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1. Introduction 
 
  In the last four decades, numerous authors have suggested methods to evaluate portfolio 
performance. Treynor (1965), Sharpe (1966), and Jensen (1968), proposed performance measures 
which produce a score for every portfolio being evaluated.  These scores are used to compare the 
performance of any two portfolios or rank the performance of all portfolios in a given set. Later, 
Hendriksson and Merton (1981), Lehmann and Modest (1987), Moses, Chaney, and Veit (1987), 
Grinblatt and Titman (1989a), Okunev (1990) and others, developed new ways to evaluate portfolio 
performance. In their methods, management market timing and selection abilities received 
increasing attention. The general idea common to most of these works is that the method assigns to 
every portfolio a numerical score, often called excess return.  This score is derived by taking the 
difference between the average portfolio return and the expected portfolio return predicted by some 
model. Usually, the score assigned to every portfolio depends on the risk-free rate and a benchmark 
(market) portfolio.  For example, denote the Jensen score by J and use the CAPM, then using the 
prior population parameters, J = µ - Rf - β(µm - Rf), where µm is the mean return of an efficient 
portfolio whose return is Rm, µ is the mean return of the portfolio being evaluated, whose return is 
R, β = cov (R,Rm)/σm

2, where cov is the covariance operator and σm
2  is the variance of Rm.   J 

depends on the risk-free rate, Rf, and on the portfolio m, which needs to be an efficient portfolio. 
Roll (1977, 1978) and Green (1986) pointed out, however, that the concepts of efficiency and 
excess return need not be consistent. Moreover, Dybvig and Ross (1985a) showed that even if an 
efficient portfolio is used as a benchmark, both superior as well as inferior portfolios could produce 
positive J values, thus casting doubt on the usefulness of this approach. In fact, Dybvig and Ross 
(1985b) showed that an uninformed observer may calculate a positive or a negative J score even 
when evaluating a manager with superior information.  They proved that if one uses this method of 
evaluation, a manager with superior information might appear to be performing in a suboptimal 
fashion.  Grinblatt and Titman (1989a and 1989b) offered further criticisms when models other than 
the CAPM were the basis of the performance evaluation.  
 The criticism mentioned so far represents theoretical arguments based on population 
parameters.  In practice, additional problems arise. For example, Lehmann and Modest (1987) 
conclude that the method of estimation used in the evaluation substantially changes the J score.  
Complicating this estimation problem is the uncertainty as to whether the benchmark portfolio 
being estimated is itself efficient. If it is not efficient, does it still matter, which benchmark portfolio 
is used?  On the last point a study by Grindblatt and Titman (1991a) concludes that it does matter 
and Baily (1992) reaches the same conclusion. Although, Grindblatt and Titman (1989a) attempt to 
deal with some of these issues, no particular method of evaluation has found general acceptance. 
Moreover, while there is a growing body of literature on the estimation and testing the properties of 
efficient portfolios, see e.g., Kandel, McCulloch and Stambauch (1995) and the references therein, 
there is very little on the sampling errors of performance measures. In the case of the Jensen 
measure, other than tests to determine whether a particular score is statistically different from zero, 
no attempt has been made to deal with sampling errors when ranking portfolios. That is, two 
portfolios, each of whose score was deemed significant, were then ranked by these scores without 
any regard as to whether they are significantly different from one another or not. An exception is 
Jobson and Korkie (1981), who proposed statistical tests of equality of the Sharpe and (separately) 
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the Treynor measures, based on their sample estimates.  
 In this paper, we develop a new portfolio performance evaluation method that addresses the 
issue of sampling errors directly, without the need to use an efficient portfolio or any other 
particular benchmark in order to determine the rankings.  
  The 1991 annual report of TIAA-CREF - one of the largest funds in the world - stated that 
the goal for CREF's stock fund was "...for CREF participants to earn stock market-type investment 
returns, but with less risk (fluctuations of returns) than the market." This stated goal for the fund 
indicated the wish to manage the fund such that it will dominate other investments in some risk-
return sense. Thus, the first stage of the method we propose consists of a new statistical method that 
directly compares the performance of any two portfolios based on the mean-variance dominance 
(MV) criterion. Given a set of N portfolios, we directly compare every portfolio against each of the 
remaining N - 1 portfolios, thereby producing an NxN matrix containing the outcomes of all 
possible pairwise comparisons. In the second stage of the method we employ a ranking function 
which maps the elements of the comparison matrix into a complete ranking of the portfolio set. In 
general, our approach leads to a very different ranking of portfolios than those given by the Treynor, 
the Jensen and the Sharpe measures. We discuss, however, the conditions under which both 
approaches produce similar rankings.  
 The method we propose is different from other performance measures in several regards: 
(i) The methods mentioned above assign an independent score to every portfolio and then, use these 
scores to compare and rank the portfolios. We take the reverse approach. First, our method 
produces direct pairwise comparisons among the portfolios and only then we rank them based on 
these comparisons. (ii) The basis for the other methods’ ranking are scores that depend on a 
univariate measure concerning returns. That is, the rank is based on a conditional risk-adjusted 
average return, or a suitably standardized average return.  We propose a ranking based on a 
bivariate criterion related to mean-variance dominance. (iii) These methods do not account for 
sampling errors. The method we propose is based on a statistical argument.  Hence our procedure is 
implementable and justifiable even in a short time period and for fixed sample sizes. (iv) Our 
method is based on pairwise comparisons of all the portfolios thus, it is independent of a particular 
benchmark.  As such, it does not allow for a manager to manipulate the rankings by gaming. (v) 
Our method does not depend on the existence of a risk-free rate. We show, however, how to 
appropriately adjust the procedure when a risk-free rate does exist. 
 We proceed as follows: In Section 2 we present a two-stage statistical procedure of ordering 
and ranking portfolio performance and illustrate this procedure with an example, using eight 
portfolios.  In Section 3, we illustrate the use of the method by applying it to a set of 133 mutual 
funds. The first 130 funds in this set were first studied by Lehmann and Modest (1987) and again 
by Connor and Korajczyk (1990).  To this set we added the S&P500 index and the equal and value 
weighted CRSP indexes. We produce our ranking of these 133 funds over three different time 
periods, 5, 10, and 15 years.  In Section 4 we compare the ranking we obtain with the ranking 
calculated by the Treynor, the Sharpe, and the Jensen measures.  In Section 5 we investigate several 
theoretical connections between our method and the Treynor, the Sharpe, and the Jensen measures. 
 We offer some additional remarks in Section 6. 
 
2. A Procedure of Ranking Portfolio Performance 
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 In this section we develop a statistical method of ordering and ranking portfolios following 
the concept of Mean-Variance (MV) Dominance. 
2.1 The Theoretical Foundation of the Test of Dominance 
 We follow the usual definition of MV dominance : 
Definition 1. Let Rj denote the return on portfolio j with mean µj and variance σj

2, j = 1,...,N. For 

any two portfolios in the set, j and k, we say that portfolio j dominates portfolio k if µj ≥ µk and σj
2 ≤ 

σk
2, with at least one inequality being strict. This type of dominance is denoted by RjDRk. If 

portfolio j is dominated by portfolio k we write Rj ∃D Rk. If the means are equal and the variances are 

equal too, we say that the two portfolios are equal and denote this by RjERk. If neither dominance 

nor equality determines the relationship between the two portfolios, we call the portfolios 

noncomparable and denote it by RjNCRk .// 
 The following three theorems establish a new method of determining MV dominance 
between any two portfolios. We begin by recalling a basic result in regression theory. 

