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Due to the recent financial crisis, the interest in econometric models that allow to 
incorporate binary variables (such as the occurrence of a crisis) experienced a huge 
surge. This paper evaluates the performance of the Qual VAR, originally proposed 
by Dueker (2005). The Qual VAR is a VAR model including a latent variable that 
governs the behavior of an observable binary variable. While we find that the Qual 
VAR performs reasonable well in forecasting (outperforming a probit benchmark), 
there are substantial identification problems even in a simple VAR specification. 
Typically, identification in economic applications is far more difficult than in our 
simple benchmark. Therefore, when the economic interpretation of the dynamic 
behavior of the latent variable and the chain of causality matter, use of the Qual 
VAR is inadvisable.
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I. Introduction

Due to the recent financial crisis, the interest in econometric models that allow 
incorporating binary variables (such as the occurrence of a crisis) experienced a 
huge surge. This paper evaluates the performance of the Qual VAR, a VAR (vector 
autoregression) model including a latent variable governing the behavior of an 
observable binary variable that was originally proposed by Dueker (2005).

Harding and Pagan (2011) criticize that in macroeconomics a binary variable 
is often constructed from observable variables that show some persistence (they 
call it a secondary binary variable). They claim that the conventional binary 
choice model cannot capture the time series dependence of the binary variable 
inherent in current macroeconomic applications. Therefore, Harding and Pagan 
recommend using other methods incorporating time series dependence such as 
the Markov Switching approach. These models have originally been developed 
for the dating of business cycle turning points (Hamilton 1989; Paap et al. 2009). 
Like binary choice models, they can also be used for crisis prediction (Fratzscher 
2003; Hartmann et al. 2012). Because Markov Switching models estimate the 
regimes endogenously, they cannot be applied to predefined binary variables, such 
as the NBER recessions, IMF interventions and the like. Essentially, while being 
able to incorporate time series dependence in the binary variable, there is no clear 
economic definition of what is really meant by the different regimes (El-Shagi, 
Knedlik and von Schweinitz 2013).

The Qual VAR and some other recent methods may overcome the Harding 
and Pagan critique and the identification problem of Markov Switching models 
(Kauppi and Saikkonen 2008; Dueker 2005). Especially the Qual VAR proposed 
by Dueker (2005) is economically appealing. In the Qual VAR, a latent variable, 
driving an observable binary variable, and a number of other observables (jointly) 
follow a VAR process.1 Estimating a VAR process instead of a single equation, 
thereby exploiting more information, leads to efficiency gains in the identification 
of the latent variable. Moreover, since the latent variable can be interpreted as 
a risk indicator for the event desribed by the binary variable, the VAR structure 
allows to capture the feedback of the corresponding risk into the economy. The 

1  Thus, the Qual VAR is essentially an extension of the dynamic ordered probit of Eichengreen et al. (1985), as 
observed by Marcellino (2006).
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importance of such an interaction between observable and latent variable can 
for example be observed in the current European debt crisis, where the risk of 
sovereign default strongly affects government bond interest rates and vice-versa.

A number of recent papers have used the Qual VAR. Bordo et al. (2008) apply 
the model to bull and bear periods on the stock market, Dueker and Assenmacher-
Wesche (2010) assess the recursive forecasting performance of the Qual VAR. 
This performance is also tested in comparison to other models by Galvão (2006) 
and Fornari and Lemke (2010). However, the present literature concentrates 
exclusively on the forecasting performance of the Qual VAR. Furthermore, this 
evaluation is done based on one specific economic example (i.e., forecasting the 
2001 U.S. recession) rather than being performed in a more general framework. 
It is therefore unclear whether the results are applicable universally. Additionally, 
while the Qual VAR has been developed for forecasting, the estimates have also 
been interpreted economically, e.g., by analyzing impulse response functions 
derived from coefficient estimates and considering the latent variable as in sample 
measure of event probability (Dueker 2005). However, even if the forecasting 
performance was generally high, this is not sufficient to allow a structural 
interpretation of the results.

Our paper aims at closing these gaps in the literature by providing a range of 
Monte Carlo studies. This allows a more general examination of the Qual VAR by 
considering its performance in idealized settings where the data generating process 
(DGP) and the latent variable are known. We test the performance of the original 
Qual VAR as published in the JBES by Dueker (2005), rather than more recent 
extensions by Bordo et al. (2008) and Dueker and Nelson (2006), since the first 
is by far the most prominent paper and — to the best of our knowledge — even 
today the only one for which an estimation routine in a widely used econometric 
package is freely available.2

First, we assess the in-sample estimation of the latent variable. Second, 
we analyze whether or not the Qual VAR identifies the true Granger causality 
between the latent and other variables. Third, we test the forecasting performance 
of the estimated system. All these tests are performed for a variety of VAR-
specifications covering different chains of causality and uncertainty levels. Using 

2 The available routine is in RATS. The RATS routine has not been used in this paper since it does not allow adaptation. 
All estimations in this paper have been performed in Matlab. The code is available on request.
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different specifications ensures that the results are relevant for typical empirical 
applications with similar underlying DGPs. While we find that the Qual VAR 
performs reasonable well in forecasting (in several respects outperforming 
different benchmark estimations), there are substantial identification problems 
even in a simple VAR specification. These identification problems are found both 
in one lag, two variable VARs and more complex specifications including more 
lags and variables. Typically, identification in economic applications is far more 
difficult than in our settings. Therefore, when the economic interpretation of the 
dynamic behavior of the latent variable and the chain of causality matter, the use 
of the Qual VAR is inadvisable.

