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Economic theory requires the directional distance functions used to study the properties of
production possibility sets of polluting technologies to be concave in both outputs, while the
implied production possibilities frontier (PPF) is required to be concave with respect to the
bad output. However, existing estimation frameworks do not preclude the estimation of
convex PPFs. We analyze geometrical properties of the quadratic approximation to the
directional output distance functions to derive a constraint that guarantees PPF concavity
and consider the issue of imposing the property of null-jointness on the production possibilities
set, which is also required by theory. We simulate a dataset corresponding to a concave PPF
and show that in case concavity and null-jointness constraints are not imposed, it is possible
that the conventional estimation framework may lead to erroneous conclusions with respect
to the type of curvature of both the directional output distance function, and the PPF.
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I. Introduction

It is convenient to model polluting production processes in terms of the multi-output

technologies with at least one output, e.g., CO2 emissions, being an undesirable

bad. Output distance functions suggested by Shephard (1970) are a useful analytical

tool allowing one to quantify such technologies without having to aggregate multiple

outputs into a single output index. In its essence, the output distance function is
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representing the distance between observed output combinations, and their efficient

projections on the production possibilities frontier (PPF) with greater values of the

distance function corresponding to less productive efficiency. Distance to the PPF

in this context is measured along a vector emanating from the observed output mix,

for example a vector (1,1) corresponding to a simultaneous increase in the amounts

of both outputs. 

Directional output distance functions developed by Fare et al. (2005) are well-

suited for the analysis of polluting technologies since the directional vector along

which the efficient projection is computed implies an increase in the good output(s),

as is the case with the conventional output distance function, along with the

reduction in the bad output, which corresponds to the idea of reducing pollution

levels. In this study we deal with the two-output polluting technology with one

good output y, such as GDP, and one bad output b, such as the CO2 emissions

levels.

Given the global importance of reducing pollution levels, computing the costs

of such reduction is a necessary task. One of the more popular approaches undertaken

in the literature is to exploit the duality between the output distance function and

the revenue function to compute the shadow price of an undesirable output as a

slope of the PPF at the efficient projection point for each observed combination of

outputs, often referred to as the marginal abatement costs (MAC) of reducing the

bad output. 

Most empirical studies that estimate output distance functions, directional or

not, employ a quadratic approximation to the true distance function whose parameters

are estimated by minimizing the sum of individual values of the distance function

subject to a number of constraints that reflect the desired properties of the underlying

production possibilities set (PPS). The translation property constraint, for instance,

makes sure that the estimated quadratic function in two outputs actually has the

distance function properties, i.e., it turns into zero if the good output is increased,

and the bad output is decreased by the value of the approximating quadratic function

times the corresponding component of the directional vector. Monotonicity constraints

require the (directional) output distance function to increase in the bad output, and

to decrease in the good one. If monotonicity constraints hold, the resulting PPF is

upward sloping, reflecting the desirable property of the positive MACs.

An important theoretical property of the PPS of the polluting technology is that

its production possibilities frontier, viewed as a function of the level of

bad output, has to be concave, i.e., , see, e.g.,

Fare et al. (1993). In addition, the distance function should inherit the properties of

y f bPPF= ( )
′′( )≤y b 0
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the underlying PPS by being a concave function of both outputs. In general, concavity

of a quadratic function does not necessarily imply the concavity of any of its level

curves, including the PPF defined by , where stands for a distance

function. In this study, we formally prove that due to the translation property imposed

on the quadratic approximation to the directional output distance function, concavity

of the latter in both outputs implies the PPF concavity, and formally derive the

concavity constraints on the PPF and the distance function. We demonstrate that it

is the translation property imposed on the parameters of the estimated approximation

curves that constrains them to be either parabolas, or straight lines. In the latter

case, the PPF concavity is satisfied automatically. However, in the former case the

PPF may be approximated by convex parabolas, but we suggest that this can be

avoided by imposing concavity constraints.

