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I. Introduction

In previous studies of inefficiency using stochastic frontier models, Caudill,
Ford and Gropper (1995) noted that measures of inefficiency are based on

residuals derived from the estimation of a stochastic frontier. They observed
that residuals are sensitive to specification errors, particularly in stochastic

frontier models, and that this sensitivity will be passed on to the inefficiency
measures. To correct for this, they suggested that one should consider testing

for and, if present, correcting for heteroscedasticity in the one-sided error
term. Hadri (1999) argued that we might expect the two-sided error term to

be affected by heteroscedasticity as well, and that if this likely eventuality is
ignored, it will lead to inconsistent maximum likelihood (ML) estimators.

Consequently, the usual tests will be no longer valid. Hence, in order to obtain
correct estimators and conduct valid tests one must test for heteroscedasticity

in both error terms and, if indicated, appropriate correction should be taken
in the estimation procedure. In Hadri (1999), heteroscedastic frontier cost

functions were estimated using cross-sectional data.
In this paper, we extend the Hadri (1999) correction for heteroscedasticity

to stochastic production frontiers and to panel data, including unbalanced
panel data. We consider one homoscedastic and three heteroscedastic

specifications namely, heteroscedasticity in the one-sided term,
heteroscedasticity in the symmetrical term and heteroscedasticity in both error

terms. Using panel data on cereal farms, we find that the usual measures used
in stochastic production frontiers are significantly sensitive to the extended

correction for heteroscedasticity.
The paper is organised as follows. The theoretical models are presented in

section 2. In section 3 the models are applied to a set of panel data on 102
mainly cereal farms in England for the harvest years 1982-1987. Section 4

concludes the paper.

II. Theoretical Models

Before introducing the heteroscedastic stochastic production frontier
models, we briefly present the basic model used in the literature to describe a

frontier production function.  Greene (1993) provides a recent survey of this
literature. The basic model can be written as follows:
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where  y
it
  denotes  the  logarithm  of  the production for the ith sample farm

(i = 1, ... , N) in the tth time period (t = 1 , ... , T
i
); X

it
 is a (1 x k) vector of the

logarithm of the inputs associated with the ith sample farm in the tth time

period (the first element would be one when an intercept term is included); β
is a (k x 1) vector of unknown parameters to be estimated; w

it
 is a two-sided

error term with E [w
it
] = 0 for all i and t and E [w

it
 w

jl
] = 0 for all i and j, i ≠ j

and for all t and l; var (w
it 
) = 2 ;wσ v

it
 is a non-negative one-sided error term

with  E [v
it
] > 0, E [v

it
 v

jl
] = 0  for  all  i  and  j,  i ≠ j  and  for  all  t  and  l;  and

var(v
it
) = 2.vσ Furthermore, it is assumed that w and v are uncorrelated. The

one-sided disturbance v reflects the fact that each firm’s production must lie

on or below its frontier. Such a term represents factors under the firm’s control.

The two-sided error term represents factors outside the firm’s control.

Weinstein (1964) derived the density function of w
it
 + v

it
 under the

assumption that v
it
 is half-normal and w

it
 is normal. It is then easy to obtain

the density function of their difference that takes the form:

where ε
it
 = w

it 
- v

it 
, σ2 = 2

wσ  + 2,vσ  λ =  σ
v
 / σ

w
 and f * (.) and F* (.) are

respectively the standard normal density and distribution functions.

The advantage of stochastic frontier estimation is that it permits the

estimation of firm-specific inefficiency. The most widely used measure of

firm-specific inefficiency, suggested by Jondrow, Lovell, Materov and Schmidt

(1982), is based on the conditional expected value of v
it
 given ε

it
, and is given

by:

where * / .v wσ σ σ σ=

In what follows, we derive the log-likelihood functions. The corresponding

first partial derivatives for the three possible cases, heteroscedasticity in the

one-sided, two-sided and both error terms, are given in the Appendix. These

,it it it ity X w vβ= + − (1)

* *( ) (2 / ) ( / )(1 ( / )),it it itf f Fε σ ε σ λ ε σ= − ,ε−∞ < < + ∞it (2)

* *
*[ | ] [ / ( / ) / ( / )],it it it it itE v f Fε σ ε λ σ ε λ σ ε λ σ= − + (3)
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derivations are used among other things to evaluate log-likelihood ratios for

testing purposes.

