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I. Introduction

There is a substantial empirical literature investigating both of the two

distinct versions of what is called the forward exchange unbiasedness

hypothesis, according to which forward exchange rates represent unbiased

forecasts of future spot exchange rates. The basic procedure is to regress the

spot rate (or its first difference) on the lagged future rate (or the lagged forward

premium). In fact, the analysis is usually carried out in terms of logarithms of

the exchange rates. The two approaches to formulating the unbiasedness

hypothesis are complementary and have different interpretations.1  The levels

regression is a cointegrating one in which the long-run relationship between

spot and forward rates is being characterized. The regression of first differences

on lagged premia is a conventional stationary regression and characterizes

the short-run dynamics in the foreign exchange market. Both formulations

have received considerable attention from empirical researchers.

Regardless of how the unbiasedness hypothesis is posed, it is often the

case that we will have data on several currencies and will wish to test the

unbiasedness hypothesis for all of them. This implies the estimation of a

number of equations equal to the number of currencies for which we have

data. Several investigators have recognized the fact that it may be quite

beneficial to estimate these equations together in a system, rather than

estimating each one separately. The reasoning is that the integration of world

financial markets, as well as the fact that most exchange rates are measured

in terms of a common currency, viz., the U.S. dollar, both imply that the

disturbances to the equations for the different countries will be correlated, so

that systems estimation using Zellner’s (1962) feasible GLS estimator for

seemingly unrelated regressions (SUR) should produce more efficient

estimates and more precise tests than would the equation-by-equation

application of OLS.

The importance of efficient estimation has been well recognized by

Science Foundation, the Social Sciences and Humanities Research Council of Canada,
and the Montreal Institute of Mathematical Finance for financial support.

1 The relationship between the two approaches is discussed in detail by Hakkio and Rush
(1989) and Barnhart and Szakmary (1991).
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empirical researchers in this field. In testing the levels formulation of the

unbiasedness hypothesis, the studies that have estimated an SUR system of

cointegrating regressions include Bailey, Baillie, and McMahon (1984),

Barnhart and Szakmary (1991), and Evans and Lewis (1995). In the stationary

first differences formulation, SUR techniques have been employed by, for

example, Bilson (1981), Fama (1984), Cornell (1989), and Barnhart and

Szakmary (1991). In related multi-country analyses of forward exchange

pricing, Levine (1989 and 1991) has employed three-stage least squares, taking

advantage of the correlation across currencies in the context of a simultaneous

equations model. Many of these authors find significant changes in their results

when the correlation across currencies is accounted for. Although non-

normality is a pervasive characteristic of exchange rate data, only Bilson (1981)

among the authors listed above attempts to gauge its effects on his results. He

finds quite significant effects.

In taking account of the efficiency gains obtainable through the exploitation

of the correlation structure of the errors, few researchers have recognized

that significant additional efficiency gains are possible by exploiting the thick

tails and multivariate non-normality of these errors’ density functions.2  We

overcome this shortcoming in the existing empirical literature by adaptively

estimating multivariate forward unbiasedness models. To do so, we make use

of the adaptive estimator of stationary SUR models under elliptical symmetry

developed by Hodgson, Linton, and Vorkink (2002) to test the first differences

version of the hypothesis. In addition, to test the levels version of the

hypothesis, the present paper extends the analysis of Hodgson, Linton, and

Vorkink (2002) to allow for cointegrating regressions. We also implement a

test of elliptical symmetry due to Beran (1979).

The adaptive estimators applied in this paper allow for an error density of

unknown form. To overcome the curse of dimensionality, we focus on the

restriction that the multivariate density is elliptically symmetric.3  Elliptical

2 The effects of thick tails in univariate tests of forward exchange market unbiasedness
have been investigated by, for example, Steigerwald (1992), Phillips, McFarland, and
McMahon (1996), and Hodgson (1998a, 1999).

3 See also Fernández, Osiewalski, and Steel (1995) for some interesting generalizations of
elliptical symmetry.
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symmetry is important for a number of reasons. First, it allows for leptokurtic

marginals and hence is more consistent with commonly observed data

distributions. Second, Chamberlain (1983) showed that a necessary and

sufficient condition for mean-variance utility functions, and hence two

parameter fund separation, is that the return distribution be elliptically

symmetric. Similar semiparametric models have been explored previously in

Bickel (1982), Jeganathan (1995) and Hodgson (1998a,b). These authors

defined adaptive estimators of the identifiable parameters in various regression

models. However, their proposed estimators do not exploit the dimensionality

reduction implied by elliptical symmetry and consequently suffer serious small

sample costs. What is required here is estimation of a multidimensional density

function and its first derivative. See Silverman (1986, p. 94) for a dramatic

illustration of the effects of dimensionality on estimating a normal density at

the origin. Although the semiparametric theory says that asymptotically these

effects disappear when the properties of the parameter estimates are being

considered, in even quite large samples they do not.

In Section II, we introduce the two versions of the unbiasedness hypothesis

and the corresponding cointegrated and non-cointegrated SUR econometric

models, along with a general modeling strategy that nests the two models. In

Section III, we provide a formula for computing the adaptive estimator

developed by Hodgson, Linton, and Vorkink (2002) for stationary models

and describe the extension of this estimator to cointegrated models, while

Section IV reports the results of our exchange rate analysis. We use P→ to

denote convergence in probability and D→ to denote convergence in

distribution. We say that X ∼ MN (0,V) when X is mixed normal with (possibly)

random covariance matrix V.