Lemma A.  Let iii    =Y ε+Χβ+β 10  represent a simple linear regression model, i = 1,...,N, with i ε  
 being independent and normally distributed with mean zero and variance σ2.  Then the 
simultaneous Null hypothesis Ho: β0 = β1 = 0 may be tested against the general alternative, using the 
uncorrected F statistic ) Ŷ - Y( / ]) Ŷ - Y( - Y([

2
2 -N  = UF 2

ii
2

ii
2
i ∑∑∑ , where i

∃Y  is the least-squares 
fitted model.  Under Ho, UF has a central F distribution with 2 and N - 2 degrees of freedom.   
Small values of UF do not allow Ho to be rejected.  
Proof: See any text on testing the general linear hypothesis.  
 This result leads to a statistical method for testing the simultaneous equality of the mean 
returns and the return variances of any two portfolios:    
Theorem A. Let Rit be the random return on portfolio i, i=1,...,N at time t=1,..., T. Assume that the 
vectors (Rit, Rjt) are a random sample from a bivariate normal distribution, and run the regression:  
                    ttt  + )X- X( + =Y εββ 10                       t = 1,...,T, 
where,    Yt = Rjt - Rit , Xt = Rjt + Rit  and X 

T
1 = X t∑∑∑∑ ;      i, j = 1,...,N. 

     Then, the corresponding UF-statistic given in Lemma A, can be used to test the simultaneous 
hypothesis: Ho: µj = µi and σj

2 = σi
2 versus  Ha: µj ≠ µ i  or  σj

2  ≠ σi
2. This UF-statistic follows an F2,T-

2 distribution under Ho. 
Proof:  See Bradley and Blackwood (1989).  
 Two remarks are in place:  
 Remark 1: Notice that the UF-statistic is not the usual F statistic, in that it is testing whether 
both the intercept and slope of the regression line are simultaneously zeros.  The essence of the 
proof of Theorem A involves the recognition that the least square estimators of the intercept and 
slope are estimating EY = µ1 - µ2, and 
 

V(X)
 - 

 = 
V(X)

)]- R( + ) - R[( )]- R( - ) - R[( E
 =  

V(X)
X)(Y, cov i

2
jiijjiijj

2µµµµ σσ
,  respectively. 

Thus, the two coefficients will be zero if and only if µj = µi  and  σj
2 = σi

2. 
 Remark 2: The regressions in Theorem A (and in Theorem B below,) do not in any way, 
constitute return generating models. These regressions are only used as a tool (a trick, if the reader 
wishes to call it this way) that enables us to obtain the UF-statistic needed for the test of the above 
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simultaneous Null hypothesis. This is achieved by defining Yt to be the difference between the 
returns on any two portfolios and Xt to be the sum of the returns on the same two portfolios.  These 
definitions do not describe any economic model between the returns on the portfolios or between 
the dependent and independent variables and neither portfolio need be a benchmark portfolio.  
 The next theorem generalizes Theorem A to the case when the vectors (Rjt, Rit) are a sample 
from any elliptically contoured distribution. 
Lemma B. Let iii    =Y ε+Χβ+β 10 represent a simple linear regression model, i=1,...,N, 
with i ε being  jointly elliptically distributed with zero means.  Then, the simultaneous null 
hypothesis Ho: βo = β1 = 0 may be tested against the general alternative using the UF-statistic of 
Lemma A.  Furthermore, the distribution of UF under Ho is the same as under normality: F2,N-2. 
Proof: Theorem 6 in Anderson and Fang (1990) establishes that when the error term is elliptical, 
the likelihood ratio test criterion for testing Ho: βo = β1 = 0 is the same as under the normal case. 
Here this criterion is: [ΕYi

2 / Ε(Yi  - !)2]n/2 which is a monotonic function of UF of Lemma A.  
 We now generalize Theorem A to the case of elliptical distributions. 
Theorem B. Let (Rjt, Rit), t = 1,...T, be a sample from a bivariate elliptical distribution.  Then, the 
UF-statistic of Lemma A can be used to test the simultaneous hypothesis Ho: µj = µi and σ2

j = σ2
i 

against the general alternative.  Under the Null hypothesis, the distribution of UF is F2,T-2. 
Proof:  {Rjt, Rit} are bivariate elliptical, then (Yt, Xt) in Theorem A are elliptical and Yt is 
conditionally linear in Xt; Yt may be written as ttt  + )X- X( + =Y εββ 10 , where εt are elliptically 
distributed. See Owen and Rabinovitch (1983).  Lemmas A and B then lead to the same conclusion 
as in Theorem A.  
 So far, theorems A and B establish a test for the simultaneous equality of the means and the 
variances of elliptically distributed bivariates. If the Null hypothesis cannot be rejected based on the 
UF-statistic, we conclude that RjERi. Theorem C below, establishes the implications of the rejection 
of Ho using the statistical properties of the individual regression coefficients.  
Theorem C. For i = 0, 1, let ti be the t-statistic associated with the least squares estimator i

∧
β  that is 

used to test Ho: βi = 0 versus Ha: βi≠ 0, respectively. Given that the UF-statistic is significant, the to-
value may be used to test Ho: µj = µi versus Ha: µj ≠ µi  and  the  t1-value may be used to test  Ho: σj

2 
= σi

2  versus Ha: σj
2 ≠ σi

2.   
Proof: Testing βo = 0 is equivalent to testing µj = µi. Testing β1 = 0 is equivalent to testing 

0
Χ 
σσ 22

 = 
)(V

- ij  or σj
2 = σi

2.  
2.2 The Statistical Test of Dominance Without a Risk-Free Rate  
 We summarize the first stage of our two-stage procedure of ranking portfolio 
performance, using theorems A, B and C as follows: Let {Rit} be a random sample of N 
portfolio returns, i = 1,...,N during a sample period t, t = 1,...,T. Assume that Ri and Rj 
follow a bivariate elliptical distribution which is stationary over time. In order to run the 
regression in Theorem A in a systematic manner, fix j = 1 and run N - 1 regressions, 
where Yt = R1t - Rit and Xt = R1t + Rit for portfolios i:i = 2,3,...,N. For each of these N - 1 
regressions, test the simultaneous hypothesis of Theorem A. If the UF-statistic is not 
significant, report that R1ERi. If, on the other hand, the UF-statistic is significant, reject 
Ho, i.e., conclude that the simultaneous equality of the means and variances does not 
hold. In the latter case, use the regression's t-values to test the separate hypotheses on 
the equality of the means and the equality of the variances. Table 1 specifies all the 
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possible results of these tests, where k
*t  (tk), k = 0,1, denotes a significant (insignificant) 

t-value at the desired level of significance. Note that if, following a significant F test, 
neither to nor t1 is significant, we record the result as a noncomparable result. We show 
how to resolve the cases of noncomparable portfolios in Section 2.3 below. To 
continue, notice that the result of the N - 1 regression runs of R1 on Ri, i = 2,3,...,N, and 
the above tests for each regression, is a vector of MV comparisons between portfolio j = 
1 and the rest of the portfolios in the set. Every entry in this comparison vector is: 
R1DRi, or R1ERi, or R1 ∃D Ri or R1NCRi. For simplicity, we also run R1 on itself thus, the 
first entry in the first comparison vector, (j=1, i=1), is R1ER1, trivially. The next step is to 
compare portfolio j = 2 to all the other portfolios. Thus, fix j = 2 and repeat the previous iteration of 
regression runs and tests of hypotheses for all i, i = 1,...,N. A second  vector 
Table 1 
 
 The Results of the Separate Tests on the Means and the Variances   

   t1 – test   

  1
*t >  0

)> ( ij σσ 22  
1
*t <  0  

)< ( ij σσ 22  
1t  

) = ( ij σσ 22  

 o
*t >  0  

(µj > µi) 
 
 RjNCRi 

 
RjDRi 

 
RjDRi 

to - test 
 

o
*t <  0   

(µj < µi) 
      
 Ri D̂ Ri 

 
RjNCRi 

        
 Ri D̂ Ri 

 to   
(µj = µi) 
  