Following Hadri (1999) we assume the following multiplicative

heteroscedasticity for the one-sided error term.

where Z
it
 is a vector of nonstochastic explanatory variables related to

characteristics of firm management and α is a vector of unknown parameters.

Z
it
 is assumed to include an intercept term. The standard deviation of the two-

sided error term is also written in exponential form so that σ
w
 = exp(γ

o 
). The

density function corresponding to model HV, where only the one-sided error

term is assumed heteroscedastic, is given by:

where 2
itσ  = 2

wσ  + 2 ,vitσ λ
it 
= σ

vit 
/σ

w
 and f * (.) and F* (.) are as defined previously.

The loglikelihood function is

log 0( , , )L β α γ = 
1 1

log ( ( )).
iTN

it it
i t

f ε
= =
∑∑

As argued earlier, in the cross-section dimension the two-sided error is

likely to be affected by size-related heteroscedasticity. The misspecification

resulting from not incorporating heteroscedasticity in the ML estimation of

our frontier can cause parameter estimators to be inconsistent as well as

invalidating standard techniques of inference (White, 1982). In order to

incorporate  heteroscedasticity  in  the  two-sided  error  term  we  specify

σ
wit

 = exp (Y
it 
γ), where Y

it
 is a vector of nonstochastic explanatory variables

related generally to characteristics of firm size and γ is a vector of unknown

parameters. Y
it 
is assumed to include an intercept term. The standard deviation

of  the  one-sided  error  term,  assumed  here  to be homoscedastic, is now

σ
v
 = exp(α

0
). The density function is still as in (5) but now 2 2 2,it wit vσ σ σ= + and

λ
it
 = σ

v
 / σ

wit
. We call this model HW.

The most likely correct specification is the one where the two error terms

are assumed to be concurrently heteroscedastic. This specification gives model

exp( ),vit itZσ α= (4)

( ) * *(2 / ) ( / )(1 ( / )),it it it it it it it itf f Fε σ ε σ λ ε σ= −
itε−∞ < < +∞ (5)

(6)
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HVW. Equation (5) is still appropriate but now we have 2 2 2 ,it wit vitσ σ σ= + and

λ
it
 = σ

vit
 / σ

wit   
where σ

wit
 = exp(Y

it
γ) and σ

vit 
= exp (Z

it
α).

The first partial derivatives are needed when maximizing the likelihood

function using the algorithm proposed by Berndt, Hall, Hall and Hausman

(1974).

III. Empirical Applications

A set of panel data on 102 English farms, classified as ‘mainly cereal’

under the nationally organised Farm Business Survey, was used for the years

1982-1987 to estimate five stochastic frontier production functions. Data on

output and input are collected only in value and cost terms, and are here

deflated by the appropriate price index to proxy output and inputs. The

characteristics of the data are summarised in Table 1. One feature of the sample

is variability. In all variables, the standard deviation is large compared to the

mean. Another feature is size dispersion; a farm that is one standard deviation

above the mean is more than 9 times larger than a farm that is one standard

deviation below the mean.

Table 1. Characteristics of the Sample Variables

Mean Std. deviation Skewness Kurtosis

Cereal output  (C) 209.366 168.028 1.896 5.433

Cereal area (CA) 133.88 97.700 2.106 8.445

Crop protection (CP) 11.166 10.784 2.251 6.976

Seeds (CC) 7.014 6.415 2.917 13.869

Fertiliser (FC) 15.694 12.754 2.114 7.143

Labour (Lab) 22.133 17.047 2.184 6.827

Land (LPC) 21.425 16.923 1.821 4.281

Machinery, energy, &

miscel. inputs (MEO) 35.967 28.827 2.447 9.314

Note: Cereal area in hectares; all other variables are in thousand  Sterling Pounds at 1985
prices.