II. Econometric Models

In this section, we introduce the basic regression models through which

the two versions of the forward unbiasedness hypothesis are generally

implemented. We will first consider the stationary version of the hypothesis

and associated econometric model, followed by a discussion of the cointegrated

version of the hypothesis with the associated econometric model. We will
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then proceed to formulate a general econometric model, which incorporates

the two hypotheses within a unified econometric framework.
Suppose  we  observe  a sequence  of  (logged)  spot  exchange rates { i

ts },

t = 1,…, n + 1,  i = 1,…, m and (logged) one-period ahead forward exchange
rates { i

tf }, t = 1,…, n + 1,  i = 1,…, m. In this formulation, i
ts  is the log spot

exchange rate between the currency of country i and some control currency,
such as the U.S. dollar. Suppose we have data for m different currencies,

indexed by i, and for each currency we have observations for n consecutive
time periods, indexed by t. The forward rate i

tf  is the log of the price paid in

period t for the delivery of a unit of currency i in period t + 1. For instance, if
we have a sequence of monthly data, then 

i
tf would denote the one-month

forward rate prevailing at period t. More specific details about the data actually
used in our empirical study are provided in Section IV.

What we have referred to as the stationary version of the unbiasedness
hypothesis states that the forward exchange premium 

i i
t tf s−  provides an

unbiased forecast of the change in the exchange rate over the upcoming time

period, i.e., that

1 ,i i i i
t t t t tE s s f s+ − = − 

where E
t
 is the conditional expectation formed on the basis of all information

available as of time period t. This hypothesis can be tested empirically using

estimates of the following set of m regression equations:

1 , 1( )i i i i i i
t t t t i ts s f s uα β+ +− = + − +   ;    t = 1,…, n,  i = 1,…, m.          (1)

Within this framework, the unbiasedness hypothesis can be stated as follows:

H
0 
: 0, 1, 1, ,i i i mα β= = = K                                                                   (2)

versus the general alternative. Under the null, the forward rate provides an
unbiased prediction of future spot rates and the market is informationally

efficient. This hypothesis has been tested many times before; see Engel (1996)
for a review. Our test is multivariate as we estimate the above regression

equations as a seemingly unrelated regression taking account of the

comovement (across i) that we expect to find in u
i,t+1

.
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The levels, or cointegrated, version of the hypothesis enquires as to whether

or not the current forward rate is an unbiased predictor of the next period’s

spot rate, which we can write as follows:

1 .i i
t t tE s f+  = 

The corresponding regressions we estimate are of the following form:

1 , 1.
i i i i
t t i ts f uα β+ += + +

We are then interested in testing the hypothesis

H
0
: 0, 1, 1, ,i i i mα β= = = K                                                                    (4)

versus the general alternative.

In both formulations of the hypothesis, we have a system of m regression

equations to be estimated. Standard single-equation estimation methods such

as ordinary least squares (OLS) can be used to estimate the parameters of the

model and form valid asymptotically chi-squared Wald test statistics for both

versions of the hypothesis. However, as discussed in the introduction, the

single-equation approach can entail a substantial loss in estimation efficiency

and testing power relative to an estimation strategy such as generalized least

squares (GLS) which estimates all m equations jointly as a seemingly unrelated

regressions (SUR) system. We claim that further efficiency gains may be

obtainable by accounting for the possible presence of non-normality in the

disturbances to the SUR system.

The two regression models described above can be nested within a more

general framework of multivariate regressions. Consider the m-equation

seemingly unrelated regression model

:t t t t ty x u w uα β θ= + + = + ,   t = 1,…, n,                                                   (5)

where , ,m m
ty α∈ℜ ∈ℜ
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itx ∈ℜ and ik
iβ ∈ℜ for every i = 1,…, m, the full parameter

vector is ,
TT T m kθ α β + = ∈ ℜ   where k = k

1
+ … + k

m
 , and m

tu ∈ℜ are i.i.d.,

mean zero innovations with ( )T
t t uE u u = Σ  and with density p(u). Here, the

regressors x
t
  may be either integrated of order one, I(1), or stationary and

ergodic. In either case, we assume that x
t
  and u

t
 are independent. When the

regressors are I(1), each of the m regressions is cointegrating and the

framework is suitable for the analysis of the second form of the unbiasedness

hypothesis stated above. When the regressors are stationary, the regressions

are standard and are suitable for the analysis of the first version of the

unbiasedness hypothesis.

We consider two different assumptions about p. Firstly, that p is unrestricted.

Secondly, we restrict p to be elliptically symmetric.

Definition:  An m-dimensional density function p(u) is elliptically symmetric

if it can be written in the form 1/ 2 1(det ) ( )Tg u u− −Σ Σ for some scalar density

generating function g(.) and matrix Σ.

The practical content of the elliptical symmetry restriction arises from the

fact that the function g has only a scalar argument.

Assuming that p were known, the log-likelihood for the data would be

1

( ) ln ( ),
n

n t t
t

L p y wθ θ
=

= −∑

and  estimation  of  θ  proceeds  by  maximizing  L
n
(θ).  We  define  the

weighting matrix ,nδ  where 1/ 2
n m kn Iδ −

+= if x
t
 are stationary and

1/ 2 1diag ,n m kn I n Iδ − − =    if x
t
 are integrated. These structures for δ

n
 are

associated with the fact that the rate of consistency of estimators in non-

cointegrated models is n1/2, whereas in cointegrating regressions it is n1/2 for

intercept parameters and n for slope parameters. One estimation strategy here

is to use a two-step Newton-Raphson estimator θ  starting from a preliminary
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1
nδ −

-consistent estimator ̂,θ  obtained from the Gaussian likelihood. Under

general conditions, this will be first order asymptotically equivalent to the

MLE, i.e.,

1 1
0( ) (0, ),

D

n MNδ θ θ− −− → Ω                                                                          (6)

where the asymptotic information matrix Ω is such that

( )( )2
0 / .

P

n n nLδ θ θ θ δ′∂ ∂ ∂ → Ω In order to derive an expression for Ω, we

define 
( ) /

( ) ,
( )

p u u
u

p u
ϕ ∂ ∂=  the m-dimensional score vector of p, and

( ) ( ) ( ) ( ) ,
T

p u u p u duϕ ϕΦ = ∫  the information matrix of p. For the stationary

model, the asymptotic information matrix is

while for the cointegrated model, it is

where

and M
i 
(r) is a k

i
 -dimensional Brownian motion with covariance matrix equal

to the long run covariance matrix of ∆x
it

, for every i = 1,…, m. Note that in

the case of cointegration, Ω is random, hence the mixed normal limit theory.

