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The paper considers the use of directed acyclic graphs (DAGs), and their construction
from observational data with PC-algorithm TETRAD II, in providing over-identifying
restrictions on the innovations from a vector autoregression. Results from Sims’ 1986
model of the US economy are replicated and compared using these data-driven techniques.
The directed graph results show Sims’ six-variable VAR is not rich enough to provide an
unambiguous ordering at usual levels of statistical significance. A significance level in the
neighborhood of 30 % is required to find a clear structural ordering. Although the DAG
results are in agreement with Sims’ theory-based model for unemployment, differences are
noted for the other five variables: income, money supply, price level, interest rates, and
investment. Overall the DAG results are broadly consistent with a monetarist view with
adaptive expectations and no hyperinflation.
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I. Intr oduction

Vector autoregressions (VARs) are widely used in empirical research

because of their humility with respect to zero restrictions and assumed

knowledge of the way the world actually works. Some (Cooley and Dwyer,
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1998, Cooley and LeRoy, 1985, Leamer, 1985) have argued that, while VAR

models may be useful for forecasting, they are not appropriate for policy

analysis. As VARs (as usually applied) represent summaries of the correlation

structure embedded in observational data (non-experimental data), they cannot

be interpreted independently of a maintained structural model. In other words,

for policy interpretations, the humility referred to in our opening sentence

must be forgone in favor of explicit zero-type restrictions on at least some

components of the VAR. In this paper we consider identifying restrictions on

relationships among contemporaneous innovations.1 The now common use

of the Choleski decomposition to provide such restrictions is sometimes

deemed inadequate because it imposes a just-identified contemporaneous

structure that is not necessarily supported by economic theory or by the causal

structure embedded in the data. Accuracy of policy inferences drawn from

such analysis is therefore conditional on the validity of the maintained

hypothesis of a particular just-identified structural form.

Sims (1986) and others have noted that when there is contemporaneous

correlation among variables, the choice of an ordering in the Choleski

decomposition may make a significant difference for interpretation of impulse

responses and forecast error variance decompositions. As an alternative to

the Choleski decomposition, some researchers (Sims, 1986; Bernanke, 1986;

Blanchard and Quah, 1989; Leeper, Sims and Zha, 1996; Hess and Lee, 1999

and Kim, 2001) suggest the use of orthogonalizations that allow the researcher

to impose over-identifying restrictions on the model. We follow the literature

and label these models as Structural Vector Autoregressions (SVARs) as they

rely on prior theory as the source of their identifying restrictions. Bernanke’s

approach achieves identification via the assumption that distinct, mutually

orthogonal, behavioral shocks drive the model, and that lagged relationships

among the variables are not restricted. The “Bernanke decomposition” relaxes

1 More general identification restrictions could be considered on both contemporaneous
innovations, as well as (subset restrictions) on lagged values of the variables in the VAR.
The approach used in this paper follows that of Sims (1986) and Bernanke, where we
focus on restrictions on the relationships among contemporaneous innovations. We should
point out that directed graphs could be used for the more general identification problem, as
well as for the restricted case considered here (see Pearl, 2000, for a discussion of
identification and directed acyclic graphs).
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the assumption of a just-identified structure for the VAR innovations; it requires

imposing a particular causal ordering of the variables. This imposition may

itself be arbitrary, as theory may not always yield a clear identifying structure.

In an often-cited paper, Sims (1986) showed that a VAR model on the

U.S. economy could be used for policy analysis if appropriate identifying

restrictions are imposed. He achieved identification by using two

factorizations. First, he used a Choleski decomposition that imposed a just-

identified structure. Second, he applied a more flexible identification method

based on economic theory that relaxes the assumption of a just-identified

structure for the economy.

Cooley and Dwyer (1998) argue that although VARs are attractive research

tools for characterizing the dynamic relationships among variables without

having to invoke economic theory restrictions, SVARs “are certainly not

invariant to the identifying assumptions and may not be reliable as vehicles

for identifying the relative importance of shocks.” Sims’ (1986) work is not

exempt from this observation, as (apparently) he based his identifying

constraints on subjective (non data-based) considerations. Here we investigate

whether Sims’ (1986) results continue to hold when a less subjective, more

data-driven approach is applied to achieve an identifying interpretation of his

six variable VAR on the U.S. economy. Specifically, identification is achieved

by modeling the contemporaneous innovations from Sims’ (1986) VAR model

with directed acyclic graphs, as recently presented in Spirtes, Glymour, and

Scheines (1993). These models are based on screening-off (to be explained

below) characteristics present in correlations and partial correlations involving

three or more variables.