260 JOURNAL OF APPLIED ECONOMICS

We estimated five stochastic frontier production functions using GQOPT/

PC version 6.01 routines for the optimisation of our likelihood functions.
Model H0 is the usual homoscedastic stochastic frontier production defined

by

All the variables are in logarithms. C represents the total value of cereals
output; Lab represents the total cost of labour; MEO represents the total cost

of machinery, energy and miscellaneous items; CC represents the total cost
of seeds; CA represents area under cereals; LPC represents land and property

charges; FC represents total cost of fertilizer; CP represents total cost of crop
protection products; t indicates the year of observation; and w and v are the

random variables whose distributional properties are defined in the previous

sections.

The value of output and inputs were deflated by the appropriate price

index. The year of observation is included in the model to account for
technological change (Hicksian neutral) even though the time period

considered is short.
Model HO, defined by equation (7), σ

w
 = exp(γ

0
) and σ

v
 = exp(α

0
), contains

nine β parameters and two additional parameters associated with the
distributions of the w and v random variables. The two error terms are clearly

assumed to be homoscedastic.
In model HV we assume that v is heteroscedastic and w homoscedastic.

The model is defined by equation (7), σ
w
 = exp(γ

0
), and

For Model HW we assume that w is heteroscedastic and v homoscedastic.

Model HW is defined by equation (7), σ
v
 = exp(α

0
) and

Finally, in model HVW we assume that both disturbance terms are

1 2 3 4 5 6it o it it it it it itC Lab MEO CC CA LPC FCβ β β β β β β= + + + + + + +

7 8it it itCP t w vβ β+ + −

(7)

0 1 2 3 4 5exp( )vit it it it itLab MEO CA FC tσ α α α α α α= + + + + + (8)

0 1 2 3 4 5exp( )wit it it it itLab MEO CA FC tσ γ γ γ γ γ γ= + + + + + (9)
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heteroscedastic. The model is defined by equations (7), (8) and (9). The

maximum-likelihood estimates of each model are reported in Table 2.

Table 2. Estimation Results

Model Model Model Model Model

HO HV HW HVW HVWR

Constant 3.736 3.730 3.770 3.791 3.999

(19.28) (13.08) (18.78) (11.85) (20.23)

Lab 0.002 0.027 0.003 0.029 0.030

(0.323) (2.888) (0.711) (3.769) (4.167)

MEO 0.250 0.272 0.237 0.283 0.256

(9.083) (6.248) (8.509) (5.295) (6.516)

CC 0.125 0.120 0.099 0.116 0.116

(5.128) (4.727) (4.064) (4.913) (4.948)

CA 0.277 0.128 0.283 0.149 0.182

(5.921) (1.733) (5.706) (2.184) (3.226)

LPC 0.076 0.116 0.092 0.125 0.127

(2.268) (3.220) (2.659) (3.597) (3.774)

FC 0.135 0.096 0.123 0.063 0.052

(3.990) (1.883) (3.629) (1.232) (1.111)

CP 0.172 0.193 0.198 0.193 0.192

(10.80) (11.07) (10.09) (13.71) (14.19)

T -0.033 -0.027 -0.032 -0.025 -0.024

(-6.926) (-2.947) (-3.087) (-3.087) (-3.373)

σ
v

Constant -1.472 -1.779 -1.516 -1.771

(-15.24) (-0.885) (-15.58) (-0.890)

Lab 0.297 0.280 0.258

(1.853) (2.013) (2.235)

MEO 0.315 0.425 0.218

(0.836) (1.261) (1.037)



262 JOURNAL OF APPLIED ECONOMICS

CA -1.099 -0.971 -0.611

(-1.302) (-1.899) (-2.253)

FC -0.148 -0.299 -0.415

(-0.491) (-1.002) (-1.651)

T 0.071 0.066 0.074

(1.323) (1.184) (1.739)

σ
w

Constant -2.050 -1.878 -2.529 -2.379 -2.843

(-21.97) (-15.06) (-1.869) (-1.873) (-3.345)

Lab 0.245 0.065 0.065

(1.802) (1.500) (1.431)

MEO 0.026 -0.365 -0.319

(0.154) (-1.788) (-1.847)

CA -0.602 0.029

(-1.996) (0.111)

FC 0.052 0.355 0.372

(0.237) (1.416) (2.103)

T 0.036 0.015

(1.909) (0.461)

Log likelihood 297.58 308.89 308.27 314.85 314.21

LR value 33.54 11.92 13.16 1.28

Note: t-values in parentheses.