The estimation strategy employed in the present paper follows Hodgson,

,
p p t

T T
t p t p t

E x

E x E x x

  Φ Φ  Ω =
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0

1 1

0 0
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p p
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 Φ Φ
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Linton, and Vorkink (2002) in that we also use a Newton-Raphson iterative

approach to estimation but must replace the unknown density p by a

nonparametric estimator; thus our adaptive estimator θ% will have the form

1ˆ ˆ ˆˆ ˆ( ) ( ),n n nθ θ δ θ θ−= + Ω ∆%                                                                              (7)

where ̂
n∆ and ˆ

nΩ are estimates of the first and second standardized derivatives

of L
n
  respectively. Their computation is described in section III below. In

particular,

1

ˆˆ ˆ ˆ( ) ( ),
n

n n t t t
t

w uθ δ ϕ
=

′∆ = − ∑

where  ˆ ˆ( )t tuϕ  is  a  consistent  estimator  of  the  m-dimensional  score  vector

ϕ (u
t
), while ˆˆ .t t tu y wθ= −  The standard approach to this problem is to use

multivariate kernel estimates p̂ and p̂′ to construct ̂ ,ϕ with some observations

possibly being trimmed, see Bickel (1982). Unfortunately, if m is large such

estimates will have poor performance due to the curse of dimensionality, see

Härdle and Linton (1994). We follow Hodgson, Linton, and Vorkink (2002)

in using a construction of ˆ (.)tϕ that takes advantage of our elliptical symmetry

assumption and employs only one-dimensional smoothing operations.4 We

should note that Hodgson, Linton, and Vorkink (2002) only consider estimation

of the stationary SUR model, with the extension of the estimator to

cointegrating regressions in the present paper being new.

III. Estimation

Our argument in the preceding section implies that the finite sample

performance of an adaptive estimator can be significantly improved if, in

computing a nonparametric score estimator ˆ,ϕ we use a direct kernel estimate

of the density of the univariate random variable 1Tv u u−= Σ to indirectly

estimate the density of the m-vector u, rather than directly estimating the

latter with a multivariate kernel. The adaptive estimator described below does

4 As shown in Stute and Werner (1991) these procedures ensure density estimators whose
pointwise rate of convergence is the one-dimensional rate.
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indeed use such an indirect approach to estimating p’ / p, but does so at two

removes rather than one. In other words, our estimate of the density of v is

itself an indirect estimate, derived from a kernel estimate of the univariate

density of the transformed random variable z = τ (ν), where τ (.) is some

transformation. Of course, the identity is a valid transformation, so that direct

estimation of the density of v is allowed by our theory; however, certain other

transformations may yield estimators with better finite sample performance.

Hodgson, Linton, and Vorkink (2002) consider a general class of

transformations given by ( ; ) ( 1) / ,v vζτ ζ ζ= −  where selection of the

parameter ζ is left to the discretion of the investigator and is discussed by

Hodgson, Linton, and Vorkink (2002).

Before introducing our estimator, we must introduce some preliminary

notation. Recall that

1/ 2 1( ) (det ) ( )Tp u g u u− −= Σ Σ

for some function g and matrix Σ. Note that in this formulation, the magnitude

of the matrix Σ is left indeterminate, as multiplying it by a constant can be

accommodated by changing the definition of g(.) to absorb the constant. This

matrix is determined up to multiplication by a scalar, however, and will

generally be proportional to the covariance matrix T
u E uu Σ =    and to the

inverse of the information matrix ( ) ( ) .T
p E u uϕ ϕ Φ =    Following Hodgson,

Linton, and Vorkink (2002), we tie down the value of Σ by defining it such

that det (Σ) = 1. Note that we do this without any loss of generality. It follows

that ,u cΣ = Σ  where 1/det ( ) ,m
uc = Σ i.e., 1// (det ) .m

u uΣ = Σ Σ To simplify our

analysis we define the spherically symmetric m-dimensional random variable
1/ 2 ,uε −= Σ which is just the standardized innovation vector. Note that its

density function ƒ(ε) is directly proportional to our innovation density p(u),

as shown by the following relation:

Defining the transformed variable ( ) ( ),Tz vτ ε ε τ≡ ≡ let its density function

be denoted by γ (z).

( ) ( ) ( ).Tdu
f p u g

d
ε ε ε

ε
= =
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The construction of the estimator described below is motivated by the fact

that we can derive a mathematical relationship between the univariate density

γ (z) and the multivariate density p(u), so that a nonparametric estimate of the

latter can be derived from a nonparametric estimate of the former. The

following relationships will be useful to keep in mind when considering the

computation of the estimator described below. We begin by considering the

transformation ( ).Tz τ ε ε=  We are particularly interested in deriving an

expression  for  its  density γ (z) and characterizing the relationship between

γ (z) and ƒ(ε)  (and hence between γ (z) and p(u). Suppose that the m-vectors

ε
t
 are i.i.d. from the density ƒ(ε) = g(εT ε) ≡ g(v) where v  =  εT ε. From Muirhead

(1982), the density of v, which we shall denote h(v), is

/ 2 1( ) ( ),m
mh v c v g v−=

where / 2 / ( / 2).m
mc mπ= Γ By Theorem 2.1.2 of Casella and Berger (1990)

we have

1
/ 2 11 1 1( )

( ) ( ( )). ( ) ( ( )). ( ),
m

m

z
z h z c z g z J z

z τ
τγ τ τ τ

− −− − −∂  = =  ∂

where 1( ) ( ) / .J z z zτ τ −= ∂ ∂  Thus, { } { }1 1 1 / 2( ) ( ) ( ) ,m
mg v c J v v vτ τ γ τ− − −=  This

gives our desired expression for g(v) - and hence for ƒ(ε) and p(u) - in terms

of γ (z).
The formula for an adaptive estimator given in (7) above presupposed the

existence of consistent score and information estimators ˆtϕ and ˆ .nΩ With the

notation developed in the preceding section, we can now provide procedures

for computing these consistent nonparametric estimates. In particular, we show

how we can use direct kernel estimates of γ (z) to indirectly obtain consistent

estimates of the score and information of p. This construction is due to

Hodgson, Linton, and Vorkink (2002), following Bickel (1982), and is justified

theoretically in those papers.