        
Ri D̂ Ri 

 
RjDRi 

 
RjNCRi 

 
will result, yielding information about the MV ordering of portfolio 2 relative to all the portfolios in 
the set. Again, running R2 on itself yields R2ER2 trivially, in the second entry of this vector. 
Continue these iterative steps for j = 3, j = 4, and so on up to j = N. Every iteration produces another 
comparison vector so that after N iterations, we have created an NxN matrix of comparisons. To 
simplify the discussion, we transform the information in each entry of the comparison vectors into a 
numerical value using a comparison function: 
Definition 2. For i,j = 1,...,N, a comparison function, COMP(i,j), is defined as follows: 
    1 if RjDRi, 
    0 if RjERi, 
 COMP(i,j) =   -1 if Rj D̂ Ri,     
     4 if RjNCRi.//  
Definition 3. A comparison matrix C is a matrix whose elements are COMP(i,j);   j,i, = 1,...,N.// 
 From definitions 2 and 3, it follows that the elements of the matrix C are the real numbers 
1,0,-1 and 4, depending on the type of dominance found in the hypothesis testing that followed the 
regressions of  Theorem A. 
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 The first stage of the procedure could end at this point. Further refinement is possible, 
however, when a risk-free rate exists. In the next section we show how to employ the risk-free rate 
in order to resolve all the cases of noncomparable portfolios.   
2.3 An Adjustment in Case That There Exists a Risk-Free Rate, Rf. 
 Suppose that a risk-free rate, Rf, exists in the economy. First, observe that subtracting Rf 
from all the portfolios' returns and performing stage one of the procedure with "access returns", 
leaves the above results unchanged because of the way Yt, Xt and the regression of Yt on Xt are 
defined. We use Rf, however, in order to resolve the cases of noncomparable portfolios. To do this, 
we extend the notion of dominance in the following way:  

Definition 4. Let portfolio i and j be a pair of noncomparable portfolios. For portfolio i compute  
 a new return, which is the linear combination of its original return and the risk-free rate: 
    Ri

*  = (1 - δ)Rf + δRi  . 
Then, portfolio j is said to dominate (be dominated by) portfolio i if there exists a δij , such that 

employing Ri
*   and jR leads to RjD Ri

*   (Rj ∃D  Ri
*) for that δij . If portfolio j does not dominate or is 

not being dominated by portfolio i, we say that they are equal.// 
 Theorem D below establishes that all the cases of noncomparable portfolios are resolved 
under definition 4 of extended dominance.  For simplicity we drop the subscripts ij in the sequel. 
Theorem D. Let i and j be a pair of noncomparable portfolios and assume that a risk-free rate Rf 

exists. Then, there exists a δ  with the corresponding Ri
*  such that RjD Ri

*    , RjE Ri
*, or   Rj ∃D  Ri

*

Proof: Let iR  be the sample mean return of portfolio i.  If iR  – Rf ≠ 0, then, a possible choice  is:  
δ = ( jR – Rf) / ( iR  - Rf) .  

 Adjust iR using this δ  and run the regression of Theorem B with Yt and Xt redefined with 
Rj band Ri

*  . It can be shown that 0b0 =
∧

 for this choice of δ , which implies that µi
* = µj  Thus, if 

the UF-statistic is not significant, it follows that σi
*  =  σj  as well, i.e, RjERi

∗ . If, on the other hand, 
the UF-statistic is significant, it follows that the variances are different. This fact, coupled with the 
fact that the means are equal, implies that dominance must exist between the two portfolios. If µi = 
Rf but µj ≠ Rf, the same conclusion follows by reversing the roles of the portfolios. If  iR  = jR  = Rf 
then, again, 0b0 =

∧

 and the conclusion follows. This completes the proof.  
 For the complete procedure that we propose below, we first construct the matrix C without 
the use of Rf. We then introduce the risk-free rate and resolve all the cases of the noncomparable 
portfolios by setting δ  equal to the value in Theorem D and comparing the resulting Ri

* to Rj. Note 
that we could have resolved the comparison between noncomparable portfolios by a complete 
search over δ  values. Instead, we chose a simpler form of the algorithm. As Theorem D asserts, the 
result of this comparison resolves all the cases of noncomparabe portfolios. We use the notation 
COMP(i*,j) to refer to the comparison of  Ri

*  with Rj, with δ  chosen as in Theorem D. Therefore, 
for these cases we now have COMP(i*,j) = -1, 0, or 1, where we previously had COMP(i,j) = 4. In 
this way the matrix C is transformed into a risk-free rate adjusted matrix that contains no 
noncomparable portfolios in it. 
Definition 5. The risk-free rate adjusted comparison matrix Cf is the matrix with the elements 

COMPf(i,j): COMPf(i,j) = COMP(i,j), for all the cases in which COMP(i,j) = -1, 0, 1.  

*
i
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             COMPf(i,j) = COMP(i*,j), for all the cases in which COMP(i,j) = 4.// 
 This concludes stage one of our procedure in which we create comparison matrices 
containing the results of the pairwise comparisons of all the portfolios in the set. In stage two the 
procedure is completed by using a ranking function that maps the information in the comparison 
matrix in order to rank the portfolios, i.e., converting the Cf, (or the C) matrix into a complete 
ranking of the portfolios. 
2.4 The Ranking Function  
 The j-th column (j = 1,...,N) of the risk-free rate adjusted comparison matrix Cf, contains the 
results of comparing the j-th portfolio against each and every portfolio in the set, expressed by 
COMPf(i,j). In a more general context, COMPf(i,j) might be some measured difference between 
portfolios j and i. In our analysis these results are expressed as real numbers COMPf(i,j) satisfying: 
 COMPf(i,j) + COMPf(j,i) = 0, 
and COMPf(i,j) = 1, 0, -1, i,j = 1,...,N.  
 We propose to rank the portfolios in a descending order of the row-sum as follows: 
Definition 6.  Let us use the matrix Cf in which the entries are: COMP(i,j) = 1, 0, or -1. A ranking 
function is defined by the row-sum function:      sj = i

NΣ COMPf(i,j),     j = 1,...,N, 
and the portfolios are ranked in a descending order of sj, breaking ties at random, or arbitrarily.// 
 By Definition 6, the "best" portfolio, ranked number 1, is the portfolio with the highest 
value of sj, the "second best" portfolio, ranked number 2, is the portfolio with the second highest sj 
score, and so on, down to the " worst" portfolio, ranked number N, which is the portfolio with the 
lowest value of sj.  
 This ranking function follows from Huber's (1963) analysis of pairwise comparisons and 
ranking. Theorem 1 in Huber (1963) demonstrates that under some very general conditions, the 
ranking in descending order of sj, breaking ties arbitrarily or at random, uniformly minimizes the 
risk among all (invariant) ranking procedures that depend on COMPf(i,j) only through sj, for all 
“reasonable” risk functions. Moreover, Huber shows that minimum risk is achieved in cases in 
which the COMPf(i,j)s are not necessarily independent random variables, as well in the case in 
which the COMPf(i,j)s are independent random variables. (The form of the probability distributions 
of COMPf(i,j) and sj and their properties are beyond the scope of this work and is currently under 
investigation.) Finally, we point out that the row-sum ranking function sj applies to the comparison 
matrix C as well, with the slight modification of redefining COMP(i,j) = 4 to be zero, since the 
corresponding portfolios are noncomparable. 
  In conclusion, the two-stage ranking procedure described in the above sections may be 
summarized as follows: in the first stage, a statistical test of MV dominance determines the order of 
every portfolio with respect to all other portfolios. This information is presented in the form of the 
risk-free rate adjusted comparison matrix Cf (and/or C). In the second stage, the row-sum ranking 
function sj is employed to rank the portfolios from the "best", ranked 1, to the "worst", ranked N. 
We refer to this procedure as the O-R procedure.   
2.5 An Eight-Funds Portfolio Illustrative Example of the O-R Procedure 
 In Section 3 below, we apply the O-R procedure to a set of 133 portfolios. Much of the 
analysis and the tables of the 133 funds are too lengthy to be included in the paper. Therefore, we 
end this section with an example using a subset of eight portfolios. With this small subset of 
portfolios, the example exhibits the O-R procedure in its entirety thus, enabling the reader to verify 