The remainder of the paper is organized as follows. In Section II we present 
the estimation technique of the Qual VAR. Section III describes the set of Monte 
Carlo studies used to obtain our results. In Section IV we discuss identification 
issues; Section V contains the results of our tests of the forecasting performance 
of the Qual VAR in our benchmark settings. Section VI shows that these results 
mostly hold in more complex settings, and Section VII concludes.

II. Estimation of a Qual VAR 

The Qual VAR (Dueker 2005) has been developed as a method for forecasting 
qualitative variables. Originally, it has been applied to the prediction of recessions 
and business cycle turning points. It assumes that the present state in the qualitative 
(usually binary) variable  is the observable manifestation of a latent variable :

(1)

   
The unobservable variable  and  other observable variables  are said 

to follow a VAR(p) process:

(2)

where ,  is the time index,  is the lag operator,  the 
corresponding coefficient matrix,  the constant vector and  the error vector at 
. Errors are assumed to be multivariate-normally distributed with mean zero and 

covariance matrix . The covariance matrix, the parameters  of the VAR and the 
unobservable variable are jointly estimated using a Gibbs sampler. 
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The Gibbs sampler is used to simulate the joint distribution of . In 
each iteration , a value for each element of  is randomly drawn from its distribution 
conditional on the last generated values of all other elements. Depending on the 
ordering of the elements in the Gibbs sampler, the last generated value can either 
come from the current or the previous iteration. In the first iteration, starting values 
for the latent variable are randomly generated (based on the knowledge of the 
binary variable).  and  can then be estimated by OLS and used as initial values. 

As in standard ML estimation, the coefficients  are assumed to be multivariate-
normally distributed and the inverse of the covariance matrix of errors  is 
assumed to be Wishart distributed. Each  is drawn from a truncated normal 
distribution, where the truncation is determined by the observable binary variable .

The order of drawings we use (following Dueker) is . That is, 
we draw  and . The vector  is sampled element 
by element, where the distribution of the respective element is conditional on the 
past of the time series in the current iteration and the future of the time series in 
the last iteration; i.e., we draw . If 

, is drawn from the exact conditional distribution.3 It is not 

feasible to compute these for  and . We follow Dueker (2005), 
who proposes a Metropolis-Hastings algorithm for the first  periods. For the last 

 periods, we use simple VAR forecasts to compute the mean of the distribution 
of  and subsequently draw errors from a truncated normal satisfying the 
conditions imposed by the observable binary variable. Based on , we can 
compute the value of the next period accordingly.

Dueker originally proposed to run the Gibbs sampler once with 10,000 
iterations and discard the first 5,000. In contrast, we only use every fifth of the 
remaining 5,000 iterations to avoid artifacts caused by the dependencies between 
consecutive iterations in the sampled distributions (Casella and George 1992).4 

 From the resulting sample of 1,000 iterations, we calculate median variables 
, confidence bands and a set of Fry-Pagan estimate variables . Median and 

confidence bands are calculated for every element in  and  and  separately. 
However, in the spirit of the Fry-Pagan critique,5 the set of Fry-Pagan estimates is 

3  is, again, the lag order of the VAR.
4 We deviate from this rule in our forecasting tests as described in Table 2, thereby reducing otherwise exploding 
runtimes. Estimations show no great difference compared to the other tests.
5 Fry and Pagan (2007) criticize the use of the pointwise median to construct impulse response functions in SVAR. 
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a consistent set of elements of . Therefore, we select the iteration with the highest 
joint log likelihood as the Fry-Pagan estimate. The likelihoods are computed 
assuming multivariate normal distributions for  and normal distributions for 
each element of , where mean and variance are drawn from the distribution 
obtained from the Gibbs sampler.6

III. Setup of the Markov Chain Monte Carlo (MCMC) simulation

Our Monte Carlo study aims to test the capability of Qual VAR to identify the latent 
variable, to capture the correct chain of causality and to forecast the event driven 
by the latent variable. To robustly do so, we must test a range of setups, covering 
the most important features of the data-generating process (DGP) that might affect 
these issues. The first important feature of the DGP is the variance of the error 
term in the equations governing the behavior of the observable variable(s).7 The 
variance strongly affects the degree of determination in the system and, thereby, 
both identification and potential forecasting performances. The second feature of 
the DGP that we account for is the chain of causality between observable(s) and 
the latent variable. While this is obviously essential to answer the question whether 
different chains of causality can be distinguished by Qual VAR estimation, it may 
also affect identification. Because identification in the Qual VAR exploits both 
lags and leads, a causality running both directions potentially simplifies correct 
identification of the latent variable.