Our algorithm for estimating ϕ and Ω proceeds according to the following

steps:

1. First obtain ̂θ and define the residuals { } 1
ˆ n

t t
u =

and the standardized residuals

{ } 1
ˆ ,

n

t t
ε

= where 1/ 2 1 1

1
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, ,

n T
t t u u t tt

u c n u uε − − −
=

= Σ Σ = Σ Σ = ∑ and 
1/ˆˆ det .

m

uc  = Σ 
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Then compute the transformed sequence { } 1
ˆ ,

n

t t
z =

where ˆˆ ( )t tz vτ=  with

ˆ ˆˆ .T
t t tv ε ε=

2. Denoting by (.)
nhK  a kernel with bandwidth h

n
, form the following estimates

of the density of ̂ tz and its first derivative:

3. Introduce the following trimming conditions: (i) ˆ ˆ( ) ;t t nz dγ ≥  (ii) ˆ ;t nz e≤
(iii) ˆ( ) ;t nz bλ ≤  (iv) 1/ 2 ˆ ˆˆ ˆ ˆ( ) ( ) ( ),t t t n t tz z c zρ γ γ′ ≤  where 1( ) ( ) ( )z v v J zτρ τ −′=
[recall that 1( )v zτ −= ] and 1 1/ 2( ) ( / ) ( ).z d dz zλ ρ−= 5 Then estimate the score

and information of p(u) as follows:

where                                                            and

4. Then define the score and information estimators for the model as

We can state the following Proposition, which is a straightforward

extension of Theorem 1 of Hodgson, Linton, and Vorkink (2002) to our model.

1,

1
ˆ ˆ( ) ( );

1 n

n

t h s
s s t

z K z z
n

γ
= ≠

= −
− ∑

1,

1
ˆ ˆ( ) ( ).

1 n

n

t h s
s s t

z K z z
n

γ
= ≠

′ ′= −
− ∑

5 These trimming conditions ensure consistency of our score estimator when a Gaussian
kernel is being used, i.e. when 

nhK is a Gaussian kernel. For other kernels often employed
in the literature (e.g., Schick’s 1987 logistic kernel and the bi-quartic kernel used in the
applications reported below), the necessary trimming conditions, if they differed at all
from these, would be less stringent, so that these conditions will still be sufficient for
consistency but may not be necessary. Simulation work reported by Hsieh and Manski
(1987) and Hodgson (1998a) finds that, for a Gaussian kernel, the adaptive point estimate
is not very sensitive to variation in the value of the trimming parameters, and that good
results are obtained in practice when we trim as little as 1% of the observations.

1/ 2 ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) if (i) (iv) all hold
ˆ ˆ ˆ( )

0 otherwise,

t
t t t t

t t t

s v v z
u

γε τ
ϕ γ

− ′ ′Σ + −  =   



{ }1( ) (1 / 2) ( ) ( ),
J

s v m v v v
J

τ

τ

τ τ− ′
′= − −

1

1ˆ ˆ ˆ ˆ ˆ( ) ( ) .
n

T
p t t t t

t

u u
n

ϕ ϕ
=

Φ = ∑

1

ˆˆ ˆ ˆ( ) ( );
n

n n t t t
t

w uθ δ ϕ
=

′∆ = − ∑
1

ˆˆ ˆ( ) .
n

T
n n t p t n

t

w wθ δ δ
=

Ω = Φ∑
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Proposition 1: Suppose that Φ
p
 is finite and positive definite; that

/ 2 2

0
( ) ( ) ;mv s v g v dv

∞
< ∞∫ that the error distribution is absolutely continuous

with respect to Lebesgue measure with Lebesgue density p(u), that the

regressors  x
t
  are  strictly  exogenous,  and  that  the  constants  in  (i)-(iv)

satisfy ,nc → ∞ ,ne → ∞ ,nb → ∞ 0,nh → 0,nd → 0,n nh c → 3 ( ),n ne h o n− =
and 3 ( ).n nb h o n− =  Then,

1 1( ) (0, ).
D

n MNδ θ θ− −− → Ω%                                                                            (9)

i.e., the estimator θ% is adaptive.

Remarks: (a) The moment condition / 2 2

0
( ) ( )mv s v g v dv

∞
< ∞∫  will depend on

the transformation τ (.) that we use and can be more or less restrictive for
different selections of τ (.). For example, when the transformation is

( ; ) ( 1) / ,v vζτ ζ ζ= − with either 0,ζ = 1,ζ = or 1/ 2 ,mζ = the condition
implies that / 2 2( ) .T mE ε ε −  < ∞  However, when / 2,mζ = there is no
restriction on the moments of u.
(b) Note that the information matrix estimator ˆˆ ( )n θΩ defined in (8) is a
consistent estimator of the asymptotic covariance matrix, so that

ˆˆ ( ) (1).n poθΩ − Ω = This result is true even for cointegrated models, in which
case Ω is random. We can therefore use ˆˆ ( )n θΩ in the construction of t-ratios
and Wald statistics, which will have respective standard normal and chi-
squared asymptotic distributions. Let lθ and 

lθ% be the lth elements of the θ
and θ% vectors, respectively. Now suppose we wish to test the null hypothesis
that θ 

t
 = r , where r is some constant. Then we can compute the usual t-ratio,

as follows:

under the null, where 1( )n llδ − and 1 ˆˆ( ( ))n llθ−Ω are the lth elements along the

diagonals of 1
nδ − and 1 ˆˆ ( ),n θ−Ω respectively. If we want to test the joint

hypothesis θ 
t
 = r  for the entire vector θ, where r is now a known (m + k) –

vector of constants, we can compute the Wald statistic

1

1

( ) ( )
(0,1)

ˆˆ( ( ))

Dn ll l

n ll

r
N

δ θ

θ

−

−

−
→

Ω

%

1 1 2ˆˆ( ) ( ) ( ) .D
n n n m kr rδ θ θ δ θ χ− −

+
′   − Ω − →   

% %



338 JOURNAL OF APPLIED ECONOMICS

Note that these convergence results will hold regardless of whether the model

is stationary or cointegrated.