The approach investigated here is one extreme, of allowing the data to

provide motivation behind the over-identifying restrictions in structural VAR

models. The approach is very much in the spirit of one of several uses of

VARs discussed by Cooley and LeRoy (1985) and others. Cooley and LeRoy

(1985, p. 288) write: “One can, of course reverse the sequence of theorizing

and empirical testing. That is, econometricians can use VAR models to

generate stylized facts about the causal orderings of macroeconomic variables

that seem to be robust empirically. Then theorists would try to explain these

patterns.” This is not to say that DAGs have nothing to offer for more

theoretically-based hypothesis testing with VAR models. Only that, at a
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minimum, understanding the “screening-off” characteristics present in a set

of VAR innovations may be helpful in thinking about the mechanism that

generated the data and in planning for future policy modeling with that data.

Results indicate that achieving model identification through the use of

directed acyclic graphs can yield plausible and theoretically consistent impulse

response functions that can be used in policy analysis. The paper is presented

as follows. The next section examines a standard VAR model and the

implications of the identification restrictions. We follow this with a brief

introduction to directed acyclic graphs and recent algorithmic results of Spirtes,

Glymour, and Scheines (1993). Sims’ (1986) policy model is then summarized

and we offer a reconsideration of his model using directed acyclic graphs. A

conclusion follows.

II. VAR Models and Identification

For a given vector of historical data X
t
, a VAR can be expressed as:

X
t
 =

 
∑
=

k

i 1
B

i 
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t
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where X
t 
 and 

 
u

t
 are both (m x 1) random vectors, Z

t  
is a (q x 1) vector of non-

stochastic (or strictly exogenous) variables, and B
i
 and C are appropriately

dimensioned matrices of coefficients. The innovation term u
t
 is assumed to

be white noise, where E(u
t 
) = 0, Σ

u 
= E (u

t 
u

t
') is an (m x m) positive definite

matrix. The innovations u
t 
and u

s 
are independent for s ≠ t. Although serially

uncorrelated, contemporaneous correlation among the elements of u
t
 is

possible. These observed innovations are mongrel, as they are combinations

of more basic “structural” or driving sources of variation in the data. Following

Bernanke, these driving sources of variation are themselves orthogonal and

can be written as:

e
t 
= A u

t            
(2)

Here zero restrictions on A are investigated to obtain an identified structural

VAR.
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Generally speaking, there are no easy counting rules for identifying A, but

for a VAR in m variables if we leave more than m (m - 1) / 2 parameters free

(to be estimated) the model is not identified. Doan (1993, pp. 8-10) suggests

the following rule: if there is no combination of i and j (i ≠ j) for which both

A
ij
 and A

ji
 are nonzero, the model is identified. Usual innovation accounting

procedures (impulse response, forecast error decompositions and historical

decompositions) can be carried-out on the transformed VAR:

A X
t  
 = ∑

=

k

i 1
A B

i 
 X

t-i  
+  A C Z

t  
+  A u

t
       (3)

This paper’s contribution is in the application of the directed acyclic graphs

as an aid to identifying structural VAR models. Before discussing model

specification and estimation, a brief overview of directed acyclic graphs is

presented.

III. Dir ected Acyclic Graphs (DAGs)

Directed acyclic graphs exploit a non-time sequence asymmetry in causal

relations. Consider a causally sufficient set of three variables X, Y, and Z. We

illustrate a causal fork, X causes both Y and Z, as: Y ← X → Z. Here the

unconditional association between Y and Z is nonzero (as both Y and Z have

a common cause in X), but the conditional association between Y and Z, given

knowledge of the common cause X, is zero: a common cause screens-off

association between its  joint effects. Illustrate the inverted causal fork, both

X and Z cause Y,  as: X → Y ← Z. Here the unconditional association between

X and Z is zero, but the conditional association between X and Z given the

common effect Y is not zero: a common effect does not screen-off association

between its joint causes. These screening-off attributes of causal relations are

captured in the literature of directed graphs.2

A directed graph is a picture representing the causal flow among a set of

variables. More formally, it is an ordered triple < V, M, E > where V is a

2 Orcutt (1952), Simon (1953), Reichenbach (1956) and Papineau (1985) offer more detailed
discussion of these screening-off asymmetries in causal relations. For a description of
other causal asymmetries see Hausman (1998).
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non-empty set of vertices (variables), M is a non-empty set of marks (symbols

attached to the end of undirected edges), and E is a set of ordered pairs.