 
 

every step of the procedure by inspection. 
 The data are the portfolios' monthly returns over a period of 15 years. The results for the 
eight portfolios chosen for the illustration are presented in tables 2 and 3.  The upper part of Table 2 
displays the UF-statistic and the statistics to, t1 from the regressions described in Theorem A, using 
the level α=.005 for the F test and α=.01 for the t-tests. The critical UF and t values at these levels 
are 5.3 and 2.6, respectively. (Other reasonable values of significance levels produced similar 
results.) For example, the regression between portfolios 114 and 100, in which Yt = R114,t - R100,t 
and Xt = R114,t + R100,t, resulted in a significant UF = 6.1 > 5.3 and therefore, the rejection of H0. 
Then, the t1-value, t1 = - 0.8 < 2.6, implied the equality of these portfolios' variances, but t0 = 3.4 > 
2.6 implied that µ114 > µ110. Thus, R114DR100 and COMP(1,2) = 1 in Matrix C. The comparison 
matrix C is displayed in the lower-left part of the table. Similar explanation applies to all the 64 
pairwise comparisons among the eight portfolios, including the eight  trivial comparisons that lead 
to zeros along the main diagonal of the lower-left side of the table. The ranking function sj and the 
O-R ranking based on the matrix C are shown in the lower-right part of the table.  For the eight 
portfolios in the example, the rankings may be arrived at by inspection. It is seen that portfolio 114, 
(j = 2), is the "best" with s2 = 6, portfolio 131 - the S&P500 Index with dividends, (j = 6), is the 
"second best" with s6 = 2, breaking the tie between portfolio 131 and portfolio 120 (whose s4 = 2, as 
well), arbitrarily. The ranking function continues in a descending order of sj to rank portfolios 100, 
130, 133 - the CRSP value-weighted index with dividends, 132 - the CRSP equal-weighted index 
with dividends and finally, portfolio 115, with s3 = - 6, is ranked number 8, the "worst."  
 In Table 2 we find that portfolios 115 and 130 are noncomparable, COMP(5,3) = 
COMP(3,5) = 4, and so are portfolios 130 and 132, COMP(7,5) = COMP(5,7) = 4. To convert 
matrix C to matrix Cf, we employed the risk-free rate, which was taken to be the average monthly 
yield on T-bills over the sample period of 15 years. Table 3 displays the risk-free rate adjusted 
comparisons matrix Cf and the 
 
 
 
 

Fund  100 114 115 
     
100 t0  3.4 1.6 
 t1  -0.8 11.5 
 F  6.1 66.8 
     
114 t0 -3.4  -0.4 
 t1 0.8  13.8 
 F 6.1  95.6 
     
115 t0 -1.6 0.4  
 t1 -11.5 -13.8  
 F 66.8 95.6  
     

The O-R Procedure: An eight-fu

Table 2 

nds  example.  Sample period: 1968 - 1982 
 

9 

120 130 131 132 133 
     
0.8 -1.2 -0.1 1.2 0 
0.7 -1 0.7 7.8 1.7 
0.6 1.2 0.3 31 1.4 
     
-2.3 -3.9 -3.5 -1.3 -3.4 
1.6 -0.4 1.6 10.1 2.8 
3.9 7.7 7.6 51.5 9.8 
     
-1.4 -2.8 -2.5 -0.6 -2.5 
-14 -13.7 -15.5 -5.2 -15.1 
99.4 97.6 123.6 13.9 116.6 
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120 t0 -0.8 2.3 1.4  -2.5 -1.5 1.1 -1.5 
 t1 -0.7 -1.6 14  -2.1 0 13.7 1.6 
 F 0.6 3.9 99.4  5.3 1.1 94.2 2.3 
          
130 t0 1.2 3.9 2.8 2.5  1.6 2.7 1.7 
 t1 1 0.4 13.7 2.1  2.3 10.3 3.6 
 F 1.2 7.7 97.6 5.3  4 56.6 7.9 
          
131 t0 0.1 3.5 2.5 1.5 -1.6  1.9 0.8 
 t1 -0.7 -1.6 15.5 0 -2.3  9.9 6.6 
 F 0.3 7.6 123.6 1.1 4  51 21.8 
          
132 t0 -1.2 1.3 0.6 -1.1 -2.7 -1.9  -2 
 t1 -7.8 -10.1 5.2 -13.7 -10.3 -9.9  -9.8 
 F 31 51.5 13.9 94.2 56.6 51  50.6 
          
133 t0 0 3.4 2.5 1.5 -1.7 -0.8 2  
 t1 -1.7 -2.8 15.1 -1.8 -3.6 -6.6 9.8  
 F 1.4 9.8 116.6 2.3 7.9 21.8 50.6  
          
Fund 100 114 115 120 130 131 132 133  Fund sj O-R   

Ranking 
100 0 1 -1 0 0 0 -1 0  114 6 1 
114 -1 0 -1 0 -1 -1 -1 -1  131 2 2 
115 1 1 0 1 4 1 1 1  120 2 3 
120 0 0 -1 0 0 0 -1 0  100 1 4 
130 0 1 4 0 0 0 4 -1  130 0 5 
131 0 1 -1 0 0 0 -1 -1  133 -2 6 
132 1 1 -1 1 4 1 0 1  132 -4 7 
133 0 1 -1 0 1 1 -1 0  115 -6 8 
sj 1 6 -6 2 0 2 -4 -2     
             

          
          
          
          
          

Fund  100 114 115 120 130 131 132 133 
          
100 to  3.4 1.6 0.8 -1.2 -0.1 1.2 0 
 t1  -0.8 11.5 0.7 -1 0.7 7.8 1.7 
 F  6.1 66.8 0.6 1.2 0.3 31 1.4 
          

Table 3 
 

An eight-funds portfolio example adjusted for the risk-free rate. Sample period: 1968 - 1982 
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114 to -3.4  -0.4 -2.3 -3.9 -3.5 -1.3 -3.4 
 to 0.8  13.8 1.6 -0.4 1.6 10.1 2.8 
 F 6.1  95.6 3.9 7.7 7.6 51.5 9.8 
          
115 to -1.6 0.4  -1.4 0 -2.5 -0.6 -2.5 
 t1 -11.5 -13.8  -14 10.1 -15.5 -5.2 -15.1 
 F 66.8 95.6  99.4 51.1 123.6 13.9 116.6 
          
120 to -0.8 2.3 1.4  -2.5 -1.5 1.1 -1.5 
 t1 -0.7 -1.6 14  -2.1 0 13.7 1.6 
 F 0.6 3.9 99.4  5.3 1.1 94.2 2.3 
          
130 to 1.2 3.9 0 2.5  1.6 0 1.7 
 t1 1 0.4 -9.6 2.1  2.3 -8.6 3.6 
 F 1.2 7.7 45.9 5.3  4 37 7.9 
          
131 to 0.1 3.5 2.5 1.5 -1.6  1.9 0.8 
 t1 -0.7 -1.6 15.5 0 -2.3  9.9 6.6 
 F 0.3 7.6 123.6 1.1 4  51 21.8 
          
132 to -1.2 1.3 0.6 -1.1 0 -1.9  -2 
 t1 -7.8 -10.1 5.2 -13.7 9.3 -9.9  -9.8 
 F 31 51.5 13.9 94.2 43.3 51  50.6 
          
133 to 0 3.4 2.5 1.5 -1.7 -0.8 2  
 t1 -1.7 -2.8 15.1 -1.8 -3.6 -6.6 9.8  
 F 1.4 9.8 116.6 2.3 7.9 21.8 50.6  
Fund 100 115 130 120 131 131 132 133 Fund sj O-R Ranking 
100 0 -1 0 0 0 0 -1 0 114 6 1 
114 -1 -1 -1 0 -1 -1 -1 -1 131 2 2 
115 1 0 -1 1 1 1 1 1 120 2 3 
120 0 -1 0 0 0 0 -1 0 100 1 4 
130 0 1 0 0 0 0 1 -1 133 -1 5 
131 0 -1 0 0 0 0 -1 -1 130 -2 6 
132 1 -1 -1 1 1 1 0 1 132 -3 7 
133 0 -1 1 0 1 1 -1 0 115 -5 8 
sj 1 6 -5 2 -2 2 -3 -1    