We aim to cover all of these aspects in the simplest framework possible. 
Therefore, the true DGP in most of our simulations uses one observable and the 
latent variable ( ) and one lag ( ). This strongly reduces multicollinearity 
issues that arise in more complex systems of interacting variables, which may 
cause trouble in identification. At the same time, such a simple DGP is still 
capable of capturing a range of potential chains of causality and different degrees 
of uncertainty. In our robustness section we analyze further DGPs with features 
frequently found in economic data that cannot be hosted by a DGP with one lag 

They argue that while the median is usually the most likely outcome at any point in time, the sequence obtained from 
the pointwise median values is not itself necessarily a consistent impulse response. This critique also applies in the 
current case, if one needs to analyze the estimated latent variable itself and not only its distribution.
6  We only use  and y for this calculation as the variance of the error of the latent variable is always set to one, making 
the calculation of a density of the inverse Wishart distribution for  impossible.
7 As the scaling of the latent variable is arbitrary, the error variance in its equation is conventionally scaled to one in 
estimation. Therefore, we do the same in the true process in all of our MCMC experiments.
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and one observable variable. The results suggest that our key findings also hold in 
these more complex settings.

To avoid confusing a lack of power with model uncertainty, the “true” DGP 
in our simulations exactly mirrors the assumptions of the Qual VAR. That is, the 
event occurs if and only if the latent variable is greater than zero.

Our models are simulated for 200 periods, a sample size typically found in 
macroeconometric time series applications (such as in the original Qual VAR 
paper by Dueker 2005).8

The typical economic event that is modeled by the Qual VAR, such as crises, 
recessions, and business cycle turning points, is rather rare but occurs sufficiently 
often in the sample period to obtain a certain idea of the underlying dynamics. 
That is, for our Monte Carlo study, the binary process is required to have multiple 
(blocks of) events while having an overall event probability clearly below 50%. 
Pretests show that an event probability of 20% satisfies these criteria for all 
coefficient matrices  and covariance matrices of the error terms  considered 
in this paper.

For simplicity, we set the constant term in the observable equation to zero 
and assume diagonal covariance matrices. 9 Therefore, as the variance of the error 
term in the latent variable equation, , is held constant at one, the volatility of the 
whole system is primarily driven by the variance of the error term in the observable 
variable equation, . Thus, we can scale this volatility through a single parameter 
of the MCMC setup. In this context, volatility may have different implications. In 
forecasting, volatility is a main driver of uncertainty. However, if the observable 
Granger causes the latent variable, a high  implies that a large share of the 
volatility of the latent variable can be attributed to changes in the observable 
variable. This can greatly facilitate the identification of the latent variable. If, on 
the other hand, the chain of causality implies that the Qual VAR identifies the 
latent variable mostly through future values of the observable variable (a backward 
identification), a large  may be an obstacle. To test the influence of   on the 

8 At the same time, this is a good compromise between short samples that might cause additional small sample 
problems in the estimation and large samples that rapidly increase computational requirements. We add a swing in 
phase of 100 periods to each simulation that is dropped before estimation, thereby guaranteeing independence from 
the starting values.
9 Although we denote the observable variable by  (or  in case of multiple variables), the standard deviation of 
the error term in the observable equation is denoted by . Correspondingly, while the latent variable is denoted 
consistently by , the corresponding standard deviation is given by .
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identification and forecasting performance of the Qual VAR, we use three different 
specifications of : a low volatility specification with  (labeled low in the 
remainder of the paper), an equal variance specification with (eq), and 
a high variance specification where   (high). 

We test all three variance specifications in DGPs covering all potential causality 
chains; i.e., (1) the observable Granger causes the latent variable (labeled ol in 
the remainder of the paper), (2) the latent variable Granger causes the observable 
variable (lo), and (3) the observable and the latent variables mutually Granger 
cause each other (olo). For all model structures covered by our analysis, the matrix  

 is given in Table 1.10

 To construct examples with strong causality chains, the parameter on the 
off-diagonal is set to 0.7 whenever Granger causality exists. To ensure strong 
intertemporal dependence and stationarity of the processes at the same time, the 
sum of the off-diagonal parameter and the autocorrelation term in the same column 
is restricted to 0.9. Depending on the setting, the latent variable may show different 
persistence. While some settings produce rare events of long duration, other 
settings result in shorter, but more frequent events. That is, our data generating 
process can reproduce a variety of real world examples.

Table 1. Coefficient matrix  for the different causality chains
observable latent

no yes

latent observable no - 
 0.9      0.7
   0       0.2

yes
   0.2       0
    0.7     0.9

  0.2      0.7
  0.7      0.2

Given   and , the probability of an event, i.e., , is driven by the 
constant term in the latent variable equation. Assuming that the number of events 
in the sampled process is binomially distributed, we develop an acceptance-
rejection algorithm where a VAR simulated with given parameters, covariance 
matrix and constants is only accepted if the simulated event probability is not 
statistically different from the 20%. Otherwise, the constant of the latent variable 
is adjusted and the process is resimulated.

10 We do not investigate the possibility that the observable and latent variables are independent (with possible 
autocorrelation).
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In total, we consider nine different settings of the VAR that differ along two 
dimensions in Sections IV and V. For robustness, four additional settings are 
introduced and analyzed in Section VI. In the following, we assess the quality of 
the in-sample estimation and the forecasting performance of the Qual VAR for 
the first nine settings. Due to the different requirements of the tests, the number 
of iterations of the Monte Carlo study and of the Gibbs sampler (applied in each 
Monte Carlo iteration) is set individually, as outlined in Table 2. For convenience, 
the table also lists the specifications of the Gibbs sampler as described in Section II. 