Each member of E is called an edge. Vertices connected by an edge are said

to be adjacent. If we have a set of vertices {A, B, C, D}: (i) the undirected

graph contains only undirected edges (e.g., AB); (ii) a directed graph

contains only directed edges (e.g., B → C); (iii) an inducing path graph

contains both directed edges and bi-directed edges (C ↔ D); (iv) a partially

oriented inducing path graph contains directed edges (→), bi-directed edges

(↔), non-directed edges (o  o) and  partially directed edges (o →). A

directed acyclic graph is a directed graph that contains no directed cyclic

paths (an acyclic graph contains no vertex more than once). Only acyclic

graphs are used in the paper.

Directed acyclic graphs are designs for representing conditional

independence as implied by the recursive product decomposition:

Pr (x
1
, x

2
, x

3
, ... x

n
) = ∏

=

n

i 1
Pr (x

i 
| pa

i 
)          (4)

where Pr is the probability of vertices x
1
, x

2
, x

3
, ... x

n 
and pa

i 
the realization of

some subset of the variables that precede (come before in a causal sense) X
i 
in

order (X
1
, X

2
,…, X

n
). Pearl (1995) proposes d-separation as a graphical

characterization of conditional independence. That is, d-separation

characterizes the conditional independence relations given by equation (4). If

we formulate a directed acyclic graph in which the variables corresponding

to pa
i  
are represented as the parents (direct causes) of X

i
, then the

independencies implied by equation (4) can be read off the graph using the

notion of d-separation (defined in Pearl, 1995):

Definition:  Let X, Y, and Z be three disjoint subsets of vertices in a directed

acyclic graph G, and let p be any path between a vertex in X and a vertex in Y,

where by “path” we mean any succession of edges, regardless of their directions.

Z is said to block p if there is a vertex w on p satisfying one of the following:

(i) w has converging arrows along p, and neither w nor any of its descendants

are on Z, or, (ii) w does not have converging arrows along p, and w  is  in  Z.

Further,  Z  is  said  to  d-separate  X  from  Y  on  graph  G, written  (X
� �

Y | Z)
G
,

if and only if Z blocks every path from a vertex in X to a vertex in Y.
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Geiger, Verma, and Pearl (1990) show that there is a one-to-one
correspondence between the set of conditional independencies, (X� � Y | Z),
implied by equation (4) and the set of triples (X, Y, Z) that satisfy the d-
separation criterion in graph G. Essential for this connection is the following
result: if G is a directed acyclic graph with vertex set V, A and B are in V, and
H is also in V, then G linearly implies the correlation between A and B
conditional on H is zero if and only if A and B are d-separated given H.

Spirtes, Glymour, and Scheines (1993) have incorporated the notion of d-
separation into an algorithm (PC algorithm) for building directed acyclic
graphs, using the notion of sepset (defined below).

The PC Algorithm is an ordered set of commands which begins with a
general unrestricted set of relationships among variables and proceeds step-
wise to remove edges between variables and to direct “causal flow.” The
algorithm is described in Spirtes, Glymour, and Scheines (1993, p. 117).
Refinements  are  described  as  the  Modified PC Algorithm (Spirtes, et al.,
p. 166), the Causal Inference Algorithm (p. 183), and the Fast Causal Inference
Algorithm (p.188). We restrict our discussion to PC algorithm, since the basic
definition of a sepset is used in all and PC Algorithm is the most basic.

Briefly, one forms a complete undirected graph G on the vertex set V. The
complete undirected graph shows an undirected edge between every variable
of the system (every variable in V). Edges between variables are removed
sequentially based on zero correlation or partial correlation (conditional
correlation). The conditioning variable(s) on removed edges between two
variables is called the sepset of the variables whose edge has been removed
(for vanishing zero order conditioning information the sepset is the empty
set). Edges are directed by considering triples XY Z, such that X and Y
are adjacent, as are Y and Z, but X and Z are not adjacent. Edges between
triples: XYZ are directed as: X → Y ← Z,  if Y is not in the sepset of X

and Z. If  X → Y, Y and Z are adjacent, X and Z are not adjacent, and there is
no arrowhead at Y, then orient YZ as Y → Z.  If there is a directed path from
X to Y, and an edge between X and Y, then direct  (XY) as: X →Y.