(c) It is natural to ask how the present estimator will behave if the thick tails

in the unconditional density of the errors are induced by some sort of

conditional dependence, such as a multivariate GARCH model. A related

question has been addressed in Hodgson (2000) within the context of

adaptively estimating univariate time series regression models, and the

following conjectures are based on Hodgson’s (2000) findings. It should be

possible to extend these findings to obtain a useful robustness result for our

estimator in the case where the error process {u
t
} is uncorrelated but not

necessarily independent over time, and has an unconditional density which is

elliptically symmetric. This would happen, for example, if the errors followed

a multivariate GARCH process, had a conditional density that was elliptically

symmetric, and had a conditional covariance matrix whose magnitude changed

over time but whose covariance structure remained unchanged. In any event,

if the unconditional density is elliptically symmetric, then the nonparametric

score and information estimatorsϕ̂ andΦ̂ described above and used in our

computation of the adaptive estimator should still consistently estimate the

score and information of the unconditional density of the errors. Our one-

step estimator will then have the same asymptotic distribution as the one-step

iterative pseudo-MLE based on the true unconditional density of the errors.

When the regressors are strictly exogenous, as we have assumed above, then

the resulting estimator will have an asymptotic distribution which is identical

to that which it would have if the i.i.d. assumption on the errors was correct.

In other words, the distribution depends only on the unconditional density of

the errors and is completely invariant to the presence of conditional

heteroskedasticity. Furthermore, the standard error estimates and test statistics

described in the preceding remark will be robust to the presence of conditional

heteroskedasticity. When the strict exogeneity assumption on the regressors

is relaxed, this robustness property no longer holds. It is still true that our

one-step semiparametric estimator will have the same distribution as the one-

step fully parametric estimator based on the true unconditional density, but it

will now be the case that the latter estimator’s asymptotic covariance matrix

will have the “sandwich” structure characteristic of pseudo-MLE’s in

misspecified models (cf. White, 1982). To construct robust standard errors in
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this case, we would require a consistent nonparametric estimator of the Hessian

of the innovation density, since both the Hessian and OPG versions of the

information will enter the asymptotic covariance matrix. The derivation of

such a consistent Hessian estimator has not yet been considered in the literature

and is a topic for future research.

(d) The estimator is applied using a method developed by Schuster (1985) to

account for bias that is present in our nonparametric density estimator in the

neighborhood of the origin, and a correction similar to that of Linton (1995)

for bias in our nonparametric information estimator. In addition, we choose

optimal Silverman (1986) rule-of-thumb bandwidths separately for our

nonparametric density and first derivative estimators γ̂ and ˆ .γ ′ More detail

on these technical issues, as well as on the application of the Beran (1979)

elliptical symmetry test, can be found in Hodgson, Linton, and Vorkink (2002),

or in a technical appendix available from the authors upon request.

IV. Forward Market Unbiasedness Tests

Like many economic theories, spot-futures parity does not purport a specific

forecast horizon to which the theory applies. We will use data sets of two

different frequencies of spot and future exchange rate in our empirical tests:

1) daily data ranging from January 1998 through December 2001; 2) weekly

data ranging from January 1993 through December 2001. We collect spot

and futures rates for three currencies (each expressed in terms of U.S dollars)

for each of these frequencies: the Japanese yen (JPY/USD), the British pound

(GBP/USD), and the Canadian dollar (CAD/USD). We obtain the data for

both of the spot and futures rates from Bloomberg Inc. The futures rates

provided by Bloomberg are taken from futures quotes on the Chicago

Mercantile Exchange and Bloomberg’s spot rates are New York Composite

quotes, or average rates across the large institutional currency traders. We are

careful to match the horizon of the futures with the sampling frequency of the

data so that our residuals should be uncorrelated through time, i.e., the daily

data include futures prices with one-day horizons while the weekly data include

futures prices with one-week horizons. We do find a number of dates, for

both the daily and the weekly data, where the futures price is missing and as
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a result we delete these dates from the data set. Our final daily (weekly)

frequency data set has 806 (468) observations.

Tables 1 and 2 provide the summary statistics for the two data sets. We see

that the Augmented Dickey-Fuller (ADF) test fails to reject a unit root for all

of the logged spot and forward rates. However, when these rates are converted

to percent changes for the stationary model, the ADF test rejects the presence

of a unit root for all of the series at a 0.05 level with most rejections at the

0.01 level.6

6 We repeated these tests using an adaptive unit root test developed by Beelders (1998) and
came to identical conclusions.

Table 1. Summary Statistics for Cointegrated Model

   Variable Mean Std. dev. Min. Max ADF

Daily (n = 806)

JPY/USD (s
t
) 4.762 0.086 4.621 4.986 -1.348

GBP/USD (s
t
) 0.433 0.061 0.317 .0537 -0.892

CAD/USD (s
t
) 0.408 0.028 0.344 0.472 -1.322

JPY/USD ( f
t
) 4.762 0.086 4.621 4.992 -0.902

GBP/USD ( f
t
) 0.433 0.061 0.317 0.537 -1.084

CAD/USD ( f
t
) 0.408 0.028 0.345 0.473 -0.984

Weekly (n = 468)