O-R ranking after the adjustment.  The two cases of noncomparable portfolios are resolved using 
the δ  from Theorem D.  We found that portfolio 130 was dominated by both portfolio 115 and 
portfolio 132. The ranking itself was almost, but not exactly, the same as before, as portfolios 130 
and 133 exchanged their former ranking. 
3. A Study of 130 Mutual Funds 
 In this section we construct the Cf matrix and apply our ranking procedure to a set of 133 
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portfolios.  Except for three portfolios, this is the same data set analyzed by Lehmann and Modest 
(1987) and Connor and Korajczyk (1990). The data set consists of monthly returns of the funds R1 
through R130 with dividends reinvested, over a fifteen year period from January 1968 through 
December 1982. To this data set we added three more funds with returns:  
 R131 = The Standard & Poors 500 Index (SP500 Index) with dividends,  
 R132 = The CRSP equal - weighted Index with dividends, and  
 R133 = The CRSP value - weighted Index with dividends. 
 We applied the O-R ranking procedure to the full data set and generated the UF, to and t1 
values and the 133x133 comparison matrix C. The critical F value, F=5.3, corresponds to α=.005. 
This α value was chosen this small to help control for the over-all error rate (a Bonferroni 
adjustment). The t-tests were performed at α=.01 with critical t-value of 2.6. We then, estimated the 
risk-free rate and transformed C into Cf, resolving all the cases of noncomparable portfolios. For the 
risk-free rate we used the average monthly yield on T-bills during the sample period. We performed 
separate analyses for three overlapping sample periods of 5 years: 1982 - 1978, 10 years: 1982 - 
1973 and 15 years: 1982 - 1968. Because of space limitations we cannot present the results of the F 
and the t tests as we did for 
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1 73 73 13 46 120 40 83 91 16 112 25 
2 105 105 73 47 6 29 74 92 66 93 126 
3 51 92 112 48 63 5 37 93 46 90 65 
4 92 51 4 49 91 107 109 94 59 113 7 
5 114 68 116 50 41 100 90 95 69 52 84 
6 71 116 115 51 111 129 47 96 113 46 41 
7 116 88 99 52 104 48 5 97 75 11 81 
8 125 125 88 53 107 43 117 98 86 108 36 
9 88 71 63 54 2 25 129 99 36 69 8 
10 44 62 51 55 7 3 24 100 109 9 80 
11 62 4 59 56 77 20 127 101 110 80 38 
12 23 128 44 57 38 131 100 102 65 94 124 
13 15 115 125 58 25 6 29 103 52 16 31 
14 128 18 18 59 20 14 32 104 11 66 67 
15 18 15 105 60 14 22 120 105 112 121 97 
16 106 13 128 61 22 77 6 106 119 8 61 
17 4 44 62 62 85 17 132 107 81 119 56 
18 99 87 106 63 40 45 14 108 42 31 69 
19 89 99 71 64 96 37 19 109 30 65 11 
20 39 106 12 65 45 117 76 110 70 110 86 
21 87 33 113 66 53 85 131 111 28 78 121 
22 60 23 130 67 72 111 43 112 97 81 16 
23 21 39 104 68 10 35 46 113 101 49 119 
24 74 12 33 69 133 123 20 114 78 82 75 
25 68 89 92 70 123 38 17 115 132 97 108 
26 33 60 23 71 50 19 52 116 8 61 93 
27 13 64 111 72 35 98 35 117 49 75 101 
28 64 83 57 73 57 133 123 118 31 86 110 
29 12 74 21 74 3 79 98 119 82 28 1 
30 103 57 91 75 126 2 122 120 94 30 28 
31 83 118 26 76 67 7 2 121 90 26 27 
32 130 21 87 77 124 96 107 122 9 42 94 
33 29 114 89 78 19 1 79 123 102 109 70 
34 118 120 60 79 17 10 10 124 26 95 95 
35 76 76 45 80 93 72 22 125 34 102 58 
36 5 63 9 81 11 124 49 126 95 101 30 
37 127 41 68 82 79 67 48 127 6 70 42 
38 48 127 118 83 1 50 103 128 54 34 34 
39 84 32 77 84 98 53 114 129 121 58 102 
40 131 103 39 85 37 56 85 130 27 27 78 
41 32 130 40 86 24 59 53 131 58 122 82 

Table 4 
The O-R ranking of 133 funds for the period of 1968-1982 

  
  Rank   15yrs      10yrs        5yrs       Rank        15yrs   10yrs       5yrs     Rank      15yrs      10yrs        5yrs 
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42 43 104 15 87 115 24 96 132 55 54 54 
43 129 91 64 88 80 36 66 133 122 55 55 
44 47 47 50 89 108 132 133     
45 100 84 3 90 56 126 72     

the eight fund example. Nor can we present the entire 133x133 Cf matrix. Therefore, we only 
present the O-R rankings of the 133 funds. The results of the full ranking over the 15, 10 and 5 year 
periods appear in Table 4. 
 It is interesting to note that the three indexes we added to the original data set did not fare 
too well.  For example, for the 15 year period between 1968 and 1982 the SP500 Index (fund 
number 131) is ranked 40. The CRSP equal-weighted index (fund number 132) is ranked 115 while 
the CRSP value-weighted index (fund number 133) is ranked 69. 
 As mentioned above, the full 133x133 C and Cf matrices were too large to include in this 
paper. In order to illustrate the information contained in the Cf matrix, however, Table 5 presents 
the tests results that lead to the creation of one vector in this comparison matrix namely, the column 
corresponding to the SP500 Index. We chose to present this particular column because the SP500 
Index is commonly employed as the benchmark portfolio in empirical analyses done in the financial 
literature as well as by practitioners in fund management evaluations. Table 5 is divided up into 
three parts. All the parts display the fund number and the number of observations in the regression 
of Theorem A, with the SP500 Index as portfolio j (j = 131) and the indicated fund as portfolio i, 
i.e, Yt = R131,t - Ri,t and Xt = R131,t + Ri,t, i = 1,...,133. The UF, t0 and t1 values are also given. The 
left part contains all the funds that were dominated by the SP500 Index during the 15 years sample 
period and hence, the 131st column of the matrix Cf will have the entries COMPf(i,131) = 1 for the 
corresponding row of fund i. The central part contains all the funds with UF-statistic values less 
than the critical value of 5.3. These are the funds that were equal to the SP500 Index and therefore, 
COMPf(i,131) = 0 for these funds. The right part of the table shows the portfolios that dominated 
the SP500 Index during these 15 years, implying that COMPf(i,131) =- 1.  Table 5 shows that 
during the fifteen years between
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Table 5 
Comparing 132 Portfolios Against The SP500 Index During The Period 1968 - 1982 
             The SP500I Dominates Fund i                       The SP500I Equals Fund i       Fund i 
Dominates The SP500I       
Fund NOB F t0 t1 Fund NOB F Fund NO