It is somewhat surprising that the overwhelming majority of existing empirical

studies limit the set of constraints to the ones that guarantee positivity of the MACs

and the fulfillment of the translation property, along with a few technical constraints.

We provide an empirical example of a simulated polluting technology characterized

by a concave production possibilities frontier that is estimated to be convex by

applying the conventional directional distance function approach. In this way we

are demonstrating the danger of not imposing concavity constraints on the estimated

parameters of the directional output distance function and, as a consequence, on

the PPF.

The empirical study that is the closest to ours appears to be O’Donnell and Coelli

(2005) where the authors impose concavity on the PPF by employing a Bayesian

estimation framework. Ours is a much simpler approach to resolving the issue of

PPF concavity. We also consider the imposition of the null-jointness property on

the implied production possibilities set, which precludes technologies allowing

“clean” production of a good output, i.e., the possibility of producing positive

amounts of a good output with no pollution at all. The null-jointness constraints

are not normally imposed in the empirical literature either, which is why in addition

to the concavity constraints, we suggest imposing a necessary condition for the

null-jointness property. 

Here, we strongly argue against interpreting the individual approximating curves

as the individual PPFs for each observation since it is only a small part of the

(directional) distance function’s range, namely the vicinity of the estimated efficient

projection point on the PPF that is used as an approximation to the true PPF. The

rest of the approximating curve is unrelated to the true PPF, and as such cannot be

used for inference on its properties. This implies, for instance, that the null-jointness

D •( )= 0 D •( )
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property can only be imposed locally, i.e., at the observed combinations of outputs,

rather than in terms of the parameters of the true PPF that are unknown. 

This paper is organized as follows. In the next section we discuss the theoretical

framework underlying the directional output distance function approach to the

estimation of marginal abatement costs. In Section III we discuss the geometrical

properties of the quadratic approximation to the distance function, and derive the

constraints ensuring the directional output distance function and PPF concavity,

and the necessary null-jointness constraints. In Section IV we discuss our empirical

results. Section V concludes.

II. Theoretical framework

A. Modeling polluting technologies

Consider can produce be the set of all output vectors that

can be produced using input vector where b and y are the amounts of bad and good

output, respectively. Assume all inputs are strongly disposable: if then

, i.e., increasing the inputs from to will keep the output mix produced

with feasible. Weak disposability assumption is imposed on both outputs, namely,

for any real : it is possible to proportionally

scale down the production of both outputs simultaneously. is assumed to be

compact to make sure infinite amounts of outputs may not be produced with the finite

amounts of inputs.

The next two assumptions are specific to the modeling of production sets with

bad outputs. Null jointness is imposed in order to preclude the possibility of pollution-

free production, i.e., implies y=0. Strong disposability is assumed for

the desirable outputs, but is denied in case of the undesirable ones. That is, if

then , e.g., it is always possible to reduce the

amount of a good output by while keeping that of a bad output intact, but the

converse is not allowed, reflecting the idea of a costly reduction of the amount of bad

output. The production possibilities frontier (PPF) function is defined as the maximum

amount of good output y that can be produced given a particular amount of bad output

b. The PPF function is required to have a positive first-order derivative

to reflect costly reduction of the bad output, and a non-negative second-order derivative.

The latter property is based on the assumption of the non-decreasing marginal costs

of pollution reduction. The property of null-jointness implies that the only way to

produce any positive amount of good output y is to produce it along with some amount

P x b y x
 ( )= ( ){ , : b y,( )} b y,( )


x
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of the bad output b, i.e., . The assumptions on

the production set outlined above result in a specific shape of the PPF, illustrated

in Figure 1 below.