JPY/USD (s
t
) 4.717 0.107 4.415 4.985 -2.514

GBP/USD (s
t
) 0.443 0.050 0.321 0.536 -1.351

CAD/USD (s
t
) 0.350 0.059 0.218 0.478 -2.316

JPY/USD ( f
t
) 4.716 0.107 4.411 4.986 -2.512

GBP/USD ( f
t
) 0.443 0.050 0.321 0.535 -1.458

CAD/USD ( f
t
) 0.350 0.059 0.219 0.478 -2.738

Note: These are summary statistics of the logged spot and forward rates used in the empirical
analysis. ADF stands for Augmented Dickey-Fuller unit root test where 20 lagged difference
terms and a constant are included in the test. Critical values for the ADF statistics on the
daily data are -3.4395, -2.8648, and -2.5685 at the 1%, 5%, and 10% respectively. Critical
values for the ADF statistics on the weekly data are -3.9817,  -3.4213, and -3.1331 at the
1%, 5%, and 10%, respectively.
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Table 2. Summary Statistics for Stationary Model

      Variable Mean Std. Dev. Min Max ADF

Daily Data (n = 806)

JPY/USD (s
t+1 

- s
t
) 0.000 0.008 -0.069 0.033 -7.266

GBP/USD (s
t+1 

- s
t
) 0.000 0.005 -0.016 0.019 -7.671

CAD/USD (s
t+1 

- s
t
) 0.000 0.003 -0.016 0.011 -7.612

JPY/USD ( f
t
 - s

t
) 0.000 0.000 -0.001 0.000 -5.669

GBP/USD ( f
t
 - s

t
) 0.000 0.000 -0.001 0.001 -3.682

CAD/USD ( f
t
 - s

t
) 0.000 0.000 -0.001 0.001 -4.629

Weekly Data (n = 468)

JPY/USD (s
t+1 

- s
t
) 0.000 0.017 -0.150 0.059 -5.597

GBP/USD (s
t+1 

- s
t
) 0.000 0.012 -0.035 0.039 -5.576

CAD/USD (s
t+1 

- s
t
) 0.001 0.007 -0.027 0.021 -10.186

JPY/USD ( f
t
 - s

t
) 0.000 0.001 -0.001 0.001 -3.861

GBP/USD ( f
t
 - s

t
) 0.000 0.001 -0.013 0.023 -7.869

CAD/USD ( f
t
 - s

t
) 0.000 0.001 -0.007 0.022 -3.856

Notes: These are summary statistics of the logged spot and forward rates used in the empirical
analysis. ADF stands for Augmented Dickey-Fuller unit root test where 20 lagged difference
terms and a constant are included in the test. See the note to Table 1 for critical values for
the ADF statistics on the daily and weekly data.

Table 3 reports results of Box-Pierce tests applied to the OLS residuals

from each of our regressions. There is generally little evidence of serial

correlation, with the exception of the levels regression for GBP with weekly

data. Multivariate distributional tests, as applied to the OLS residuals, are

reported  in  Table 4.  The  Beran  test  statistic,  S
n
, reported in Panel B, sets

k = l = 7, with sensitivity analysis on these choices finding that the statistic

varies little for small changes in these values. The Mardia (1970) kurtosis

test finds evidence of significant excess kurtosis in all series, whereas the

Beran (1979) statistic does not lead to rejections of the null of elliptical

symmetry at the 5% level for any of the series (although rejections at the

10% level would occur for the daily data).
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Table 3. Properties of Model Residuals

Panel A: Cointegrated Model

JPY/USD GBP/USD CAD/USD

Daily Data

Box-Pierce (q = 1) 1.58 (0.21) 0.72 (0.40) 0.93 (0.34)

Box-Pierce (q = 5) 3.52 (0.62) 3.44 (0.63) 4.54 (0.48)

Box-Pierce (q = 10) 11.76 (0.30) 7.18 (0.71) 5.61 (0.85)

Box-Pierce (q = 20) 28.62 (0.10) 14.25 (0.82) 14.79 (0.79)

Weekly Data

Box-Pierce (q = 1) 0.00 (0.97) 20.43 (0.00*) 2.27 (0.13)

Box-Pierce (q = 5) 8.03 (0.15) 28.71 (0.00*) 7.41 (0.19)

Box-Pierce (q = 10) 9.96 (0.44) 36.65 (0.00*) 9.71 (0.47)

Box-Pierce (q = 20) 25.08 (0.20) 57.85 (0.00*) 19.34 (0.50)

Panel B: Stationary Model

JPY/USD GBP/USD CAD/USD

Daily Data

Box-Pierce (q = 1) 1.60 (0.21) 0.85 (0.36) 1.16 (0.28)

Box-Pierce (q = 5) 3.49 (0.63) 3.88 (0.57) 4.96 (0.42)

Box-Pierce (q = 10) 10.94 (0.36) 7.52 (0.68) 6.16 (0.80)

Box-Pierce (q = 20) 29.53 (0.09) 15.11 (0.77) 15.42 (0.75)

Weekly Data

Box-Pierce (q = 1) 1.14 (0.29) 0.00 (0.96) 6.73 (0.02)

Box-Pierce (q = 5) 7.13 (0.21) 4.72 (0.45) 12.66 (0.03)

Box-Pierce (q = 10) 8.65 (0.57) 7.60 (0.67) 14.34 (0.16)

Box-Pierce (q = 20) 22.82 (0.30) 24.78 (0.21) 23.91 (0.25)

Notes: The test statistics are Box-Pierce tests of residual serial correlation. P-values are in
parentheses and * indicates a  p-value less than 0.01.
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Table 4. Multivariate Tests of Normality and Elliptical Symmetry

Panel A: Multivariate kurtosis test

Stationary model, daily data 34.268 (0.00*)

Cointegrated model, daily data 35.172 (0.00*)

Stationary model, weekly data 27.340 (0.00*)

Cointegrated model, weekly data 25.904 (0.00*)

Panel B: Elliptical symmetric test (S
n
)

Stationary model, daily data 3.275 (0.07)

Cointegrated model, daily data 3.634 (0.06)

Stationary model, weekly data 0.901 (0.31)

Cointegrated model, weekly data 1.288 (0.25)

Notes: The test statistics are Mardia’s (1970) multivariate kurtosis measure and Beran’s
(1979) elliptical symmetry measure, S

n
. Tests are constructed using residuals from OLS

estimation of stated model. P-values are in parentheses and * indicates a  p-value less than
0.01.