Table 2. Monte Carlo and Gibbs Sampler setup

Identification Forecasting Robustness

Section 4 5 6

MCMC Simulations per model 1,000 10,000 1,000

Gibbs Sampler
Total iterations 10,000 4,000 10,000

Swing in iterations 5,000 2,000 5,000
Spacing 5 2 5
Final iterations 1,000 1,000 1,000

Note: A spacing of m means that every mth iteration of the Gibbs sampling is used to compute the final distributions after 
discarding the first swing in iterations. Final iterations refers to the number of iterations chosen in that way.

IV. Identification problems

In this section, we analyze whether the Qual VAR is able to correctly identify the 
latent variable, the parameters and the covariance matrix of the VAR. As described 
above, the Gibbs sampler produces a distribution of the elements of  that we 
use to calculate the median results and Fry-Pagan estimates . Three tests 
are performed on the estimations of the Qual VAR. First, we determine whether 
the estimates of the latent variable fit the true latent. A low level of accordance 
would imply that conclusions drawn from the estimated values of the latent 
variable must be treated cautiously. We test for unbiasedness using a method from 
the forecasting evaluation literature (Holden and Peel 1990).  However, while a 
perfect fit is a desirable property, economic conclusions from level differences in 
the latent variable can also be derived if the dynamics are correctly reproduced. 
Therefore, in our second series of tests, we focus on the explanatory power of the 
test equation rather than on the coefficient estimates that are usually considered. 

Because the Gibbs sampler enforces the correct sign of the latent variable, it 
produces some correlation between the estimated and the true latent variable by 
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construction, even if the economic story behind the latent variable is not correctly 
captured by the model. Therefore, both tests are performed using non-event 
periods (i.e., roughly 80% of the sample). The results of those tests are reported 
in subsection IV.A.

Because our model features considerable persistence, our previous tests 
may indicate that we correctly capture the dynamics of the system, although 
the turning points of the latent time series are shifted. In this case, the economic 
interpretation of the estimated model does not replicate the true data generating 
process. Therefore, in subsection IV.B, we run a series of Granger causality tests 
to assess whether the chain of causality implied by the true parameter matrix is 
correctly identified.11 A correct estimation of the direction of causality may be 
enough for a qualitative, although not quantitative, economic interpretation of the 
results obtained by the Qual VAR. 

A. Correct estimation of the latent variable

To test if the estimated latent variable is an unbiased estimate of the true latent 
variable, we regress the two variables on the subsample of non-event periods. That 
is, we exclusively consider negative values of the (true and estimated) latent. This 
restriction avoids the possibility that we find correlation between the two latent 
variables that is introduced by the sign restriction of the Qual VAR estimate. 	            

(3)

where  can be both the median latent variable  or the Fry-Pagan latent 
. In Table 3, we show the estimates of regression (3) as well as the test results 

for the hypotheses  and . As the Monte Carlo simulation is run 1,000 
times with different true processes, we present the mean estimate of ( ) and the 
share of simulations, where t-tests (individually) and F-tests (jointly) reject the 
two hypotheses. 

11 Strictly speaking, our test is more restrictive than a traditional Granger causality test, as our tests require the correct 
sign of the parameter.
12 As the equation is estimated on the non-event periods ,  and  imply a negative bias of the Qual 
VAR estimates.
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We find that the null hypothesis of an unbiased estimate is rejected by the 
F test in the vast majority of cases in all settings except ol,low. However, the 
situation in this setting is even worse. The reason for not rejecting the rationality 
test is not a good fit of the estimated latent variable, but high residuals of a very 
bad fit. This creates high uncertainty, reducing rejection rates. Thus, in many cases 
we can neither reject   nor .

However, the problems are not as severe for many other settings.  Although we 
reject  in most simulations, we often find . In all cases except ol,low,  

 is significantly greater than zero in every bootstrap iteration. That is, the Qual 
VAR captures at least some of the dynamics of the latent variable in most settings. 
This is partly reflected by the results of our second test series. However, only in 
four out of nine cases are the results convincing with an  greater than 0.9. While 
some more settings (ol,eq; lo,eq; and olo,eq) produce at least moderate results 
with , it should be considered that the testing environment is rather 
favorable for the Qual VAR as the true structure of the model (i.e., the selection of 
variables and the lag order) is known and we consider particularly simple models.

When explaining the Fry-Pagan estimate of the latent with the true latent, 
values are even lower (see Figure 1). Again, the reason is the lower degree of noise 
in the median estimate (compared to the Fry-Pagan estimate). Thus, the difference 
in is mostly due to differences in the variance that must be explained, rather than 
the variance that is explained by the true latent variable.