B 
F t0 t1 

37 180 5.33 -0.07 3.26 7 180 0.03 128 180 78.04 -0.91 -12.46 
79 180 5.51 1.01 3.16 47 180 0.04 23 180 77.26 -0.84 -12.4 
24 180 6.61 -2.97 2.1 48 180 0.12 73 180 76.91 -12.72 -12.4 
41 180 7.12 2.24 3.04 100 180 0.26 105 180 74.82 0.31 -12.23 
98 180 8.3 -0.68 4.02 32 180 0.31 71 180 58.87 0.06 -10.85 
93 180 8.96 1.59 3.92 107 156 0.38 51 180 57.66 -0.33 -10.73 
117 180 9.81 -0.54 4.4 14 180 0.39 62 180 43.01 -0.01 -9.27 
80 180 11.71 1.35 4.65 6 180 0.52 125 180 42.13 0.49 -9.17 
56 180 12 0.22 4.89 63 180 0.72 21 180 35.79 -0.25 -8.46 
69 178 12.03 -1.3 4.73 25 180 0.76 44 180 35.63 -0.77 -8.41 
36 180 12.69 -0.67 4.99 20 180 0.84 88 180 32.95 1.37 -8 
81 180 15.27 -0.36 5.52 91 180 0.9 92 180 26 -0.48 -7.2 
52 180 15.28 -1.27 5.38 45 180 0.96 12 180 24.48 -1.56 -6.82 
42 180 15.52 -1.18 5.45 76 180 -1.02 4 180 22.46 -0.63 -6.67 
8 180 17.07 0.85 5.78 22 180 1.05 116 180 22.01 0.57 -6.61 
46 180 17.35 -1.18 5.77 120 180 1.14 106 180 20.4 1.42 -6.23 
16 180 17.71 -1.16 5.84 2 178 1.15 15 180 14.87 0.27 -5.45 
66 180 19.9 -0.47 6.29 29 180 1.52 99 180 14.79 -1.17 -5.31 
97 161 20.67 -0.91 6.36 83 180 1.56 89 180 14.07 0.49 -5.28 
133 180 21.82 0.76 6.56 35 180 1.65 60 180 14.03 -0.33 -5.29 
75 180 21.87 -2.21 6.23 77 180 1.69 18 180 13.22 1.76 -4.83 
11 180 22.56 -1.48 6.55 72 156 1.77 114 180 7.56 3.53 -1.64 
65 180 23.38 -0.66 6.81 126 180 1.77      
113 180 23.61 1.11 6.78 43 180 1.84      
112 180 24.43 1.68 6.78 53 180 1.88      
90 180 24.74 -0.21 7.03 3 144 1.89      
31 180 24.95 0.06 7.06 127 180 1.94      
86 180 25.02 -1.62 6.88 85 174 1.97      
101 176 25.5 -0.45 7.13 5 180 2.06      
94 180 26.71 -1.8 7.08 40 180 2.16      
110 180 28.32 0.53 7.51 118 180 2.2      
78 180 28.81 -0.62 7.57 111 180 2.23      
82 180 28.99 0.69 7.58 96 180 2.35      
26 177 29.91 1.01 7.67 103 180 2.57      
119 180 32.46 -1.51 7.92 84 180 2.65      
49 180 34.71 -0.96 8.28 50 180 2.67      
9 150 35.71 -2.32 8.13 123 153 2.81      
108 180 40.03 1.96 8.73 19 180 2.91      
95 177 41.19 -3.12 8.52 10 180 2.98      
28 144 41.96 -3.23 8.57 68 180 3.11      
54 180 42.63 0.21 9.23 38 180 3.14      
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30 180 43.16 -1.6 9.15 67 180 3.59      
59 180 43.22 2.16 9.04 17 180 3.81      
61 180 44.24 -4.21 8.41 130 180 3.95      
109 180 46.27 2.2 9.37 33 180 4.15      
58 166 50.91 1 10.04 1 180 4.2      
132 180 51.03 1.92 9.92 13 180 4.42      
102 180 51.48 0.44 10.14 64 180 4.5      
70 180 51.72 0.47 10.16 129 180 4.51      
34 180 53.13 -0.55 10.29 87 180 4.62      
121 180 54.25 1.06 10.36 57 177 4.76      
27 180 70.68 -0.3 11.89 39 180 5.01      
122 180 110.5

9 
0 14.87 74 180 5.06      

115 180 123.6
4 

2.51 15.52 124 180 5.23      

55 180 124.9
2 

-0.04 15.81 104 180 5.79      
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1968 and 1982, the SP500 Index dominated 55 of the funds, was equal to 55 of the funds, and was 
dominated by 22 funds. Notice that out of these 22 funds, fund number 114 showed a statistically 
higher mean return than the mean return of the SP500 Index. The other 21 funds, dominated the 
SP500 Index based on lower variances. More importantly, perhaps, the table shows that no fund 
was noncomparable to the SP500 Index during the sample period. This is somewhat puzzling. If the 
SP500 index was an efficient portfolio during the sample period, we would expect it to dominate or 
be noncomparable to all other funds.  The results in Table 5 cast some doubt as to the MV 
efficiency of SP500 Index. We found that the same was true of the two CRSP indices. Shanken 
(1985), Green (1986) and others reported similar results. 
 We can now illustrate the difference between ordering with respect to one benchmark 
portfolio such as the SP500 Index and our method of ordering based on all the pairwise 
comparisons. Consider two funds that "look like" the SP500 Index. For example, funds 10 and 13, 
are statistically equivalent to the SP500 Index (see the mid-section of Table 5). Using one 
benchmark, both portfolios 10 and 13 would rank the same.  Table 4, however, reveals that using 
the O-R Method the SP500 index is ranked 40, while fund 13 has rank 27 - better than the SP500 
Index, and fund 10 has rank 68 - worse than the SP500 Index. This example provides evidence to 
the claim that ranking relative to an inefficient fund is not consistent with ranking based on 
dominance.  This result mirrors a result of Dybvig and Ross (1985a, p.388), although they used 
population parameters for their demonstration. 
4. An Empirical Comparison of The Rankings Robustness  
 Given a sample of portfolio returns, Rit, i = 1,...,N, t = 1,...,T, the returns on a proxy for the 
market portfolio, Rmt and the risk-free rate Rf, the Treynor, Ti, the Sharpe, Si, and the Jensen, Ji, 
portfolio performance measures for portfolio i are: 
 Ti = i f

i

 -  R
b

R  ;         Si = 
σ2ˆ

R - R
i

fi  ;  Ji = i f i m fR  -  R  -  b  ( R  -  R  )  , 
where bars denote the sample averages, σ2ˆ i  and ib  denote sample estimates of the i-th portfolio's 
return variance and the portfolio beta, respectively. We estimated these measures with the data of 
the 133 funds, using (separately) the three market indexes as proxies for Rm and the average yield 
on one month T-bills for the risk-free rate. We then ranked the portfolios using each one of these 
measures for each of the periods and for each of the market indexes. In order to investigate the 
stability of these rankings over time, we again, divided the 15 year period into 3 overlapping 
periods: 5 years (1978-1982), 10 years (1973-1982) and 15 years (1968-1982).  Each of these 
periods was treated separately and our ranking and those of the other three methods were computed. 
 The rank correlations were then computed both within periods and between periods for all methods 
and for different levels of significance. Again, the three different benchmark portfolios, the SP500 
index, and the two CRSP indexes were used in the computations of Ti, Si, and Ji. The results were 
very similar so Table 6 exhibits the rank correlations obtained with the SP500 Index as the proxy 
for Rm. The rank correlations among the four methods within the same time period appear in 4x4 
portions along the main diagonal of the table. These portions are for 15 years at the upper-top left, 
for 10 years in the middle and for 5 years at the lower-bottom right of the table. The off-main 
diagonal portions of the table show the between-time periods rank correlations. The correlation 
value is accompanied with its p-value below it in order to enable the reader to assess the validity of 
the correlation. The table reveals that within each time period the rankings of the Treynor, the 
Sharpe and the Jensen measures were virtually the same, with rank correlation values ranging from 
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.92 to .99. There seems to be little or no similarity between their rankings and the O-R rankings 
with rank correlation  values between .06 and .31. Furthermore, Table 6 



 
 

Table 6 
 
Rank correlations Among the Portfolio Performance Measures* 
 
 
 
 
 
 
 

  
S
a
p

15 Years  
  
Sharpe 1

0
0

 0
0
0

Jensen 0
8
1

 0
0
1

Treynor 0
9
1

 0
0
1

O-R 0
1
0

 0
0
2

  
10 Years  
  

 
 15  Years   10  Years    5  Years
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h
r
e 

Jensen Treyno
r 

O-R Sharp
e 

Jensen Treyno
r 

O-R Sharp
e 

Jensen Treyno
r 

O-R 

           
           

.0
0
 

           

.0
0
 

           

.9
6
 

1.000
0 

          

.0
0
 

0.000
0 

          

.9
7
 

0.986
9 

1.000
0 

         

.0
0
 

0.000
1 

0.000
0 

         

.3
3
 

0.296
1 

0.304
7 

1.0000         

.0
0
 

0.000
5 

0.000
4 

0.0000         
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Sharpe 0.8
71
0 