In applications, Fisher’s z is used to test whether conditional correlations
are significantly different from zero. Fisher’s z can be applied to test for
significance from zero; where z (ρ (i, j/ k) n) = 1/2 (n - |k| - 3)1/2 ln {( |1 + ρ (i,
j/ k)|) (|1-ρ (i, j/ k)|)-1} and n is the number of observations used to estimate the

correlations, ρ (i, j / k) is the population correlation between series i and j
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conditional on series k (removing the influence of series k on each i and j), and

|k| is the number of variables in k (that we condition on). If i, j, and k are normally

distributed and r (i, j / k) is the sample conditional correlation of i and j given k,

then the distribution of  z (ρ (i, j/ k) n) - z (r (i, j/ k) n) is standard normal.

PC Algorithm can commit type I and type II errors on both edge existence

(it can fail to include an edge when it should include it and can include an

edge when it should not) and edge direction (it may fail to put an arrowhead

at vertex A when it should put it at vertex A and it may put an arrowhead at A

when, in fact, it should not have put an arrowhead there).  Spirtes, Glymour,

and Scheines (1993) have explored several versions of PC Algorithm on

simulated data with respect to errors on both edge inclusion (yes or no) and

direction (arrowhead at A or not). They conclude that there is little chance of

the algorithm including an edge that is not in the “true” model. However,

there is, with small sample sizes (less than say 200 observations) considerable

chance that the algorithm will omit an edge that belongs in the model.  Further,

arrowhead commission errors (putting an arrowhead where it does not belong)

appear to be more likely than edge commission errors (putting an edge where

it does not belong). Accordingly, the authors conclude: “In order for the method

to converge to correct decisions with probability 1, the significance level

used in making decisions should decrease as the sample size increases, and

the use of higher significance levels (e.g. 0.2 at sample sizes less than 100,

and 0.1 at sample sizes between 100 and 300) may improve performance at

small sample sizes.” (Spirtes, Glymour, and Scheines, 1993, p. 161).

Applications of directed graphs to VAR model identification are not

commonplace. A similar procedure has been suggested in Swanson and

Granger (1997). Their procedure considers only first order conditional

correlation, and involves more subjective insight by the researcher to achieve

a “structural recursive ordering.” One advantage of using this method of

analysis is that results based on properties of the data can be compared to a

priori knowledge of a structural model suggested by economic theory or

subjective intuition.

IV. Illustration Using Sims’ (1986) Model

To examine the importance of using a data-determined method for
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achieving identification of a VAR model, we estimated Sims’ (1986) six

variable quarterly model of the U.S. economy using two different identification

methods. One model uses the standard Sims’ (1980) VAR methodology where

identification is achieved via use of Choleski factorization procedure. The

second model uses a modification of the Bernanke factorization where

contemporaneous causal path of the model innovations is determined via use

of directed graphs.

The model is estimated in log levels (except interest rates and

unemployment rate, which are in levels) over the period 1948/1-1979/3. The

estimation period is truncated at 1979/3 to avoid the likely need for modeling

the shift in money supply behavior around 1979/4, and to allow for direct

comparisons of current results with Sims’ (1986). The variables in the VAR

system are real GNP (Y), real business investment (F), GNP price deflator

(P), the M1 measure of money (M), unemployment (U), and Treasury-bill

rates (R). All measures are the same as those used in Sims (1986). Four

quarterly lags on each variable and a constant term are used.

The lower triangular elements of the correlation matrix (corr) on innovations

(errors) from the four-lag VAR, fit to 127 data points, are given as equation

(5). Here we list, in lower case letters, the equation innovations for each

column across the top of  the  matrix: y = innovations in income, f = innovations

in investment, p = innovations in price, m = innovations in money, u =

innovations in unemployment, and r = innovations in interest rates.

It is this matrix that drives the TETRAD II search for underlying restrictions

on contemporaneous innovations.