Table 2. (Continued) Estimation Results

Model Model Model Model Model

HO HV HW HVW HVWR

Likelihood ratio statistics were used to test hypotheses. All the tests were

carried out using the 5% significance level. Model HVW nests all the other

models. Using general to specific methodology (see Abadir et al (1999) and

Abadir and Hadri (2000) on the importance of general to specific
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methodology),  we  started  by  testing  the  hypothesis  of  a  homoscedastic

v (H
0
: α

1 
= α

2 
= α

3 
= α

4 
= α

5 
= 0, against the alternative that at least one

parameter is different from zero). We obtained a likelihood ratio of 13.16

indicating the rejection of the null hypothesis. We then tested the hypothesis

of a homoscedastic w (H
0
:  γ

1 
= γ

2 
= γ

3 
= γ

4 
= γ

5 
= 0, against the alternative that

at least one parameter is different from zero). The likelihood ratio reached a

value of 11.92 indicating the rejection of the null hypothesis. Next, we tested

the joint hypothesis that v and w are homoscedastic. This hypothesis is also

rejected on the basis of a likelihood ratio of 33.54. Therefore, HVW is

statistically the preferred model as far as testing for heteroscedasticity is

concerned.

This result shows the necessity of testing for heteroscedasticity in both error

terms and making the appropriate corrections. By allowing both error terms to

be heteroscedastic, model HVW is correcting for the corresponding double

heteroscedasticity. Now, model HVW can be reduced further by noticing that

all the parameters in the production function are significant, while three

parameters associated with the error terms appear to be insignificant, namely

α
0
, γ

3
 and γ

5
. To test the joint hypothesis H

0 
: α

0
 = γ

3
 = γ

5 
=

  
0, we estimated a

restricted model called model HVWR. Its parameter estimates are shown in

Table 2. We obtained a likelihood ratio of 1.28 leading to the acceptance of the

restrictions.

Table 3 shows some descriptive statistics of efficiencies estimated from

the five models. While the maxima are similar, there is a clear difference

between the minima of the two doubly heteroscedastic models (HVW and

HVWR) and the other three specifications. The means of models HVW and

HVWR are equal, and the standard deviations and skewness are very close.

We notice that model HV is the closest to model HVW and dissimilar from

model HO and model HW. This suggests that heteroscedasticity is stronger

in the one-sided term.

Table 4 confirms this last result where we find a very high correlation

between model HV and model HVW efficiencies. Table 4 displays correlations

and rank correlations between efficiencies estimated from the five models.

The ranking is clearly affected by the specification used.  Hence, accounting

correctly for heteroscedasticity has a significant effect not only on estimation

and on testing but on ranking farm efficiencies as well.
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Table 3. Summary Statistics for Efficiencies

Model Minimum Maximum Mean St. dev Skewness

HO 0.49 0.96 0.83 0.081 -1.06

HV 0.47 0.98 0.88 0.082 -2.02

HW 0.49 0.97 0.84 0.077 -1.01

HVW 0.41 0.98 0.86 0.090 -1.91

HVWR 0.42 0.98 0.86 0.095 -1.81

Table 4. Correlation between Efficiencies

Pearson and Spearman

rank correlation coefficient

Model HV HW HVW HVWR HV HW HVW HVWR

HO 0.68 0.97 0.72 0.74 0.43 0.88 0.51 0.53

HV 0.55 0.98 0.98 0.44 0.90 0.85

HW 0.60 0.62 0.52 0.55

HVW 0.99 0.92

In our selected model HVWR, it is clear that neither size (CA) nor time

have any effect on the variance of the double-sided error term (w). For the

inefficiency term v, the parameters associated with Labour and MEO are

positive (0.258 and 0.218 respectively), suggesting that larger farms in terms

of labour and machinery cost tend to have more variability in efficiency.

Typically, an increase by 100% in labour tends to increase the variance of the

inefficiency error term by around 5%, and an increase of 100% in machinery,

energy and other costs (MEO) tends to increase the variance by around 4%.