Figure 1.  of estimation (3) for  between 0.1 and 10, logarithmic equally spaced

Note: The reported results are the average of 100 MCMC iterations (instead of the normal 1,000). The reduction was necessary 
to reduce runtime to a tolerable level.
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Whether the Qual VAR captures the dynamics of the latent variable (as described 
by the ) strongly depends on the variance of shocks in the observable equation. 
If the observable Granger causes the latent variable, estimation is simplified by 
a high . If, however, the latent Granger causes the observable variable, a high 

 strongly decreases the  of our test equation. The reason is that in both cases, 
the latent variable is mostly identified using information from the observable 
variable. In the first case (ol), the latent variable is strongly correlated to past 
values of the observable variable. Because the entire variation of the observable 
variable affects the latent variable, more variance represents information that can 
be exploited in the estimation. On the contrary, in the second case (lo), the latent 
variable is correlated to future values of the observable variable. However, only 
the predetermined part of the observable variable contains information on the 
latent variable. A high  obfuscates the view on the predetermined part of the 
observable, thus impeding the estimation of . This difficulty is slightly alleviated 
(compared to the case ol) by the high autocorrelation of the latent variable.

Figure 1, panels (a) and (b) show the corresponding results for a larger set 
of different levels of  based on MCMC simulations with fewer iterations (100 
instead of 1,000). In the olo settings (see Figure 1, panel (c)), we find a non-
monotonic impact of  on . In this case, we can draw information on the latent 
variable from both past and future values of the observable variable. Initially, when 

 increases, the loss of information drawn from the future outweighs the gains 
of information from the past. However, when the variance increases further, the 
benefit of more information from past observations dominates the impact of . In 
our case, with symmetric mutual causality between the latent and the observable 
variables, the turning point coincides with the equal variance setting (olo,eq). 

B. Correct identification of Granger causality

When testing the correct identification of Granger causality, we report two results.  
First, for each parameter in , we report the share of iterations where causality is 
correctly identified (see Table 4). To allow sound economic interpretation, the Qual 
VAR must capture existing causalities while avoiding the erroneous identification 
of causalities where none exist. Therefore, if positive true parameters are 
considered, we report the share of Monte Carlo iterations producing significantly 
positive estimates of the respective parameter. If parameters that are set to zero 
are considered, we report the share of iterations producing insignificant results. 
Second, as a summary of those results, we report the share of iterations where each 
of the four entries of  indicates the correct causality. 
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We find a substantial share of iterations, where at least one parameter produces 
an incorrect estimate. Even in the setting where the Qual VAR performs best in 
this respect, the correct chain of causality is merely identified in less than 70% 
of the MCMC iterations (see Gr(all) in Table 4).  The most frequent reason to 
reject the joint test is the inability of the Qual VAR to identify weak autoregressive 
behavior in the latent variable ( ). In three additional settings, there are 
severe identification problems concerning causality ( and ).

First, if the observable Granger causes the latent variable and  is low 
(ol,low), the Qual VAR does not capture this causality in approximately 50% 
of all iterations. Second, a similarly high rejection rate is found for the opposite 
case lo,high, where we are unable to detect the causality from the latent to the 
observable. This corresponds to the two settings where the identification of the 
latent variable is most difficult. Third, with causality running from the latent to 
the observable variable with low  (lo,low), the Qual VAR incorrectly finds a 
significant effect from the observable on the latent variable in roughly 40% of the 
Monte Carlo iterations. This is because the actual correlation between past and 
future values of the observable is much higher in this setting than indicated by the 
autoregressive parameter of the observable ( ). The high persistence of 
the observable variable is mostly due to the high persistence of the latent variable 
( ) that is the main driving force of the observable ( combined 
with ). Therefore,  and correspondingly the observable occurrence of 
the modeled event ( ) is correlated to both past and future values of the observable 
variable. Accordingly, the autoregressive coefficient of the observable variable 
is overestimated, as implicit autocorrelation (via the latent) is mistaken for true 
autoregressive behavior. The autoregressive behavior of the latent variable is 
underestimated. This is reflected in the parameter estimates. To a lesser extent, the 
same problem is found with higher values of  for the same causality setting.13

13 As reference, Table 4 also lists the parameter estimates and the share of iterations where the true parameter values 
are within the estimated confidence bounds. However, the high shares we find for most parameters are often due 
to extremely broad confidence bounds around the parameters. These broad confidence bounds are caused by the 
uncertainty concerning the latent variable that is usually poorly identified.
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V. Forecasting performance 

The Qual VAR has mostly been used for forecasting binary events, which 
may still work despite the identification problems documented in the previous 
section. Therefore, we assess the forecasting performance of the Qual VAR over 
different horizons in comparison to three econometric benchmark models (and 
the unconditional event probability). We perform both a probabilistic assessment, 
using root mean squared forecast errors, and a non-probabilistic assessment based 
on hit rates and false alarm rates. Before presenting these results, we compare 
predicted event probabilities of the Qual VAR estimates to the true model directly.

A. Forecast performance compared to the true model

In Table 5 we start with a descriptive analysis of the predicted probability of the 
binary event  in periods where the binary event occurs at the forecast 
horizon , compared to situations with no event at the forecast 
horizon .14 The probability of an event in the far future can be 
highly uncertain even for the true DGP. Therefore, we contrast the performance 
of forecasts obtained from Qual VAR estimates with forecasts obtained from the 
true DGP. This concept that we employ for a first glance at model performance 
combines benefits of probabilistic prediction (i.e. the prediction of event 
probabilities) and non-probabilistic forecasts (where the prediction itself is binary 
like the event). The approach is related to the (non-probabilistic) concept of hit 
rates and false alarm rates that is more commonly found in the literature Ratcliff 
(2013). In the non-probabilistic evaluation of binary forecast performance, the 
sample is split into event and non-event periods. These periods are then compared 
to binary signals obtained from predicted event probabilities that are separated 
using a calibrated probability threshold. Our descriptive approach borrows from 
this evaluation method by separating the sample in event and non-event periods, 
but still retains the key information of the probabilistic prediction, i.e. the predicted 
probability. This allows a similar comparison of performance in event and non-
event periods as hit rates do, but does not require the additional technical layer of 
threshold calibration (which we will introduce in Subsection V.B).