0.849
8 

0.864
1 

0.1667 1.0000        

 0.0
00
1 

0.000
1 

0.000
1 

0.0551 0.0000        

Jensen 0.8
49
5 

0.848
3 

0.844
8 

0.1140 0.9845 1.0000       

 0.0
00
1 

0.000
1 

0.000
1 

0.1915 0.0001 0.0000       

Treynor 0.8
67
7 

0.843
4 

0.860
3 

0.1564 0.9980 0.9810 1.0000      

 0.0
00
1 

0.000
1 

0.000
1 

0.0722 0.0001 0.0001 0.0000      

O-R 0.2
09
9 

0.301
7 

0.305
2 

0.9416 0.2078 0.1615 0.1975 1.0000     

 0.0
00
3 

0.000
4 

0.000
4 

0.0001 0.0164 0.0632 0.0227 0.0000     

             
5 Years             
             
Sharpe 0.4

69
2 

0.451
7 

0.456
9 

-0.2530 0.6545 0.6617 0.6586 0.1581 1.0000    

 0.0
00
1 

0.000
1 

0.000
1 

0.0033 0.0001 0.0001 0.0001 0.0691 0.0000    

Jensen 0.4
80
2 

0.493
2 

0.476
5 

0.3495 0.6532 0.6946 0.6558 -
0.2444 

0.9241 1.0000   

 0.0
00
1 

0.000
1 

0.000
1 

0.0001 0.0001 0.0001 0.0001 0.0046 0.0001 0.0000   

Treynor 0.4
93
2 

0.483
0 

0.490
1 

0.0000 0.6634 0.6751 0.6681 -
0.1467 

0.9759 0.9452 1.0000  

 0.0 0.000 0.000 0.0003 0.0001 0.0001 0.0001 0.0921 0.0001 0.0001 0.0000  



 

21 
 
 

00
1 

1 1 

O-R 0.2
05
2 

0.211
2 

0.205
8 

0.7114 0.1309 0.1075 0.1236 0.8011 -
0.0643 

-
0.1649 

-0.0621 1.000
0 

 0.0
17
8 

0.014
7 

0.017
5 

0.0001 0.1332 0.2182 0.1564 0.0001 0.4620 0.0587 0.4773 0.000
0 

 

* The SP500 Index is the benchmark portfolio for the Sharpe, the Jensen and the Treynor 
Measures. 

The p-value appears below the rank correlation. 
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 shows that the between-periods rank correlations of the Treynor, the Sharpe and the Jensen 
measures drop relatively quickly in spite of the periods being overlapping. These values drop from 
.99 within each period to around .85, between 15 and 10 years, .66, between 10 and 5 years, and 
.47, between 15 and 5 years. For the same time periods, the O-R ranking has rank correlation values 
of .9416, between 15 and 10 years, .8011, between 10 and 5 years, and .7114, between 15 and 5 
years. These results indicate that the O-R rankings show greater stability over time than the ranking 
of the other three methods. 
 In the next section we provide a theoretical explanation of this greater level of stability over 
time of the O-R ranking, as well as an explanation for the stark dissimilarity between our ranking 
and the others.   
5. Some Theoretical Connections Among the Ranking Procedures 
 We saw that while the Treynor, the Sharpe and the Jensen measures ranked the funds 
virtually the same, our method had statistically  no (or negative) correlation with their rankings. In 
this section we argue that these results are to be expected. We focus first on the similarity of the 
Sharpe, the Treynor and the Jensen measures. 
 Let iR  , , 

2
iσ̂ ib , mR  and Vm represent the sample values over the period under discussion, 

of the average return of fund i, its variance, its regression slope against the reference portfolio m, 
the average return of the reference portfolio and its variance. Ti , Ji and Si denote the i-th fund score 
of Treynor, Jensen and Sharpe when using sample estimates.  
Definition 7. A  portfolio  whose return  variance is  completely  explained by  the return variance 
of a reference  portfolio m, is  said  to  be  a  well  diversified  portfolio (WDP)  with respect  to the 
reference portfolio m.  Notationally, a portfolio is a WDP if Vb = ˆ m

2σ2 .// 
 We now show that for WDPs, the rankings of the three methods are the same: 
Theorem E. Let Rf exist and m fR  >  R .  Let Ri and Rj be WDP's.  Unless portfolios i and j are 
noncomparable, the ranking of these portfolios will be the same using the Sharpe, the Treynor or 
the Jensen scores. 
Proof: For WDPs the Sharpe score is proportional to the Treynor score and any inequality  
involving the variances is equivalent to one involving the slopes. So we need only consider 
Treynor's measure. To complete the proof we show that the ranking of Treynor and Jensen are the 
same when the portfolios are not noncomparable. The case i jR  =  R  and bi = bj is obvious since Ti 
- Tj = 0 = Ji - Jj.  Next, consider the case i jR   R≥  and bi ≤ bj with at least one strict inequality. By 
computation, Ti > Tj.  Since Ji - Jj = i j i j m fR  -  R  -  ( b  -  b  )( R  -  R  ) , at least one term on the 
right is positive and none is negative.  Therefore, Ji > Jj.  Lastly, suppose that bi ≥ bj and i jR   R≤ , 
with at least one strict inequality.  Since this is exactly the same situation as the previous one with j 
replacing i, the same conclusion follows.  
 The next theorem shows that the ranks corresponding to the Jensen and the Treynor scores 
are the same even for some of the noncomparable portfolios and therefore, all three rankings are the 
same. 
Lemma F. Ti - Tj = Ji/bi - Jj/bj   
Proof:  Using the definition of Ti: 
 i

i f

i
T  =  R  -  R

b
 = i f i m f

i
m f

i

i
m f

R  - R  -  b  ( R  -  R  )
b

 +  ( R  -  R  )  =  
J
b

 +  ( R  -  R  )  . 
It then follows that Ti - Tj = Ji/bi - Jj/bj  
Theorem F. If i jR  <  R  and 0 < bi < bj and if in addition Ti - Tj < 0, then Ji - Jj < 0. 
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Proof:  Since  Ti < Tj  if follows from lemma F that  Ji/bi - Jj/bj < 0  or that  i
i

j
jJ  < 

b
b

J  . 
 Since bi < bj the result follows.  
Theorem G.  If i jR  >  R  and bi > bj > 0, and if in addition Ti - Tj > 0, then Ji - Jj > 0. 
Proof:  As in the last proof Ti - Tj > 0 implies that  i

i

j
jJ  >  

b
b

J   and the result follows.  
 If we assume that mutual funds are WDPs then, theorems E, F and G imply that the Sharpe, 
the Treynor and the Jensen performance measures should yield the same rankings except for some 
noncomparable funds. In the previous section, Table 5 demonstrated that no fund was 
noncomparable to the SP500 Index in the sample period. Thus, the explanation for the high 
correlation among these rankings reflects the small number of noncomparable cases present in our 
sample. Of course, when the risk-free rate is assumed to exist, the O-R procedure employs the 
matrix Cf and resolves all the cases of noncomparable portfolios. The low correlations with our 
ranking also reflects the large number of funds that were found by our method to be equal to the 
SP500 Index. This last comment underscores the main statistical problem with these methods. They 
treat the sample estimates as if they were populations parameters and therefore, they rank few or no 
portfolios as equal. Theorem H below shows that if the O-R method also measured dominance 
using these estimates as if they were population parameters, all four methods would yield the same 
ranking. Clearly, we must assume the existence of a risk-free rate in order to compare our method 
to the other three measures . Thus, as in Theorem D above, comparing Rj against Ri should lead to 
the same conclusion as comparing Rj against *

iR  = R) - (1 + R fi δδ  with ) R - R(/) R - R( = fifjδ . 
Then, all the parameters and the parameters estimates with a super * correspond to *

iR . 
Theorem H. Let a risk-free asset be available such that each investor may borrow or lend at the 
risk-free rate, Rf and assume that m fR  >  R . Then, 
a) Si > Sj  iff there exists *

iR :  *
i jR   R≥  and *

i j∃   ∃σ σ≤  with at least one strict inequality. 
b) Ti > Tj  iff there exists *

iR : *
i jR   R≥  and *

i jb   b≤  with at least one strict inequality. 
c)  Ji > Jj  iff there exists *

iR : *
i jR   R≥  and *

i jb   b≤  with at least one strict inequality. 
Proof: a) Let Si > Sj and choose δ such that R = R) - (1 + R = R jfii