In Figure 1, curve AA is the production possibilities frontier. The PPF is positively

sloped, with the magnitude of the slope interpreted as the marginal abatement cost

of reducing bad output in terms of the good one. The positively-sloped PPF is the

one feature that creates the difference with the PPF shape in case both outputs are

good ones, reflecting the fact that, if producing efficiently, producing more of the

good output entails creating more pollution. Marginal abatement costs are non-

increasing in the amount of bad output, which is equivalent to saying that marginal

costs of pollution reduction are non-decreasing in the reduction volume. Alternatively,

higher production levels of good output involve creating increasingly more pollution.

If that were not the case, i.e., if the PPF as a function of bad output were convex as

a function of bad output, rather than concave, we would not have to deal with the

problem of increasing environmental damage since after a certain threshold level

of good output has been transcended, further increases in good output would only

involve minor growth in pollution levels. For that reason, it is crucial that the

estimated production set be convex, i.e., that the PPF as a function of bad output

be concave. 

B. Directional output distance functions

Fare et al. (2005) provided an operational way of parameterizing the production

possibilities set described above by introducing the concept of a directional output

b y P x b y b y b y, , , : ,( )∉ ( )∀( )∈ ( ) = >{ }
0 0
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distance function based on the idea by Shephard (1970) of the output distance

function that can be shown to be dual to the revenue function. The key idea is to

estimate a quadratic approximation of the directional distance function that maps

actually observed output combinations (bi,yi) to the distances between (bi,yi) and

the true PPF. Those distances are measured along a directional vector (hence the

name) (–gb, gy),gb > 0,gy > 0, which we normalize to be a unit vector, i.e.,

The directional distance function is defined as follows:

(1)

where is an input vector employed by production unit i, and the vector sign in

emphasizes the fact that (1) is representing a directional output distance function as

opposed to just an output distance function. The subscript i in above is to

emphasize the fact that parameters of the relationship implicitly defined by

will be different depending on the input vector so that an implicit function y = y(b)

defined by in the vicinity of a particular observation (bi,yi), in case this

implicit function exists in that vicinity, will have different parameters compared to

the similar implicit function in the vicinity of (bj,yj), j ≠ i.

Denoting τi to be the solution of the maximization problem in the right-hand

side of (1), the directional distance function can be interpreted to project the

(inefficient) output mix (bi,yi) to its efficient projection , which is a point

on the PPF that pointed at by the directional vector (–gb,gy) that emanates from the

observed (bi,yi), and where (see Figure 2 below).

Consider a movement from the observed output mix (bi,yi) towards the PPF along

the directional vector (–gb,gy) by simultaneously decreasing bad output by τgb, while

increasing the amount of good output by τgy, where τ ≥ 0. Geometrically that means

that we will get closer to the PPF by the distance of since the

directional vector (–gb,gy) is assumed to be normalized to unity. By definition of the

directional distance function, the latter then must satisfy the translation property:

(2)

where T is the number of observations. Since negative τ’s correspond to the directional

vector collinear with (–gb,gy), but looking in the opposite direction, the directional

distance function will assume negative values for all output combinations that do

not belong to the underlying production possibilities set. Figure 2 illustrates the

idea of the directional output distance function.
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C. Empirical estimation of directional output distance functions

It became common in the empirical literature to estimate a second-order approximation

to the distance function (1) subject to a set of constraints ensuring the fulfillment

of the translation property and the positive sign of the implied PPF slope, which is

linked to the distance function as follows:

(3)

where . This approach has been adopted in studies such as,

e.g., Lee (2011), and Maradan and Vassiliev (2005). Equation (3) says that the

negative of the ratio of the two partial derivatives of the distance function at the

observed output mix (bi,yi) is equal to the PPF slope at the efficient projection of

(bi,yi). This slope can be interpreted as the marginal abatement cost of reducing bad

output by one unit incurred at (bi,yi). Fare et al. (2005) used duality theory to

demonstrate that the right-hand side of (3) is equal to the ratio of the shadow prices

of the two outputs. 

