varying variance. The true parameter values 

(0.05 and 0.0506) are roughly the same. However, for both the Bayesian and 
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GMM estimators, the RMSEs of Σν,10 are about three times larger than those of Σν. 
The reduction in the precision of the estimators is not surprising because we are 

estimating a larger number of parameters using the same number of observations. 

Nevertheless, both estimators remain sufficiently precise to closely track the rise 

and fall of the variances over time. 

c. Heterogeneity 

Understanding the heterogeneity in income process parameters is essential for 

answering questions with distributional aspects—across individuals and over the 

life cycle. Thus, many authors have estimated labor income processes allowing 

for heterogeneity in parameters across individuals. Lillard and Weiss (1979), 

Baker (1997), and Guvenen (2009) studied labor income processes in which 

the deterministic growth rate of income is heterogeneous across people. Jensen 

and Shore (2010, 2011) estimated models with heterogeneity in the variances of 

shocks to income processes. Browning, Ejrnaes, and Alvarez (2010) went further 

and estimated labor income processes where all parameters are allowed to be 

heterogeneous across individuals. 

While many authors have stayed within the framework of the method-of-

moment estimator to handle heterogeneity, some have employed Bayesian 

methods. To obtain some idea about the performance of the Bayesian estimator in 

the presence of heterogeneity, we modify our benchmark labor income process to 

introduce heterogeneity in one parameter---the deterministic growth rate of labor 

income. This modified process is often referred to as the labor income process 

with heterogeneous income profiles (HIP), and is specified as follows: 

(7)

(8)

where βi is normally distributed with mean zero and variance Σβ. Our benchmark 

labor income process is a special case of this process with Σβ = 0. To estimate the 

parameters of this model, the Gibbs sampler needs to be modified to include two 

additional blocks---one for drawing Σβ and the other for drawing . The 

Online Appendix shows the details. We calibrate Σβ based on the estimate from 
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Guvenen (2009). As before, we set N=500 and T=10, and calibrate the other 

parameters to be (ρ, Ση, Σν, ΣZ0) = (1.00, 0.02, 0.05, 0.15). For the prior distribution 

of Σβ, we use the inverse-gamma distribution with degree of freedom 2 and location 

parameter equal 0.01. Prior distributions of the other parameters are the same as in 

the baseline labor income process. 

Table 7 shows the results of the Monte Carlo experiment. The Bayesian 

estimator performs favorably compared to the GMM estimator in the model with 

heterogeneous income profiles. While both estimates are somewhat larger (0.0006) 

than the actual value (0.0004) for Σβ, the Bayesian estimator is more efficient and 

has a lower RMSE. Estimating this additional parameter does not alter the relative 

performance of the two estimators for other parameters. In particular, even though 

the Bayesian estimator’s RMSE for ρ becomes somewhat larger than the GMM 

counterpart, the Bayesian estimator continues to dominate the GMM estimator for 

all of the variance parameters. 

Table 7. Finite-sample properties of the Bayesian and GMM estimators: labor income process with 

HIP (N=500, T=10) 

Parameter True value Bayesian GMM
ρ 1.0000 0.9936 0.9960

(0.0037) (0.0040)

[0.0074] [0.0062]

ΣZ0 0.1500 0.1530 0.1538

(0.0121) (0.0144)

[0.0124] [0.0149]

Ση 0.0200 0.0197 0.0195

(0.0021) (0.0045)

[0.0021] [0.0045]

Σν 0.0500 0.0498 0.0493

(0.0019) (0.0041)

[0.0019] [0.0041]

Σβ 0.0004 0.0006 0.0006

(0.0003) (0.0005)

[0.0003] [0.0005]

Note: For each parameter and each estimator, the top number is the mean of the estimates across samples, the 
number in parentheses is the standard deviation, and the number in square brackets is the root mean square 
error. 
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D. non-normal shocks 

There is some evidence that shocks to the labor income process are not normally 

distributed. Hirano (1998) and Geweke and Keane (2000) both find that labor 

income shocks are fat-tailed. Capturing such non-normality is important in itself, 

but is also important for understanding earnings mobility and the persistence of 

poverty. 

Even if one is not interested in the higher moments of the shock distribution, 

modeling non-normality is important as misspecification of the error distribution 

can reduce the efficiency of the estimator. The main efficiency gains in MLE 

arise because the estimator takes advantage of the parametric form of the shock 

distributions. The choice between GMM and likelihood-based estimation can 

then be viewed as a trade-off between smaller standard errors vs. misspecified 

distributions. To take advantage of increased efficiency, but to limit the possible 

damage from assuming the wrong distribution, the aforementioned authors allow 

for shocks to be distributed according to a mixture of normals. Mixtures of normal 

distributions are very flexible, allowing for a more robust estimation procedure. 

Models with few mixture components have been shown to perform well in small 

samples and can be viewed as a flexible parametric model that is an alternative to 

non-parametric density estimation without the associated curse of dimensionality.26

In the following Monte Carlo analysis, we follow the previous papers and 

modify the baseline DGP so that the shocks are distributed according to a mixture 

of normal distributions. For simplicity of exposition, we use a mixture of two 

normal distributions. We also abstract from skewness by fixing the means of the 

normal distributions to be zero. Thus, our new data generating process is described as 

(9)

26 Norets (2010), Norets and Pelenis (2014), and Norets and Pelenis (2012) document the theory and practice of 
approximating continuous distributions using a finite number of mixtures of normal distributions. They show “that 
large classes of conditional densities can be approximated in the Kullback-Leibler distance by different specifications 
of finite smooth mixtures of normal densities or regressions.”
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(10)

With probability πη,1, ηi,t is drawn from a normal distribution with variance hη,1. 