14 The probabilities are determined through a series of simulations rather than using a deterministic forecast, to 
account for the covariance of shocks that is considered in the Qual VAR.
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In all cases except ol,low (where conditional probabilities are always close 
to the unconditional probability of approximately 20%), the one period ahead 
conditional probability in event (non-event) periods is above (below) 40% (10%).

In all cases where the true model contains substantial information about the risk 
of an event in the future, a large share of this is captured by the estimates. Generally, 
we find that the estimated probabilities are much closer to the probabilities implied 
by the true model than they are to the unconditional probability. That is, more than 
half of the risk explained by the true model is also explained by the Qual VAR 
estimates.

B. Forecast performance relative to benchmark models

Selection of benchmark models 

We turn to a more formal analysis of forecast performance, matching the 
performance of the Qual VAR with alternative models using both probabilistic and 
non-probabilistic forecast evaluation tools. We consider four different benchmarks 
as challengers for the Qual VAR. First, we use an uninformed unconditional 
probability forecasts (labeled “uncond” in Tables 6 and 7). Second, we use a 
simple probit model that only considers the exogenous variables (labeled “probit” 
in the tables). Third, we use a dynamic probit that uses the lagged observable 
binary variable as additional explanatory variable following Moneta (2005) 
(labeled “M probit”). Forth, we use an approximation of the dynamic probit 
proposed by Kauppi and Saikkonen (2008). Kauppi and Saikkonen reframe the 
probit model slightly, defining the latent variable to be strictly deterministic on 
the observables and its own lags. That is, shocks do not affect the latent itself, but 
only the realization of the binary variable. Since the latent variable is deterministic 
(given some initial values) this model can be estimated by a straightforward, but 
computationally intensive, maximum likelihood. However, Ratcliff (2013) argues 
that the forecasts of a Kauppi and Saikkonen (2008) model are equivalent to a 
simple probit that considers higher lag orders of the observables. Thus, we estimate 
a probit augmenting the model with three additional lags of the observables to 
approximate the Kauppi and Saikkonen (2008) model. The corresponding rows 
are labeled “KS probit’.

Since only the Qual VAR models the entire system, it is also the only one 
that allows for indirect forecasts (obtained from a simulation of the system). All 
benchmark models need to rely on direct forecasts.
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Probabilistic evaluation of forecast performance 

Traditionally, the probabilistic evaluation of forecasts is plagued by the lack 
of information of true probabilities. Therefore, in analyses relying on actual 
data the accuracy of predictions cannot be calculated precisely. The next best 
thing commonly done is looking at entire intervals of probability forecasts, and 
comparing the average prediction in this interval to the share of events in periods 
where the prediction falls into that interval (Lemeshow and Hosmer 1982). In other 
words, we can for example assess whether the relative frequency of recessions in 
periods where the predicted probability is between 30% and 40% is in the same 
order of magnitude.

Since the data generating process is actually known in our simulation, we 
can refrain from such approximations and use methods commonly employed 
in evaluating forecasts of continuous observable variables, such as root mean 
squared forecast errors (RMSFE). However, since the scaling of the latent variable 
in probabilistic models is arbitrary, our RMSFE are based on probabilities rather 
than the prediction of the latent variable itself. More precisely, in Table 6 we 
compare the predicted probability of an event at  given the information set at 
time  with the true conditional probability of an event at  given the true model 
and the state of the world in .

Considering the probability rather than the actual values has some implications 
on the interpretation. Commonly, RMSFEs are computed as the difference between 
the forecast and the true realization of the variable of interest. Thus, they usually 
increase over the forecast horizon. On the contrary, this is not necessarily true for 
our application, where the RMSFE is defined as the root mean squared difference 
between the predicted probability and the true conditional probability of an event. 
There are two opposing effects on the magnitude of the RMSFE when the forecast 
horizon increases. First, the forecast uncertainty increases (as with the standard 
definition of the RMSFE). Second, both the true conditional probability and the 
forecasted probability converge to the unconditional probability. This causes a 
reduction of the RMSFE over the forecast horizon. The dominant effect varies 
both between different forecast horizons and between settings. Therefore, we 
find n-shaped, u-shaped and decreasing developments of the RMSFE when the 
forecast horizon increases from one to ten.
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Figure 2. Direct causalities in the different settings and inferences (both direct and indirect) from 

the current observable on the forecasted latent variable

Note: The direction of arrows shows the direct causalities on the left hand side. On the right hand side, arrows point in the 
opposite direction, if the inference channel from  to uses that detour. Strong links are given by a solid line, weak links are dotted.

In all cases, the median forecast has a lower RMSFE than the unconditional 
probability. The Fry-Pagan estimate performs similarly well, outperforming 
the unconditional probability in all settings except ol,low. In this setting, the 
noise included in the Fry-Pagan estimate makes it impossible to outperform the 
unconditional probability, which is — in this case — a quite accurate approximation 
of the true event probability.