A substantial number of empirical studies assuming the directional output distance

function approach to the estimation of marginal abatement costs of reducing bad

output employ the following empirical specification:

∂
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(4)

where T is the number of observations and K is the number of inputs.

The first constraint requires that the observed output mixes belong to the

production set, the next two constraints ensure the positive slope of the PPF at the

observed output mix, the next to last constraint ensures the translation property is

satisfied, and the last constraints are the technical constraints on the coefficients’

symmetry. The constraints for the estimated directional output distance function to

satisfy the translation property for an arbitrary directional output vector were derived

in Fare et al. (2006). We reproduce them below for further reference:

(5)

III. The geometry of second-order approximation to the directional
output distance function

A. Quadratic approximation to the distance function as parabolas or straight
lines

Solving the linear program (4) results in a quadratic function in K+2 variables,

namely, the two outputs (b,y) and the K inputs , which implies that

observed input vectors for each observation determine a second-order curve

in two outputs of the following form:

(6)
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The quadratic function (6) may define several second- and first-order curves in

the space of two variables b and y such as, e.g., a parabola, an ellipse, a hyperbola,

or a straight line. In the Online Appendix we prove the following proposition:

Proposition 1. 
(a) Due to the translation property, for each input vector corresponding to the

observed (bi,yi) the relationship (6) is implicitly defining a relationship between

good output y and bad output b that is either a parabola or a

straight line. 

(b) In case is a parabola, the axis of symmetry of each

suchparabola for all i =1,…,Tis forming the same angle ϕ with the vertical axis,

i.e., .

(c) The angle θ between the directional vector (–gb,gy) and the vertical axis is linked

to the angle ϕ as follows: .

(d) Concavity: For the approximated PPF at the projection point to be

concave, it is sufficient to require for each observation that: sign(μ)=–sign(γ1gb–β1gy).

Since in the linear case (i.e., the one when β2 = γ2 = 0), concavity of the

approximating curve is guaranteed automatically, let us consider

the parabolic case, i.e., the one for which β2 ≠ 0 or γ2 ≠ 0. In the Online Appendix

we prove that due to the translation property the relationship (6) implicitly defines

either a parabola of the form or a parabola ,


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where are the parabolas’ coordinates in a new coordinate system, and p is a

positive number that is a function of the distance function’s parameters and the

input levels for a particular observation. The new coordinate system is obtained

from the original coordinate system by a parallel shift and rotation of the latter, as

demonstrated by Figure 3 above. As we demonstrate below, the failure to impose

the concavity constraints in part (d) of Proposition 1 may result in a convex

approximation to the concave underlying PPF, which is undesirable on theoretical

grounds. 

B. Concavity of the directional output distance function and ppf concavity

It follows from the PPF concavity conditions in part (d) of Proposition 1 that the

PPF concavity is equivalent to concavity of the directional output distance function

in both outputs. Indeed, the distance function’s Hessian at the observed combination

of outputs is identically equal to zero for all possible directional vectors (–gb,gy).

The Hessian , since by translation property in (5),

irrespectively of the directional vector. It follows that the distance function

will be concave (but not necessarily strictly concave) at all of the observed output

combinations if β2 ≤ 0 or, equivalently, if γ2 ≤ 0. The latter two conditions are

equivalent to the condition on PPF concavity since by the translation property,

β1gy – γ1gb = –1, and thus the PPF concavity condition sign(μ) = –sign(γ1gb – β1gy)

reduces to sign(μ) = –sign(1), or μ ≤ 0. Since by the translation property the

coefficients μ, β2 and γ2 are of the same sign, concavity of the directional distance

function in both outputs implies the PPF concavity, and the other way round. 

It is worthwhile noticing that in general, the concavity of a quadratic function

does not guarantee the concavity of any of its level curves, of which the PPF is one.

In case the polluting technology produces one good and one bad output, the translation

property ensures the equivalence of concavity conditions imposed on the parameters

of the directional output distance function, and the PPF. It is the subject of our

further research to see whether the two concavity requirements remain equivalent

in the more general case of more good and bad outputs.