With probability πη,2 = (1 − πη,1), ηi,t is drawn from a normal distribution with 

variance hη,2. Similarly, νi,t is drawn from a normal distribution with variance hη,1 

with probability πν,1, and νi,t is drawn from a normal distribution with variance 

hν,2 with probability πν,2 = (1 − πν,1). Notice that we have increased the number 

of parameters to describe the distribution of η and ν. In the benchmark income 

process, we only needed to estimate four parameters, (ρ, ΣZ0, Ση, Σν). Here, we 

need to estimate eight parameters, (ρ, ΣZ0, πη,1, hη,1, hη,2, πν,1, hν,1, hν,2). The added 

distributional flexibility comes at the cost of additional parameters to estimate. 

With sufficient sample size, the gains should outweigh the losses. 

We calibrate the parameters of the mixture distribution so that both transitory 

and persistent shocks are fat-tailed (positive excess kurtosis). We set N=500 and 

T=10, and calibrate the rest of the parameters to be (ρ, ΣZ0) = (1.00, 0.15). The 

details on how to modify the Gibbs sampling algorithm to handle non-normality is 

given in the Online Appendix. Prior distributions for ρ and ΣZ0 are specified in the 

same way as in the baseline labor income process. Prior distributions of parameters 

specific to the mixture normal model is discussed in the Online Appendix. Since it 

is not common to estimate kurtosis in the GMM framework, we simply apply the 

unmodified GMM estimator. 

Table 8 compares the finite sample properties of the Bayesian estimator and 

the GMM estimator. For the Bayesian estimator, in addition to the estimates for 

all parameters, we report the second and fourth moments of the shock distribution 

implied by the point estimates of the parameters governing the mixture distribution. 

To concisely convey the results, we report the average of the point estimates across 

100 datasets for the parameters governing the mixture. 
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Table 8. Finite-sample properties of the Bayesian and GMM estimators: non-normal error 

distributions (N=500, T=10) 
Parameter True value Bayesian GMM

ρ 1.0000 0.9960 0.9987
(0.0023) (0.0036)
[0.0047] [0.0045]

ΣZ0 0.1500 0.1490 0.1492
(0.0115) (0.0135)
[0.0115] [0.0135]

Ση 0.0200 0.0208 0.0214
(0.0014) (0.0024)
[0.0016] [0.0028]

Kurtosis of η 8.9743 8.2942 na
(1.1551) (na)
[1.3354] [na]

hη, 1 0.0059 0.0054 na
hη, 2 0.0766 0.0721 na
πη, 1 0.8000 0.7560 na
πη, 2 0.2000 0.2440 na
Σν 0.0500 0.0492 0.0479

(0.0023) (0.0035)
[0.0025] [0.0042]

Kurtosis of ν 9.0112 9.1119 na
(0.5790) (na)
[0.5848] [na]

hν, 1 0.0146 0.0141 na
hν, 2 0.1914 0.1902 na
πν, 1 0.8000 0.7989 na
πν, 2 0.2000 0.2011 na

Note: For each parameter and each estimator, the top number is the mean of the estimates across samples, the number in 
parentheses is the standard deviation, and the number in square brackets is the root mean square error.

Even though the Bayesian estimator is now estimating a larger number of 

parameters, its performance remains almost as good as in the benchmark case. The 

RMSEs of the Bayesian estimator are roughly the same as those in the benchmark 

labor income process, except for Ση. The RMSEs of the Bayesian estimators remain 

smaller than those of the GMM estimator for the estimated second moments of η, 

ν, and the initial state ϵi,0. The Bayesian estimator also performs well in estimating 

the parameters governing the mixture distribution. For parameters governing the 

distribution of ν, the mean of the estimator comes very close to the true values, 

and thus, the implied kurtosis estimate is very close to the true kurtosis. For 

parameters governing the distribution of η, the means of the estimators are not as 
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close to the true values as in the case for ν. For example, the estimator overstates 

the probability that ν is drawn from the distribution with larger variance by 4.4 

percentage points. As a result, the implied kurtosis estimate is slightly downward 

biased, but its average estimate (8.29) is reasonably close to the true value of 8.97. 

For both η and ν, the standard deviation and thus RMSEs for the kurtosis estimates 

are larger compared to other parameters. This is not surprising given that they are 

identified from the realizations of very large infrequent shocks. 

Estimating the model with mixtures of normal distributions is substantially 

more computationally intensive than estimating the models considered earlier. 

Thus, we are limited in examining how robust these results are to alternative 

specifications of the parameters and priors. Nevertheless, our Monte Carlo exercise 

suggests that the Bayesian estimator is useful in estimating the labor income 

processes even when the errors are not normally distributed. 

V. conclusion 

In this paper, we have examined the validity of performing Bayesian estimation 

on widely used error component models of labor income processes. Although the 

differences are not large, the Monte Carlo analysis reveals that Bayesian parameter 

estimates have favorable efficiency and bias properties relative to GMM in small 

samples. After accounting for documented features of the data—such as missing 

values, heteroskedasticity, parameter heterogeneity, and non-normal errors—

the beneficial small sample properties of the Bayesian estimator remain. The 

favorable small sample properties provide a justification for employing Bayesian 

techniques in future research. The detailed derivation of the estimators provides a 

clear exposition of the estimation routines and a better understanding of the source 

of the estimation results. It is also designed to help applied economists develop 

Bayesian estimation routines for related labor income processes. Our analysis 

of the extensive Monte Carlo experiments suggests that Bayesian methods are 

appropriate for the relevant types of processes and data typically used by applied 

labor economists. 
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