However, the more appropriate benchmark is given by alternative models that 
are used in the prediction of binary events. For most true DGPs and for almost 
all forecast horizons the median Qual VAR forecast significantly outperforms all 
benchmarks. 

Contrary to the benchmarks, including the single equation dynamic forecasts, 
only the Qual VAR replicates the full system dynamics, which are particularly 
important with respect to forecasting over a long horizon. Therefore, the median 
estimate significantly outperforms all competitors over the five to ten period horizons 
in all settings. The Fry-Pagan estimate performs slightly worse, but still good.
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Whenever the latent variable affects the observable variable (i.e., all lo and 
olo settings), these results also hold for the shorter forecast horizons. Only in the 
ol setting with high variance in the observable equation can the probit play its 
strengths and significantly outperform the Qual VAR over short forecast horizons. 
Since there is only little autoregressive behavior of the latent variable and no 
feedback from the latent to observables, there is little to be gained from the Qual 
VAR setup. Yet, the high uncertainty induced by the complex model essentially 
worsens forecasting performance. In ol,eq, the Qual VAR is outperformed by a 
simple probit for a two period ahead forecast because the benefit of explicitly 
modeling the time series behavior of the latent variable (as accomplished by the 
Qual VAR) is very limited in the ol settings. The latent variable (and thus the 
event probability) in 1 depends mostly on the observable in  and – to a lesser 
extent – on the latent variable in . However, the impact of  on  is strongly 
reflected in the correlation between  and  as both  and  are primarily 
driven by . Because the correlation exploited in the probit captures most of the 
impact of the lagged latent, the value added of the Qual VAR is generally small. 
If this is combined with situations where the importance of the lagged observable 
variable (that is included in the probit) is particularly high (e.g., if  is high), 
the uncertainty carried into the model by trying to identify the dynamic behavior 
over time overcompensates for the benefits of the identification. This argument is 
visualized in Figure 2, panel (a).

On the contrary, the probit forecast performs extraordinarily poorly in the 
lo settings, where it is usually outperformed by all of the dynamic approaches, 
most strongly by the Qual VAR. In lo,high, probit cannot even outperform an 
unconditional forecast. Because a causal link between the lagged observable and 
the contemporary latent – as modeled by the probit – does not even exist in this 
case, the probit must entirely rely on the correlation between  and  caused 
by the common origin  (see Figure 2, panel (b)). Especially if  is high, the 
correlation between  and  is low, thereby further obfuscating the dynamics. 

The results for the Fry-Pagan estimate are not quite as good as the results for 
the median Qual VAR forecast, but still rather convincing. Far more often than not, 
the Fry-Pagan estimate outperforms all competitors.

The good fit in terms of probability, indicates that the dynamics of the system 
are captured reasonably well by a Qual VAR despite its flawed identification. 
This implies that impulse response functions (IRFs) can be derived reasonably 
well at least in terms of the dynamics. The impulse response functions implied 
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by our coefficient estimates confirm this.15 However, while the dynamics of the 
system are generally well captured, the magnitude is substantially misestimated in 
4 out of the 9 scenarios for at least one IRF. Also, in particular in scenarios where 
the estimation of the variances is distorted, the actual identification of structural 
shocks can be problematic.

Non-probabilistic forecast evaluation

For the non-probabilistic forecast evaluation, we transform the probabilistic 
predictions into binary predictions, using a probability threshold that is calibrated 
to maximize the difference between hit rate and false alarm rate within the sample 
(Ratcliff 2013).16 In the case of the Qual VAR the in-sample distribution of 
predicted probabilities at horizon  is based on  period ahead forecasts that are 
calculated from coefficients using the entire in-sample data. This is necessary to 
allow comparing the indirect forecasts of the Qual VAR with the direct forecasts 
provided by the alternative models.

While the performance between the benchmark models and the Qual VAR is 
similar for short horizons, the Qual VAR tends to overpredict at longer horizons. 
While this implies a higher hit rate, the benefit in terms of additional hits is bought 
at the expense of an extremely high rate of false alarms, see Table 7.

VI. Robustness

Previous applications of the Qual VAR are based on much more complex models 
than the one outlined in this analysis, which might add to the identification 
problems. While we have very limited information on the true interaction of the 
latent variables discussed in those models and observable variables, there are some 
well known features of macroeconomic models that might cause further problems 
when one of the variables considered is non-observable.

While our benchmark model is fairly flexible, it cannot capture some of those 
features. One of those features is cyclical behavior that requires a lag order of two 

15  The IRF analysis is not part of this paper. The IRFs are available from the authors on request.
16  This maximization is identical to the usefulness maximization of the signals approach El-Shagi, Knedlik and von 
Schweinitz (2013).
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or more. Another feature that makes VAR models so popular is the possibility to 
trace the chain of events, that is, when a shock to one variable eventually affects 
another variable only through a third factor. Inference might be more difficult 
when it is the latent variable that links two observable variables, i.e., is caused by 
one and causes the other. The weak performance of the Qual VAR in our simple 
benchmark frameworks casts doubt on the ability of the Qual VAR in those more 
complex settings. However, to demonstrate that our results are robust, we also 
assess the performance of the Qual VAR in some settings with those features. 
In this analysis we focus on the area where the Qual VAR had most problems 
according to our results, i.e., identification.