C. Implications for inference on the true PPF parameters

Irrespectively of the estimated parameters, in general the quadratic function (6) is

implicitly defining more than one curve linking b and y. This happens since the

H = = − ≡
β μ
μ γ

β γ μ2

2
2 2

2 0

β γ μ2 2
2≡

′ ′( )b y,
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coefficients for b and y, i.e., the coefficients and , as well as

the term , depend on the observation-specific values

of production inputs . Equation (6) in this way is defining a family

of T curves, one for each observed combination of outputs (bi,yi). 

It is important to notice that it is only the small part of the approximating parabola

defined by (6) in the vicinity of the efficient projection that is approximating

the true PPF parameters and whose slope at that projection is used for the estimation

of MACs. Outside of this vicinity this parabola cannot be considered to be an

efficient boundary of the production possibilities set for observation i. As a result,

the estimated parameters of the directional output distance function in (6) cannot

be used for inference on the true PPF parameters.

D. Implications for the null-jointness property

The null-jointness property is imposed on the PPS in order to preclude the possibility

of producing a positive amount of good output while emitting zero pollution levels.

Figure 4.A below depicts a PPS whose efficient frontier OAC does not satisfy the

null-jointness property since it includes segment OA, which implies it is possible

to produce positive levels of good output up to level A without emitting any pollution

at all. The efficient frontier OC in Figure 4.B, on the other hand, satisfies the null-

jointness property because pollution-free production of good output is impossible.

If it were possible to estimate the parameters of the directional distance function

for all combinations (b,y), imposing the null-jointness property would boil down

to requiring the value of the directional output distance function to be negative for

all output combinations that satisfy b = 0 and y = 0. However, as discussed in the

previous sub-section, the quadratic function in (6) is only approximating the true

distance function in the close vicinity of , which is not necessarily close

to the locus of output combinations characterized by b = 0 and y = 0. Hence, the

estimated parameters in (6) cannot be used to impose the null-jointness property.

Nevertheless, it appears possible to impose a necessary condition for the null-

jointness property. Namely, as illustrated by Figure 4.B, if a PPS satisfies the null-

jointness property, its efficient frontier must be such that all of the projections on

it of the observed output combinations must satisfy . This condition is not

sufficient since, as can be inferred from Figure 4.A, if the sample of observations

were limited to (2), (3) and (4), the efficient levels of bad output would be positive,
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while the PPS itself would not satisfy the null-jointness property. We suggest adding

the set of constraints in addition to the concavity constraints as a second-

best solution to the problem of ensuring the satisfaction of the null-jointness property. 

IV. Empirical exercise

A. Simulation

Consider an industrial plant producing two outputs: a good output y and a polluting

output b. Let there be three factors of production: capital k, labor l, and fuel f.

Assuming a Cobb-Douglas production function for the good output and a linear

production function for the bad output, the PPF y* = f (b) will be a solution to the

following optimization problem:

(7)

where the Greek letters stand for the real positive-valued parameters. Maximizing

the Lagrangian results in the following solutions for the optimal levels of capital,

labor and fuel as functions of the two production functions’ parameters and the

pollution level b:

bi
eff > 0

Max y k l f

s t k l f b
k l f, ,

. . ,

=

+ + =

α β γ

δ ϕ ψ
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(8)

Substituting these optimal levels of factor inputs back into the Cobb-Douglas

production function in (7), one obtains a parametric expression for the PPF:

(9)

where Z is a positive real number. The PPF in (9) will be concave if α + β + γ <1. 

In performing our simulation exercise, we set α = β =γ = 0.25, and δ = ϕ = ψ =  0.33,

which according to (9) results in the PPF function that is

obviously concave in b. We generate a sample of uniformly distributed values of bad

output and use (8) and (9) to compute optimal values of the three production

factors and the PPF value y*. To introduce random variation into the dataset, we added

a random noise to k*, l*, f * and y*. Table 1 below contains summary statistics for the

simulated dataset.