* δδ .  Then, Si > Sj implies that 
σσ ˆ < ˆ jiδ .  But  σ̂ iδ  is the standard deviation of R.  The converse is straightforward. 

b) The proof for part b is the same as in a) with b replacing ∃σ .  
c) Let Ji > Jj.  Then, i f i m f j f j m fR  -  R  -  b (R  -  R )  >  R  -  R  -  b (R  -  R ) .  Choosing  δ  as in 
part a) and substituting in the last inequality yields  δ bi < bj . But  δbi is the sample regression slope 
of  *

iR .  The converse follows by substitution.  
 Suppose the mean returns, the returns variances and covariances are estimated. And 
suppose that instead of using our statistical tests, the MV dominance criterion is employed using the 
sample estimates to decide on MV dominance. Then, Theorem H demonstrates that when a risk-
free rate exists, the MV dominance criterion and the Treynor, the Sharpe and the Jensen 
performance measures yield the same rankings. 
 This result sheds some light on the reasons for the lack of correlation between these ranking 
and the O-R ranking.  First, the O-R method does not take the sample statistics at face value, but 
rather uses them to test the hypothesis of dominance based on the regression of Theorem A.  
Therefore, this method leads to many ties, i.e., portfolios that are statistically too close to warrant 
ranking them differently.  All such portfolios are deemed to be statistically equal to one another by 
our method. For example, Table 5 revealed that 55 out of the 132 funds in our study were judged to 
be equal to the SP500 Index.  Analyzing the same data and using the sample statistics as if they 
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were the true parameters, the Treynor, the Sharpe and the Jensen measures gave different rankings 
to these 55 funds relative to the SP500 Index. Secondly, Sharpe's measure ranks funds based on 
statistics computed from each fund separately, while the Treynor and the Jensen measures rank 
funds based on statistics computed for each fund that are corrected by a third fund, namely, the 
reference portfolio.   We already saw, however, that two funds, 10 and 13, which appeared to be 
equal when compared only to one fund, the SP500 index, received very different ranking when 
judged relative to all the funds in the set. This example highlights the fact that the O-R procedure 
may deem portfolios equal to one another in the MV sense, yet rank them differently. This is so, 
because the O-R ranking function is defined over a much larger information set. This set contains 
not only the MV dominance relationship between some benchmark portfolio and the rest of the 
portfolios, but the MV relationship of every portfolio relative to all other portfolios in the set. In 
fact, the more funds under consideration the less one would expect that ranking relative to one fund 
would sustain itself when comparisons are done relative to all funds. 
6.  Discussion and Conclusions 
 The purpose of our paper is to present a method to evaluate the performance of portfolios 
when the underlying parameters of the distribution are unknown.  To accomplish this we introduced 
a sequence of hypothesis tests concerning portfolios’ returns parameters and used the results of 
these tests to create an ordering of performance. There are several advantages of this method of 
ordering.  First, each test, and therefore the collection of tests, speaks to and about the true 
parameter values of the portfolios.  Suppose, for example, a test that correctly concluded that the 
true parameter values of portfolios i and j were in the relationship µi > µj and σ2

i < σ2
j.  Then, 

Theorem F implies that the ranking using any of the three other methods, using population 
parameters, would place fund i over fund j.  Conversely, if the sample values were used as if they 
were true in the Sharpe, the Treynor or the Jensen scores and ranked fund i over j, then the ranking 
based on the data would not imply the same rankings as if population values had been used.  If the 
population values equated the funds, the ranking based on the data could be just the result of noise. 
A second advantage lies in the fact that the O-R method uses all the NxN (minus the N trivial) 
pairwise comparisons, rendering gaming possibilities virtually impossible even when the identity of 
a benchmark portfolio is known to the manager. Evaluating a fund's performance against one 
reference fund leads to easier gaming possibilities. Third, the ordinal nature of our procedure of 
ordering, may itself be advantageous.  As mentioned at the outset, the numbers and cardinality of 
ranks implied by some of the other methods have come under severe criticism by Roll (1977, 1978) 
and Dybvig and Ross (1985a, 1985b).  The ordinality of our method survives some of the criticism. 
 For example, the theorems of the last section connecting the various ranking alternatives are true 
no matter which reference portfolio is used or whether the reference portfolio is efficient or not.  
This result should be compared to the discussion by Dybvig and Ross (1985a) on a conjecture of 
Roll; see Section III of this reference. Fourth, the only assumption needed for the O-R method is 
that the returns on portfolios are bivariate elliptically distributed with stationary distributions. We 
do not require as others do, an efficient benchmark portfolio and a linear model specifying the 
relationship of each portfolio to this benchmark portfolio. We emphasize, however, that should 
such models exist and an efficient portfolio be used, then it would be detected by our method 
because such a portfolio could never be dominated.  Furthermore, in equilibrium, all other efficient 
portfolios would be noncomparable to the benchmark portfolio. In this case, all the portfolios would 



 

25 
 
 

have no portfolios dominating them, and they all would tie for rank number one. Fifth, the O-R 
method allows investors to evaluate portfolios over relatively short time periods.  To elaborate this 
point, we might ask what is implied about the management of the funds if a fund ranks higher than 
another by our method?  The data set here does not contain the information that the funds had the 
same managers over the sample period and there may have been different managers within the 
period for some funds.  So the test cannot refer to a particular manager's performance. If a particular 
manager at a particular period could time the market, it is not known whether that is temporary or 
permanent.  If it is temporary, the process would be nonstationary and so the test need not 
necessarily refer to timing.  Similarly, since we do not know if at some specific time some manager 
had specific information about a specific stock, the test cannot refer to this possibility.  Yet, the 
evaluation of a superior manager seems to be important to investors. This means that investors may 
wish to be able to rank portfolios as frequently as every year or every six months, or even every 
quarter. Our method is implementable even in the latter case because with daily returns,e.g., the O-
R procedure has enough observations for the regressions and the hypothesis tests of Theorem A 
every quarter. The robustness of the O-R procedure to the use of daily vis-a-vis weekly or monthly 
data is currently under investigation. Notice that the O-R procedure may be used to test the 
objective of the CREF fund quoted at the outset.  Here, all managers of that fund presumably shared 
the goal of seeking a portfolio which dominated a particular reference fund.  Our method permits an 
evaluation of this claim.  On the other hand, were we to know that a particular manager was in 
place over the observed period, then the test results could be credited to that manager.  Or if a fund 
claims to have the ability to consistently ferret out specific information about specific stocks and to 
be able to use this information to its advantage, these tests could be used to test this claim.  
 The literature has addressed two types of information that a manager might use to the 
advantage of the fund:  timing information on the reference fund and specific information of the 
mean of a particular fund (the expected value of the error term of a linear model being unequal to 
zero).  Of course, information could be of a more complicated form involving the distributions of 
the reference portfolio or of the error.  The position we have taken here is that the information, if it 
is available, must lead to an improved mean-variance position of that fund relative to funds that do 
not have this information.  Since information could be available to more than one fund, it is only in 
the multiple comparisons of performance that a fund can be evaluated.  Our procedure is 
constructed to be consistent with this viewpoint. 
 Finally, it is important to realize that our ranking procedure is not intended to be used as a 
portfolio selection method. Nor is it a guidance only for investors who will invest their entire 
capital in one portfolio vis-a-vis investors who will invest in some combination of several 
portfolios. At the end of the investment horizon, both types of investors will need a performance 
measure.  The O-R procedure is designed to rank the ex post performance of any combination of 
portfolios. 
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 We propose a new procedure to rank portfolio performance.  Given a set of N portfolios, we 
use statistical tests of dominance which produce direct mean-variance comparisons between any 
two portfolios in the set.  These tests yield an NxN matrix of pairwise comparisons.  A ranking 
function maps the elements of the comparison matrix into a numerical ranking.  To illustrate the 
procedure we use a set of 133 mutual funds, including the S&P500 index and the CRSP equal and 
value weighted indexes.  We explore the empirical and theoretical relationships between our 
ranking procedure and the Treynor, Sharpe and Jensen performance measures.  In general, the new 
procedure’s ranking is relatively robust, does not allow for gaming and can be performed with small 
samples.   
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