1.000

.518 1.000

.004 .002 1.000

.355 .146 .209 1.000

.647 .452 .194 .329 1.000

.045 .162 .022 .039 .173 1.000

y f p m u r

corr

 
 
 
 

=  
 
 − − − −
 

− − −  

 (5)
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A. Model Identification Assuming a Just Identified Structure

In the first model the VAR is specified as in Sims’ (1986). This allows us

to replicate his impulse response functions based on a Choleski factorization

(see Sims, 1986, chart 1). The variables are ordered as follows: output,

investment, prices, money, unemployment rate, and interest rate. The impulse

response functions obtained from this first model are presented in Figures

1.A and 1.B. Our VAR model’s results and Sims’ Choleski results are

essentially identical. However, as we do not place instrumental priors on our

VAR, responses from our Choleski decomposition will not be identical to

those found in Sims (1986). Each small graph represents the response of a

variable in a given row to a one-standard-deviation innovation in a variable

in a given column over 32 consecutive quarters.

The dynamic effects of a (non-monetary) shock in output on real and

nominal variables are presented in column 1. Positive output innovations

increase output, investment, and interest rates, but decrease unemployment for

about 10 quarters. An unemployment shock, column 5, is interpreted as a labor

supply disturbance by Sims, capturing the complex dynamics of varying labor-

force participation rate. Labor supply innovations have positive effects on

output with steady increase in the first four quarters; thereafter, output remains

at the higher level. While the level of unemployment rises temporarily, it returns

to normal in about 8 quarters. Investment response is similar to that of output,

while growth in prices is moderate. Money stock increases smoothly and

remains at the higher level. The short-term interest rate is approximately

constant, initially declining for a brief period then quickly returning to

equilibrium levels.

Responses to money innovations are given in column 4. Real variables,

income, investment, and unemployment show short-run responses, which do

not persist over the long run. Money and prices show persistent long-run

responses to money innovations. The delayed positive response of prices

appears to be consistent with either adaptive expectations behavior or sticky

prices, a point which, apparently, led Sims to suggest that commodity prices

(prices set in auction markets) be added to the model to help sort-out the

alternative expectations hypotheses. The weak response of real variables,
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Figure 1. A.  Impulse Response Functions Based
on Choleski Decomposition

however, leads Sims (1986) to question whether these responses are consistent

with a rational expectations monetarist theory. He notes: “the weakness of

the real responses does not fit rational expectations monetarist theory well.”

A positive shock to interest rates yields a notable temporary decline in

output, which returns to its normal level after about 12 quarters. Prices

temporarily increase for about 6 quarters, and thereafter decline persistently.

A strong and persistent negative response of money stock is also observed in

response to innovation in interest rates. The unemployment rate momentarily

declines then rises sharply for about 12 quarters before finally returning to

normal.

Overall the impulse responses summarized in Figures 1.A and 1.B appear

to be generally consistent with a monetarist’s view of the economy with
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Figure 1. B.  Impulse Response Functions Based
on Choleski Decomposition
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adaptive expectations (with no hyperinflation). Real variables show weak

responses to money supply shocks; while prices show a persistent positive

lagged response. Output responds positively and most strongly to shocks in

employment.

The Choleski-generated responses are based on the contemporaneous

causal ordering: innovations in output cause innovations in investment,

innovations in investment cause innovations in prices, innovations in prices

cause innovations in money, innovations in money cause innovations in

unemployment, and innovations in unemployment cause innovations in interest

rates. As an alternative to the Choleski-based responses, Sims (1986) considers

theory-based interactions among innovations using the Bernanke factorization

of contemporaneous correlations. Below we consider interrelations among

these innovations based on directed graphs.
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B. Directed Graph Results

The innovation correlation matrix given by equation (5) is used as the

starting point for our analysis of the innovations from Sims’ six-equation

VAR. TETRAD II is applied to these correlations. As suggested by Spirtes,

Glymour, and Scheines (1993), various levels of significance are considered

in an attempt to achieve an unambiguous causal structure of the variables in

contemporaneous time. Figure 2 presents graphs on innovations from Sims’

(1986) six variable VAR at the following nominal levels of significance: 0.05,

0.10, 0.15, 0.20, and 0.30. As the TETRAD II search algorithm involves

multiple hypothesis testing for edge removal, the final significance level is

generally larger than that reported as nominal. At the 5 % and 10 % significance

levels the directed edges are found as given in Panels A and B. The resulting

graphs are identical, indicating directed edges from investment and money to

output, and from output to money and unemployment. Directed edges are

also observed running from prices to money and from money to output.