In Table 2 below we present the results of our estimations of the parameter μ
in the directional output distance function specification (6) whose sign determines

the type of the approximating parabola. The estimation was done by linear

programming in the SAS environment. In the column “Benchmark Model” we

report estimation results of the model in (4) without imposing concavity and null-

jointness constraints. In the next column we report results for a model with these
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Table 1. Summary statistics for the simulated dataset

Mean Standard deviation Minimum Maximum

Good output, y 1.07 0.31 0.32 1.56

Bad output, b 0.55 0.29 0.003 0.99

Capital, k 0.78 0.34 0.08 1.41

Labor, l 0.81 0.35 0.04 1.44

Fuel, f 0.81 0.34 0.11 1.45

Note: the number of observations is 77, the simulation was performed in Excel using the uniform random number generator
function rand().



constraints added to the benchmark model. We run our estimation for a series of

the directional output vectors. Since we know that the underlying true PPF for this

dataset is concave in b, according to Proposition 1 and the discussion in Section

III, parameter μ should be estimated to be negative.

We observe that for the directional output vectors that are either too flat or too

steep (i.e., for ϕ > 75° and for ϕ < 15°) both the distance function and the PPF are

estimated to be of zero curvature. The case of the most “popular”, 45-degree

directional output vector, is rather instructive in that if we do not impose any

concavity constraints, the PPF is estimated to be convex. Imposing concavity and

null-jointness constraints, the estimates are consistent with the known properties

of the simulated dataset. 

For a range of directional vectors for which 35° < ϕ < 75°, estimating the

parameters of the directional output distance function without imposing concavity
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Table 2. Concavity of the estimated distance function and PPF depending on the type of imposed
constraints

Parameter μ estimates

Angle ϕ, degrees Benchmark model Concavity and null-jointness constraints

95 0.000 0.000

90 0.000 0.000

85 0.000 0.000

80 0.000 0.000

75 0.003 0.000

60 0.023 -0.005

55 0.027 -0.018

50 0.023 -0.023

45 0.016 -0.280

40 0.002 -0.325

35 -0.451 -0.220

30 -0.521 -0.182

25 -0.135 -0.883

20 -0.009 -0.146

15 -0.009 -0.021

10 0.000 0.000

5 0.000 0.000

Note: Angle ϕ is formed by the directional output vector with the vertical axis. Parameter μ in the directional output distance
function specification is negative for the concave PPF.



and null-jointness constraints results in the wrong inference about the curvature

type of the underlying PPS. Imposing these constraints, however, allows one to

avoid concluding that the directional distance function is convex and its PPF is

convex in b.

We illustrate in Figure 5 below what happens when concavity and null-jointness

constraints are added to the estimation procedure (4). We analyze observation

number 16 in the simulated dataset for the case of the “conventional” directional

vector ϕ = 45°. 

(b16,y16) is the combination of the values of the good and bad output in our

simulated sample. The true PPF is approximated at the efficient projection

taken along the 45° directional vector by the convex part of the parabola P2-P2 in

case the concavity and null-jointness constraints are not imposed, see Table 2. In

this case the slope of the PPF is estimated to be 54°. The imposition of concavity

and null-jointness constraints results in the approximating parabola’s branches

looking in the South-Eastern direction with the concave part of the parabola P1-P1

approximating the true PPF at . The PPF slope in this case is estimated to

be equal to 34°. By Proposition 1, the symmetry axes X2-X2 and X1-X1 of the two

parabolas are parallel to each other and intersect the vertical axis at the angle ϕ = 45°,

which is the same with the directional vector angle. 