Tables 5 and 6 provide the estimation results, for the levels and differences

regressions, respectively, while Wald statistics of the unbiasedness null

hypothesis as stated in (2) and (4) are reported in Table 7. We note that the

adaptive estimates are computed using a Gaussian kernel with Schuster’s

(1985) correction and the Box-Cox transformation ( ) ( 1) / ,z v vζτ ζ= = − with

1/ 2 .mζ = 7

A. Cointegrated Model. Results

Our estimates of the cointegrated model and associated unbiasedness test

statistics are reported in Table 5, and in the second half of Table 7, respectively.

Before analyzing our results, we will consider some of the previous evidence

7 See Hodgson, Linton, and Vorkink (2002) for a motivation for the choice of the
transformation function.
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that has been obtained in recent years, highlighting in addition the evolution

of the econometric methodology in this area. Note that all exchange rates are

assumed to be taken with respect to the US dollar, unless stated otherwise.

Two studies completed shortly after the introduction of the concept of

cointegration to econometricians are Baillie and Bollerslev (1989) and Hakkio

and Rush (1989). The former study uses daily data for the U.K., Germany,

Japan, France, Italy, Switzerland, and Canada for the period 1980-1985,

whereas the latter considers the monthly exchange rates of the U.K. and

Germany for 1975-86. Both consider 30-day forward rates and estimate the

levels cointegrating regression by OLS, but, due the lack of availability of

distribution theory for cointegration estimators at the time, neither compute

standard errors nor formally test the unbiasedness hypothesis. Their point

estimates are fairly close to those suggested by the hypothesis, however, except

that Baillie and Bollerslev (1989) find intercept and slope estimates for Japan

to be -0.83 and 0.85, respectively. Barnhart and Szakmary (1991) exploit the

efficiency gains in estimation that may be available in modeling cross-currency

correlations by using a seemingly unrelated regression estimator in a system

of four currencies (U.K., Germany, Japan, Canada), using monthly data and

30-day forward rates for 1974-88. They accept the unbiasedness hypothesis

for all four currencies.

The estimator developed in the present paper combines Barnhart and

Szakmary’s (1991) systems approach with the robust and semiparametric

estimators developed in a number of studies in the late 90’s to address the

issue of non-normality in exchange rate data. Phillips, MacFarland, and

McMahon (1996) and Phillips and MacFarland (1997) apply the robust fully

modified least absolute deviations estimator (FM-LAD) of Phillips (1995) to

study, in the first case, the daily exchange rates and one-month forward rates

of Belgium, France, Italy, and U.S.A. (vis-à-vis the U.K.) for 1922-25 and, in

the second case, the Australian dollar for 1984-91, considering both 30- and

90-day forward rates. In both papers, comparison is made of the inferences

obtained using FM-LAD as opposed to the non-robust (to non-normality)

FM-OLS estimator of Phillips and Hansen (1990). Phillips, MacFarland, and

McMahon (1996) strongly reject the unbiasedness hypothesis for all countries

except the U.S., regardless of estimation methodology, whereas Phillips and

MacFarland (1997) accept the hypothesis using FM-OLS but strongly reject
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Table 5. Results of Spot-Futures Estimation, Cointegrated Model:

1 1t t ts f uα β+ += + +

α β
Estimate Std. error Estimate Std. error

Panel A: Daily data, OLS estimates

JPY/USD 0.0172 0.0154 0.9964 0.0032

GBP/USD 0.0022 0.0012 0.9950 0.0028

CAD/USD 0.0024 0.0018 0.9942 0.0043

Panel B: Daily data, adaptive estimates

JPY/USD 0.0146 0.0147 0.9971 0.0031

GBP/USD 0.0002 0.0009 0.9989 0.0021

CAD/USD 0.0017 0.0018 0.9961 0.0044

Panel C: Weekly data, OLS estimates

JPY/USD 0.0613 0.0294 0.9872 0.0062

GBP/USD 0.0041 0.0035 0.9921 0.0074

CAD/USD 0.0001 0.0013 1.0001 0.0038

Panel D: Weekly data, adaptive estimates

JPY/USD 0.0093 0.0272 0.9986 0.0057

GBP/USD 0.0022 0.0029 0.9945 0.0063

CAD/USD 0.0001 0.0012 1.0000 0.0034

Exchange rate

it with FM-LAD. The studies of Hodgson (1998a,1999) apply the fully efficient
semiparametric adaptive estimators developed in Hodgson (1998a,b) for
cointegrating regressions and error correction models, respectively, using daily
data and 3-month forward rates for the Canadian dollar for 1990-93. Results
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using the semiparametric estimators are compared with those obtained using
FM-OLS and Johansen’s (1988) error correction model estimator, and are
generally found to lend stronger support to the unbiasedness hypothesis.

Note that none of the estimators used in these four latter studies exploit
cross-currency dependencies in the manner of a Gaussian SUR estimator,
whereas the present paper does so while still attempting to account optimally
for the possible presence of non-normality. In addition, we depart from the
papers listed above in using a more recent data set and in considering much
shorter forward maturities. As can be seen from Tables 5 and 7, we generally
obtain very strong support for the unbiasedness hypothesis, regardless of
currency, estimator, forward horizon, or frequency of observation. This is
broadly consistent with the existing literature, although more unambiguously
supportive of the hypothesis than much of it.

B. Stationary Model. Results

The existing literature analyzing this model is much vaster and stretches
back farther in time than the corresponding literature for the cointegrated
model. We will therefore not attempt anything even resembling an overview
of the literature (for which the reader is referred to, for example, Baillie and
McMahon 1989 or Engel 1996), but will merely reference a small handful of
representative papers in order to highlight the contributions of the present
one.