A. Cyclical behavior

We consider cyclical behavior in the observable and the latent variable, both 
individually and simultaneously. This is most easily modeled by a DGP with two 
lags. We choose coefficients in the order of magnitude of the cyclical component 
of quarterly GDP. The correlation between variables is chosen to guarantee 
stationarity, albeit allowing some persistence. Setting the variance of the observable 
to one, this leaves us with the three settings given in Table 8.

Table 8. Specifications with cyclical behavior and results

                          Specification

 cycle o cycle l cycle all

 

  1.3      0.4
0.3       0

-0.8      0.4
0.1       0

  0      0.3 
 0.4    1.3
  0      0.1
 0.4   -0.8

 1.3      0.3
 0.3      1.3
-0.8      0.1
 0.1     -0.8

 1 1 1

%Gr(ind)
 100.0      99.9
   69.4      95.1

93.9      6.2
   97.5      100.0

100.0     95.6
   98.5      100.0

%Gr(all) 65.5 5.2 94.4

Note:  is the parameter matrix of the VAR , see equation (2). As in Table 4, the rows Gr(ind) and 
Gr(all) contain the share of Monte Carlo simulations with correctly identified Granger causalities (individual and combined), 

where the tested causalities are .
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As in the benchmark scenarios, the test for unbiasedness of  the estimate of  
rejects the null hypothesis in the clear majority of our simulations. The average  of  
the corresponding auxiliary regression (3) ranges from 0.61 to 0.75 when considering 
the median estimate, and from 0.47 to 0.62 for the Fry-Pagan estimate. This does 
more or less match the results obtained from the benchmark scenarios with =1.

In the cycle o and cycle l settings, causalities from one variable to the other 
are only weakly identified if the parameters are low. This problem is particularly 
severe in the cycle l setting, where the impact of the observable on the latent is 
merely detected in 5% of the simulations.17 This confirms our findings from the 
benchmark scenarios.

The identification of the Granger causality by the Qual VAR is surprisingly 
strong in the case where both latent and observable variable exhibit (individual) 
cyclical behavior (cycle all). In this scenario the true Granger causality is correctly 
identified (at the 5% significance level) in almost 95% of our simulations. However, 
this is mostly due to the high variance of both the observable and the latent variable 
that is caused by the interaction of the cyclical behavior. Therefore, the relation of 
the variance of shocks to the total variance of the model variables (about 1:10) is 
much lower than in all our other simulations (about 1:4), and lower than in many 
empirical models. That is, this setting is particularly simple to identify.

B. Latent link variable

Our second robustness test applies the Qual VAR to a model where the latent 
variable links two observable variables:

(4)

This setting allows inference about the latent variable both from lead and lag 
observations of the observable variables, thereby closely resembling our original 
olo settings. However, there is no need to extract the lead and lag information 
about the latent variable from a single observable variable. This might simplify 
identification. 

17 Due to the multiple lag structure, we cannot apply our adjusted causality test that accounts for the sign of the effect. 
The values reported in this section are obtained from conventional Granger causality tests using a Wald type test.
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Nevertheless, the test for unbiasedness of the estimate of the latent again 
rejects in the clear majority of simulations. The  of the test regression (3) is 
slightly better than in the olo setting but in the same order of magnitude (0.67 for 
the median estimate and 0.53 for the Fry-Pagan estimate).

The share of simulations where all causalities are correctly identified is around 
18%. While that is worse than the performance in the (olo,eq) setting, it has to 
be considered that a larger number of individual tests is aggregated, increasing 
the chance of missing once, even if the individual tests perform equally well. As 
in the (olo,eq) setting we find that most problems occur in the estimation of the 
autoregressive parameters with a value of 0.2. In particular, the autocorrelation of 
the latent variable is merely identified in one of three simulations.

VII. Conclusions

Our results on the performance on the Qual VAR are mixed. The forecasting 
performance is fairly good. Most notably, compared to a standard procedure in 
binary forecasting such as a probit, the Qual VAR generally adds substantially. 
Especially if the dynamic behavior of the latent variable is relevant, the Qual VAR 
is strong in that respect. Even in situations where the Qual VAR cannot play its 
strength (such as in short horizon forecasts in our ol settings), the loss compared 
to different benchmark models is moderate and the absolute forecast errors are 
minimal.

However, Qual VAR has severe problems in the identification of the economic 
story. Even when the Qual VAR is only confronted with rather simple models in our 
MCMC framework, it produces substantial errors when estimating the dynamics 
of the latent variable. Moreover — and at least as problematic from an economic 
perspective — is the Qual VAR’s failure to capture the correct Granger causality in 
approximately 50% of our simulations. As the Granger causality essentially tells 
which setting prevails, it is difficult to identify the true setting (i.e., the general 
economic story). These results hold in more complex settings using more lags 
and more variables. Because the quality of the identification of the latent variable 
strongly depends on the setting, it is basically impossible to determine whether the 
Qual VAR results are reliable.

Thus, while providing a good forecasting tool, using the Qual VAR is 
inadvisable with respect to economic analysis.
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