However, the relationship between investment and unemployment is

ambiguous, since there is an undirected edge connecting these variables (there

is a relationship between investment and unemployment, but we cannot say

which variable is causal).

Given the ambiguity in results at these low levels of significance, higher

levels of significance of 15 % and 20 % are considered. These are given in

Figure 2, Panels C and D. Although a directed edge from investment to

unemployment is obtained at both of these higher levels, there is now an

undirected edge between investment and output. Economic theory could be

used as in Sims (1986) to direct this ambiguous causal path, but the approach

will then be subject to the earlier criticism of arbitrariness.  Interestingly,

interest rates do not enter the system in any of the directed graphs in Panels

A-D. The directed edges between prices and money, output and money, output

and unemployment, and prices and unemployment seem to be stable across

the 15-20 % significance levels.

Finally, as reported in Panel E, an unambiguous causal ordering is found

at the 30 % level of significance. Innovations in output cause innovations in

money, investment, and unemployment. Innovations in prices cause

innovations in money and unemployment, while innovations from investment
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A. Graph at 5%  level

B. Graph at 10%  level

C. Graph at 15%  level

D. Graph at 20%  level

E. Graph at 30%  level
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Figure 2. Specification Search Using TETRAD II
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cause innovations in unemployment. Innovations in interest rates cause

innovations in investment.

Although 30 % is a rather high significance level, it does merit discussion,

as it is the lowest significance level considered which gives us an unambiguous

directed graph. The alternative of using levels of say 5 % or 10 % is to conclude

that the data on this six variable model are not rich enough to sort out a clear

causal graph. This alternative is certainly worth considering as it is a

contribution to demonstrate that Sims’ (1986) six variable model does not

yield a definite ordering using our directed graph techniques. However,

offering the “first” unambiguous ordering in a search over alternative levels

of significance allows the researcher to quantitatively assess the robustness

of his/her results with respect to significance levels.

Further, Scheines et al. (1994) recommend that users of their algorithm

should “vary the significance level to obtain an idea of how robust the results

are. The program tends to underfit -that is, to include too few edges- at small

samples. Increasing the significance level makes it easier for the program to

retain edges between variables” (Scheines et al. 1994, p. 105). Given that

only 127 quarterly data observations are used for this study, the suggestion to

use higher significance levels is relevant in this case (although readers may

suggest that our stretching their suggestion to 30 % is a priori unreasonable).

In addition to the Choleski-generated responses, Sims (1986) considers

restrictions to produce theory-based impulse responses. Here he considers

two models where innovations in interest rates, investment, money, prices,

and output are components of the demand and supply for money.  Figure 3

presents the directed graph representation of these two alternative

identifications used by Sims (1986). Panel A outlines his first identification,

while Panel B represents his second case. For ease of comparison, Sims’

(1986) two identification scenarios, in thick bold lines, are superimposed on

our model identification from Figure 2 (Panel E).

Although Sims’ (1986) identification restrictions are based on economic

theory and those for this study are based on data patterns, both approaches

have similarities in the resulting causal structure. From Figure 3, it can be

seen that both identifications allow innovations in money to respond to

innovations in output and prices. The unemployment equation allows

unemployment to depend on output, investment, interest rates, and prices.
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A. Sims’ 1st Identification Chart and DAG at 30% level

B. Sims’ 2nd Identification Chart and DAG at 30% level
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However, in both panels, Sims’ (1986) theory-based identifications offer

several extra causal connections that seem to lack support from the data. For

instance, in both identification cases, Sims (1986) suggests that innovations

from interest rates cause innovations in all other variables, except investment.

In contrast, the TETRAD II-based identification finds innovations in interest

rates cause innovations in investment and unemployment only. Recall that a

fairly high level of significance had to be used to find theses edges. Notice

too that TETRAD II finds an edge running from output to investment; whereas,

Sims’ (1986) two alternative identifications yield the opposite causal flow;

investment cause income in contemporaneous time.