In case the concavity and null-jointness constraints are not imposed, not only

the curvature type of the approximating parabola may be estimated wrongly, but

also the MACs are likely to be different in the two cases. Indeed, the MAC for the

b yeff eff

16 16
,( )

b yeff eff

16 16
,( )
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Figure 5. The effects of imposing concavity and null-jointness constraints



convex parabola is estimated at 1.36, while the MAC is 0.68 when concavity and

null-jointness constraints are imposed, which is also closer to the actual MAC value

of 0.71 which is known because the exact shape of the true PPF is known.

B. Suggestions for the choice of directional output vectors

It is interesting to notice that in the overwhelming majority of the empirical studies

applying the directional output distance function approach to the estimation of

marginal abatement costs, the 45-degree directional output vector is used almost

“by default.” Our simulation exercise demonstrates that the choice of this and, in

fact, any other vector without imposing any additional constraints may result in the

wrong inference on the curvature of the PPF and the directional output distance

function. We therefore suggest choosing the directional output vector based on the

prior knowledge of the PPS properties, such as the type of curvature of its PPF. We

would therefore reject the choice of those directional output vectors for which the

directional output distance function and, consequently, the PPF, are estimated to be

convex when there are strong reasons to believe that they are concave.

V. Conclusion

In this study we explored the geometric properties of quadratic approximation to the

directional output distance function commonly used in empirical research on the

marginal abatement costs of the undesirable outputs. The translation property imposed

on the estimated parameters of the quadratic approximation ensures that the true PPF

is approximated at the observed combinations of outputs either by parabolas, or by

the straight lines. While economic theory implies that both the directional output

distance function and the PPF for a polluting technology y = f PPF(b) have to be concave,

the corresponding concavity constraints are usually not imposed. We demonstrate

the danger of omitting such constraints by simulating a sample of observations

based on a concave PPF and running a conventional estimation procedure on it

to demonstrate that the true PPF that is known to be concave in b may be

approximated by the convex, rather than the concave, parabolas, which is

contradicting economic theory. By adding additional constraints ensuring concavity

of the approximating second-order curve and a necessary condition for the null-

jointness property, we observe a significant change in both the parameters of the

estimated approximation to the directional output distance function, and the

marginal abatement costs. 
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We believe an important insight in this paper is that it is erroneous to interpret

the second-order curve in b and y obtained by plugging in the observed values of

production inputs into the estimated quadratic specification of the directional output

distance function as an individual PPF. Indeed, the behavior of the approximating

curve outside of the small vicinity around the efficient projection of the observed

output mix provides little inference on the behavior of the true PPF. 

Although the choice of a particular directional vector is not the main subject of

this study, we would suggest rejecting those vectors for which the estimated parameters

of the directional output distance function imply properties of the underlying PPS

that are in conflict with one’s prior knowledge about it. Thus, in our simulation

example, since we know in advance that the PPF for the simulated PPS is concave

in the bad output b, it would be rational not to employ vectors corresponding to ϕ
≥ 75°, i.e., the relatively flat vectors, because for those vectors the implied PPF is

estimated to be convex rather than concave. 

Finally, it is worthwhile asking whether our analysis will change in the multi-

output case that involves several bad outputs, which is not uncommon since polluting

technologies tend to produce more than a single type of harmful emission. While

the directional output distance function can be easily extended to that case with the

translation property constraints already derived for the multi-output case in Fare et

al. (2006), the properties of the Hessian corresponding to the multi-output directional

output distance function are not obvious. For instance, it is not clear whether the

translation property will ensure the Hessian to be identically equal to zero, like we

show is the case of the two-output polluting technology. It is not clear either whether

translation property in the multi-output case will guarantee the equivalence between

concavity of the directional output distance function and that of the PPF. If this

equivalence is not guaranteed, the implication for the empirical work will be to

impose two groups of concavity constraints: one ensuring the concavity of directional

output distance function, and the other one providing for the PPF concavity. The

analysis of these issues is outside the scope of this study, being the subject of our

ongoing research.
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