A number of studies have proceeded using overlapping data - i.e., data for
which the frequency of observation is higher than the length of the futures
contract (for example, the use of weekly data with a 30-day forward rate).
This practice introduces a moving average autocorrelation structure to the
regression disturbances in (1), which complicates the estimation theory. In
our data, we have matched the forward horizon with the frequency of
observation, so that the disturbances should be uncorrelated, which simplifies
the econometric analysis and allows the application of the estimator developed

in this paper. We proceed therefore to first discuss our results within the context

of existing studies that use non-overlapping data. We then briefly discuss the

possibilities of extending our analysis to allow for overlapping data, and

consider some further extensions of our analysis in the light of some recent

developments in the empirical literature.
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Among the many papers that estimate (1) using non-overlapping data, we

will reference here Bilson (1981), Fama (1984), and Barnhart and Szakmary

(1991) as representative examples. Working with monthly data and 30-day

forward rates for a collection of nine major OECD currencies over the period

1974-80, Bilson (1981), in estimating (1) by OLS, finds point estimates far

from those predicted by the unbiasedness hypothesis, with estimates of the

slope coefficients β generally being well below one, but fails to reject the

hypothesis for most countries due to high standard errors. He subsequently

groups the nine currencies into a system, which is estimated using the more

efficient SUR-GLS estimator introduced by Zellner (1962), and obtains much

stronger rejections of the null. Fama (1984), using a similar data set for nine

countries for 1973-82, also compares OLS and SUR estimates, and although

the latter produce substantially smaller standard errors, both estimators

generally lead to rejections of the null, again due to slope estimates well

below one. Barnhart and Szakmary (1991) obtain similar results using an

SUR estimator and the data set described above. In fact, it has become

something of a stylized fact in the literature that slope estimates are generally

found to be less than one, and, in many cases, significantly negative.

As described above, we bring new evidence to bear based on the recent

period covered by our data and the shorter forecast horizon. In addition, our

estimator builds on the intuition of the aforementioned papers in increasing

efficiency of estimation by modeling the currencies in a system, while allowing

nonparametrically for the possible presence of non-normality in the data. Our

results for the estimation of (1) are presented in Table 6 and in the first two

panels of Table 7, where we compare the results obtained using OLS and the

semiparametric adaptive estimator developed here. Regarding the basic

inference as reported in Table 7, we can see that the null hypothesis is actually

accepted for both estimators with daily data, and is rejected with weekly data.

Nevertheless, a look at the point estimates in Table 6 reveals that the acceptance

is due mainly to the wildly inaccurate point estimates, somewhat less imprecise

for the adaptive estimator. When moving from OLS to the adaptive estimates,

there are huge changes in the slope estimates, from well below zero to well

above unity. In the weekly data, the adaptive estimates are substantially more

precise than OLS, judging by the standard errors, but both estimates yield

slope estimates that are significantly less than one, and even, for certain
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Table 6. Results of Spot-Futures Estimation, Stationary Model:

1 1( )t t t t ts s f s uα β+ +− = + − +

                          α                                                      β
Estimate Std. error Estimate Std. error

Panel A: Daily data, OLS estimates

JPY/USD -0.0007 0.0005 -3.4552 1.8148

GBP/USD -0.0001 0.0002 -0.2931 2.3153

CAD/USD 0.0000 0.0001 -2.0860 2.6759

Panel B: Daily data, adaptive estimates

JPY/USD 0.0002 0.0005 0.1558 1.7122

GBP/USD -0.0002 0.0002 1.7852 1.9943

CAD/USD 0.0002 0.0001 1.6924 2.8459

Panel C: Weekly data, OLS estimates

JPY/USD -0.0004 0.0008 -0.2680 0.3309

GBP/USD -0.0001 0.0005 -0.5446 0.1682

CAD/USD 0.0005 0.0003 0.1362 0.1897

Panel D: Weekly data, adaptive estimates

JPY/USD 0.0008 0.0003 -0.2376 0.1250

GBP/USD 0.0000 0.0004 -0.6187 0.1007

CAD/USD 0.0006 0.0002 0.1183 0.1236

Exchange rate

currencies, significantly negative. At least for the weekly data, our results are

consistent with previous studies.

As mentioned above, several studies work with overlapping data. Although

our methodology cannot be directly applied to such a situation, a brief
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Table 7. Forward Rate Unbiased Tests, H0: 0, 1, 1, ,i i i mα β= = = K

J (p-value)

Stationary model, daily returns

OLS 8.247 (0.22)

Adaptive 5.946 (0.43)

Stationary model, weekly returns

OLS 117.864 (0.00*)

Adaptive 469.881 (0.00*)

Cointegrated model, daily returns

OLS 6.916 (0.33)

Adaptive 7.454 (0.28)

Cointegrated model, weekly returns

OLS 8.573 (0.20)

Adaptive 15.007 (0.02)

Notes: Under the null, J is distributed asymptotically 
2
6 .χ  P-values are in parentheses

following the test statistics. * Indicates a  p-value less than 0.01.

consideration of previous econometric approaches may suggest extensions

of our methodology that could lead to efficiency improvements for these

models. Beginning with the paper of Hansen and Hodrick (1980), several

investigators have modeled spot and forward rates for individual currencies

as bivariate vector autoregressions (VAR’s), which are then estimated by

Gaussian MLE, possibly under parameter restrictions, from which inferences

can be made regarding the unbiasedness hypothesis (see also, for example,

Hakkio, 1981, and Baillie, Lippens, and McMahon, 1983). Although questions

of parameterization would probably forbid the inclusion of several currencies

into a large joint VAR, there is no reason, in principle, why the individual-

country bivariate VAR could not be estimated adaptively or semiparametrically

efficiently, using an extension of the procedures used in this paper.

A final possibility for extensions would be in the area of fractionally
integrated models of the forward premium. Baillie and Bollerslev (1994)
compute Gaussian ML estimates of fractionally integrated ARFIMA models,
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finding evidence of fractional integration in the forward premium in a number
of major currencies. Maynard and Phillips (2001) obtain similar results, and
investigate their consequences for the estimation of models such as that of
equation (1). As a suggestion for future work, it may be worth investigating the
possibility of efficiency gains in ARFIMA models through the specification of
joint likelihoods for several currencies, and/or the specification of
semiparametric likelihoods and the derivation of semiparametric efficiency
bounds.
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