Further, Sims (1986) specifies bi-directional arrows between m and p

(second identification, Figure 3) and between m and r (first and second

identification, Figure 3). Recall that our TETRAD II-based directed graphs

too (Figure 2) resulted in bi-directional arrows (at the 5 % and 10 % levels of

significance we saw y and m were bi-directed), which suggests the possibility

of an omitted variable(s) or an equilibrium or feedback process.3

The directed edge which Sims (1986) places between innovations in interest

rates (r) and income (y) does not show-up using TETRAD II, as the zero-

order correlation (unconditional correlation) between innovations in interest

rates and income is 0.04, with an associated p-value of 0.62 −more than double

the highest-level p-value entertained in our application of TETRAD II−.

Furthermore, the edge between innovations in income (y) and price (p), which

Sims (1986) includes in his structural identification, does not appear in the

TETRAD II model as the p-value on this edge is 0.97. In addition, Sims

(1986) places edges between innovations in prices (p) and innovations in

interest rates (r) and innovations in money supply (m) and interest rates (r).

Zero-order correlations between these have p-values of 0.81 and 0.67,

respectively, suggesting little data-generated support for these edges.

The identifying restrictions suggested by TETRAD II’s graph in  Figure

2, Panel E, were tested using the likelihood ratio test for over-identification

as given in Doan (pp. 8-10). Given a six variable system, there are 15 lower

triangular elements which can be non-zero in a just identified model, i.e.,

3 We do not model feedback or equilibrium processes. The reader is directed to Richardson
and Spirtes (1999) for a computational algorithm that can handle such cyclic graphs.
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with m equal to the number of series in the VAR, we have m (m - 1) / 2 free

parameters. The directed graph restrictions result in a chi-squared statistic of

2.37. With 7 degrees of freedom, we reject these zero restrictions at a p-value

of 0.94, suggesting that the restrictions are consistent with the data. (We did

not test Sims’ (1986) ordering as it does not meet the simple Doan condition

for identification).

While the above analysis suggests that several of the edges in Sims’

identified model are questionable, the TETRAD II results are not without

ambiguity. Probably most noticeable from Figure 2 are the reversal of causal

direction as we change level of significance. At low levels of significance

(0.05 and 0.10) we see that investment innovations (f) cause income

innovations (y); while at the higher level of significance (0.30) we see just

the opposite, innovations in investment (f) cause innovations in income (y).

Furthermore, we see a bi-directed edge between innovations in income (y)

and innovations in money (m) at low levels of significance; while at higher

levels of significance the edge between y and m is directed as: y → m. Such

edge reversals are of course unsatisfying and point us in two directions. First,

if we want to maintain the posture, outlined at the beginning of the paper, of

relying primarily on data-based identifications, the ambiguity suggests

additional data points to provide more precision on estimates of correlation

and partial correlation structure. A second direction, which moves us away

from our focus on databased identifications, is to rely on prior theory.  Swanson

and Granger (1997, p. 360) note in a discussion of their similar “structural

identification procedure” that the issue of “reversibility” of causal direction

among variables is “just an artifact of the contemporaneous nature of the

correlation constraints that are tested.” To resolve such ambiguities they

suggest the use of prior knowledge based on economic theory to choose

between two alternate models (1997, p. 363).

C. Innovation Accounting with the TETRAD II Suggested Structure

Figures 4.A. and 4.B. present the impulse response functions for the model

identified via directed graph results. A positive shock in output (column 1)

results in persistent increases in prices and money and a short-term negative

response in unemployment. Comparing these responses with the responses
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Figure 4.A. Impulse Response Functions Based on DAG
at 30% Significance Level

of the same variables to innovations in investment (column 2), we see different

patterns, suggesting that other components of output (consumption and

government spending) may be responsible for the persistent long-run

movements in prices and money and the short-term negative response of

unemployment. Although, not having their measures (consumption and

government spending) in this study, we cannot say more than the differences

in responses are suggestive.

Positive money innovations (column 4) increase investment and output

for the first 8 quarters then returning to normal within two years. Innovations

in money result in sustained positive response in prices. Interest rates also

respond positively in the first 3 quarters or so, thereafter returning to normal

levels. Unemployment initially declines in the first year, then increases for

about 6 quarters before it returns to normal levels.
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Figure 4.B. Impulse Response Functions Based on DAG
at 30% Significance Level

Innovations in prices and investment are not major movers of the other

variables in our six variable VAR. Innovations in each of the other four

variables have sustained or lasting influence on at least one other variable in

our six variable system. Innovations in income have a strong and persistent

impact on prices and money and considerable short-term influence on

unemployment and investment. Money innovations appear to have their

strongest lasting impact on prices, showing only short-term impacts (delayed

by one or two periods) on the other four variables (excluding itself).