We can deduce from this that farms with higher expenditure on labour,

machinery, energy, and other costs tend to be different in terms of efficiency

than farms with lower expenditure on these items. Similarly, farms with lower

Correlation coefficient
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levels of expenditure on labour and MEO tend to have a smaller variance,

which means that they are similar to each other in terms of efficiency than

farms with higher levels of expenditure.

By contrast, land area (CA) and fertilizer cost (FC) have negative

parameters in the variance of the inefficiency term. This means that these two

variables tend to dampen variability in efficiency. The time parameter is small

but significant, indicating that time has a slight positive effect on the

inefficiency variance.

The parameter estimates for model HVWR have the expected sign and

are all positive except for the time variable. Although the parameter associated

with time is very small (-0.024), it is nevertheless significant. The elasticity

for MEO, cost of seeds, cereal area, land and property charges, and crop

protection costs are relatively important, with values of 0.25, 0.11, 0.18, 0.12,

and 0.19 respectively. The elasticities for labour and fertilizer costs are less

important with values of 0.03 and 0.05 respectively. The return to scale

parameter is 0.931, which indicates roughly constant returns to scale. The

estimated technical efficiencies for the 102 farms are available from the

authors.

IV. Conclusion

This paper extends the Hadri (1999) correction for heteroscedasticy to

stochastic production frontiers and to panel data. It demonstrates that

heteroscedasticity within an estimation can have a significant effect on results.

The models developed in this paper demonstrate that the correction for

heteroscedasticity is essential in order to obtain valid estimates, tests and

correct measures of efficiency.

Appendix

The first partial derivatives of the log-likelihood function where only the

one-sided term is assumed heteroscedastic:

( ) *
'

2 *

log
,

(1 )
it it it it

it
it it it

y X fL
X

F

β λ∂
β σ σ

 −
= + ∂ − 

∑∑ (1)
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22 2

2 2

( )log vit vit it it

it it it

y XL σ σ β∂
∂α σ σ σ

  −= − + − 
  

∑∑

* 2
'

* 2

( )
1 ,

(1 )
it it it it vit

it
it it it

f y X
Z

F

λ β σ
σ σ

   − − × −   −    

(2)

22 2

2 2
0

( )log w w it it

it it it

y XL σ σ β∂
∂γ σ σ σ

  −= − + + 
  

∑∑

* 2

* 2

( )
1 .

(1 )
it it it it w

it it it

f y X

F

λ β σ
σ σ

   − + × +   −    

(3)

The first partial derivatives of the log-likelihood function where only the

two-sided term is assumed heteroscedastic:

*
'

2 *

( )log
,

(1 )
it it it it

it
it it it

y X fL
X

F

β λ∂
∂β σ σ

 −
= + − 

∑∑ (4)

22 2

2 2
0

( )log v v it it

it it it

y XL σ σ β∂
∂α σ σ σ

  −= − + − 
  

∑∑

* 2

* 2

(
1 ,

(1 )
it it it it v

it it it

f y X

F

λ β σ
σ σ

   − − − × −   −    

(5)

22 2

2 2

( )log wit wit it it

it it it

y XL σ σ β∂
∂γ σ σ σ

  −= − + − 
  

∑∑

* 2
'

* 2

( )
1 .

(1 )
it it it it wit

it
it it it

f y X
Y

F

λ β σ
σ σ

   − − − × −   −    

(6)

The first partial derivatives of the log-likelihood function where both

disturbance terms are assumed heteroscedastic:

( )
*

'
2 *

( )log
,

1
it it it it

it
it it it

y X fL
X

F

β λ∂
∂β σ σ

 − = +
−  

∑∑ (7)
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22 2

2 2

( )log vit vit it it

it it it

y XL σ σ β∂
∂α σ σ σ

  −= − + − 
  

∑∑

( )
* 2

'
2*

( )
1 ,

1
it it it it vit

it
it itit

f y X
Z

F

λ β σ
σ σ

   − − × −   
−    

(8)

logL∂
∂γ
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22 2

2 2

( )wit wit it it

it it it

y Xσ σ β
σ σ σ

  −− + + 
  

( )
* 2

2*

( )
1

1
it it it it vit

it itit
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F

λ β σ
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(9)

where 
1 1

.
iTN

i t= =
≡∑∑ ∑ ∑ T

i  
is used here instead of  T in order to allow for the

possibility of unbalanced data.
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