Innovations in unemployment appear to be the strongest lasting influence on

output. Interest rate innovations have a strong persistent influence on money

and prices, both negative in the long run.

Surprisingly, the responses generated from the DAG look similar to those

generated from Sims’ (1986) initial Choleski factorization (Figures 1.A and
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1.B). The few differences are primarily in the responses to innovations in

investment. For example, consider the response of output to innovations in

investment. Under the Choleski decomposition, in response to a positive shock

to investment, output declines in the first eight quarters and thereafter is

positive. This impulse response is (perhaps) not reasonable as we expect, a

priori, that an increase in investment should result in expansion in output.

Under the DAG-based decomposition, however, output responds positively

to innovations in investment. This latter response is more consistent with our

priors. This difference between Sims’ Choleski results and our directed graph

results apparently is due to differences in our respective treatments of interest

rates. Sims has interest rates ordered last on the results of Figures 1.A and

1.B, while the directed graphs (Figure 2) shows interest rates as a causal

factor for investment in contemporaneous time.  Otherwise, the Choleski

ordering used by Sims is very similar to the information flows summarized

by the directed graph given in Figure 2, Panel E.

V. Concluding Remarks

The vector autoregression has found favor among many in applied

econometrics for study of observational data.  Among the reasons for its

attractiveness is its reliance on data and avoidance of strong zero-one-type

restrictions, as the VAR represents an efficient summary of the covariance

patterns in historical data. However to make policy recommendations

additional identifying restrictions have to be put on the VAR representation.

Heretofore research workers have relied on either a Choleski factorization or

theory to provide such restrictions. Both methods are subjective in the sense

that the data are not given a strong role in providing explicit zero-type

restrictions required for identification. This paper has asked whether results

from a VAR model offered in Sims (1986) continue to hold when a less

subjective, more data-driven approach, is applied to achieve an identifying

interpretation of a six variable VAR on the U.S. economy.

The motivation for proceeding in this fashion was offered in the early

paper by Cooley and LeRoy (1985). They suggest that one valid use of the

VAR is to summarize regularities in the data, which in turn, may then motivate
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additional theoretical work. To date, not much work along this line has been

forthcoming although Cooley and LeRoy (1985, p. 288) do cite papers by

Ashenfelter and Card (1982), and Litterman and Weiss (1985) as examples

of the type of research for which VAR results do generate additional theoretical

work. Perhaps the reason for the lack of more studies in this vein is that both

the Choleski factorization and the structural factorization involve considerable

amounts of judgment on the part of the research worker. Thus it becomes

problematic for analysts to know just what parts of their results are based on

data and what parts based on assumed identifications. Directed acyclic graphs,

while still subject to the charge of subjectivity (as we have seen here, for

example, in terms of the choice of significance level), are a move in the

direction in which Cooley and LeRoy point us.

Here we replicate the VAR results of an important model of Sims, where

identification was achieved using a Choleski factorization. Subsequently, a

second model was estimated where a contemporaneous causal ordering on

the model’s innovations was determined using TETRAD II’s representation

in terms of a directed acyclic graph. The directed graph results show Sims’

six variable model not rich enough to provide an unambiguous ordering at

usual levels of statistical significance. We required a significance level in the

neighborhood of 30 % to find a clear structural ordering. At this rather high

level of significance we found impulse response functions to be quite similar

to the Choleski generated responses found by Sims (1986). These responses

appear to be broadly consistent with a monetarist’s view of the economy with

adaptive expectations with no hyperinflation.

Additional work on type I and II errors, the possibility of multiple causal

structures, and feedback and cyclic graphs is certainly warranted. Here we

varied significance levels from 0.01 to 0.30 and found a number of causal

patterns, one of which was a directed acyclic graph (the result found at the 30

% significance level). Questions on multiple graphs at each significance level

have not been addressed. Further, we have not considered the possibility of

feedback in contemporaneous time. Investigations with this algorithm

(TETRAD II) and other work on cyclic graphs is now underway (see

Richardson and Spirtes, 1999, for discussion of a recent algorithm for modeling

cyclic graphs).
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