THREE ESSAYS ON ECONOMIC AND POLITICAL INSTITUTIONS

Daniel Lema

UNIVERSIDAD DEL CEMA 2006

Jorge Miguel Streb	••••••
Germán Coloma	•••••
Guillermo Marcos Gallacher	
Juan Jorge Medina	

DEDICATION

To my wife, Patricia

LIST OF TABLES AND FIGURES	Page vi
PREFACE	viii
1. Contracts, Transaction Costs and Agricultural Production in	
the Pampas	
I. Introduction	1
II. Literature Review and Theoretical Background	2
III. Study Area and Data	4
IV. Econometric Analysis	6
V. Final Comments	11
References	13
2. Discretional Political Budget Cycles and Separation of	
Powers	
I. Introduction	14
II. Empirical literature	15
A. Shi and Svensson	15
B. Persson and Tabellini	16
C. Brender and Drazen	17
III. Theoretical framework	17
IV. Data and Econometric Specification	19 22
V. Empirical Evidence	22 24
A. Effective Checks and Balances and Discretional Component of PBC B. OECD and non-OECD countries	24
C. Budget Balance, Expenditures and Revenues: Persistence Effects	20 31
D. Rich Established Democracies and Poor Young Democracies	33
VI. Final remarks	36
References	38
References	50
3. Conditional Political Budget Cycles in Argentine Provinces	10
I. Introduction	40
II. The Political Budget Cycle	41
A. Previous Literature	41
B. Theoretical Framework III. Data	42
	44 46
IV. Empirical Analysis V. Unconditional Budget Cycles	40 48
V. Unconditional Budget Cycles	48 48
A. Budget Balance B. Expanditures: Total and Composition	40 51
B. Expenditures: Total and CompositionC. Revenues: Total, Federal and Provincial	56
VI. Conditional Findings: Political Alignment Between Provincial and	50
Federal Executives	63
A. Budget Balance	63
B. Expenditures: Total and Composition	65
C. Revenues: Total, Federal and Provincial	68

TABLE OF CONTENTS

VII. Conclusions	72
References	73
Appendix. Chapter 3 Econometric Estimation Output	74

LIST OF TABLES AND FIGURES

Page

Chapter 1	
Tables	
1. Definition of Variables	6
2. Probit (Conservation Practices) and Tobit (No Till - Fertilization) Estimates	7 8
3. Wald Test of Coefficients Equality (Fixed Rent and Sharecropping	0
Contracts) 4. Tabit Estimates (Caraala and Oilaada Eartilization)	10
4. Tobit Estimates (Cereals and Oilseeds Fertilization)	10
Figures	5
1. The Study Area 2. Erroguanay Distribution of Forms and Area	5 5
2. Frequency Distribution of Farms and Area	3
Chapter 2	
Tables	
1. Definition of Variables	20
2. Country Characteristics	23
3. Descriptive Statistics	24
4. Discretional PBC in All Democracies	26
5. Discretional PBC in OECD Countries	29
6. Discretional PBC in Non-OECD Countries	30
7. Discretional PBC in All Democracies: Budget Balance, Expenditure and	32
Revenues	
8. Discretional PBC in Established OECD Democracies	34
9. Discretional PBC in Young Non-OECD Democracies	
Figures	
1. Time Path of Budget Balance around Elections	28
Chapter 2	
Tables	
1. Definition of Variables	45
2: Fiscal Variables: Descriptive Statistics	46
3. Elections and Fiscal Balance	49
4. Elections and Fiscal Balance	50
5. Elections and Total Expenditure	52
6. Elections and Total Expenditure	53
7. Elections and Composition Effect	54
8. Elections and Composition Effect	55
9. Elections and Total Revenue	57
10. Elections and Total Revenue	58
11. Elections and Revenue from Federal Government	59
12. Elections and Revenue from Federal Government	60
13. Elections and Revenue from Provincial Taxes	61
14. Elections and Revenue from Provincial Taxes	62
15. Elections and Fiscal Balance conditional on alignment of provincial and	64

federal government

16. Elections and Total Expenditure conditional on alignment of provincial and	66
federal government	
17. Elections and Composition Effect conditional on alignment of provincial	67
and federal government	
18. Elections and Total Revenue conditional on alignment of provincial and	69
federal government	
19. Elections and Revenue from Federal Government conditional on alignment	70
of provincial and federal government	
20. Elections and Revenue from Provincial Taxes conditional on alignment of	71
provincial and federal government	

PREFACE

This thesis is a study on the behavioral incentives and control mechanisms defined by economic and political institutions. The three essays are empirical quantifications of the economic effects implied by different institutional arrangements. We examine the economic implications of legal and political structures using economic theory, econometric analysis and hypothesis testing.

The first essay is a study of incentives for resource use under different contractual arrangements in the Argentinean agricultural production. Using a transaction costs approach, we contend that in a context of modern agriculture, with well defined property rights, agricultural contracts must balance costs and benefits, aligning tenant and landlord incentives towards a similar objective. The study debates the potential effects of tenancy status and duration of contracts, over soil conservation and input use. We present empirical evidence about the effects over the soil and input use in tenant and owner-operator farms using farm level data from the 2002 National Agricultural Census of Argentina. Contrary to the conventional wisdom, the empirical results do not support a general and clear negative effect for tenancy arrangements. Our intuition is that the interaction among specific characteristics of farmers, natural resources endowment and institutional environment are more important factors than the land tenancy or contract type itself.

The second essay looks at the relationship between electoraly motivated fiscal policy cycles and separation of powers. Previous empirical work on electoral cycles implicitly assumes the executive has full discretion over fiscal policy. In contrast, we contend that an unaligned legislature may have a moderating role under separation of powers. Focusing on the budget surplus, we find that stronger effective checks and balances explain why cycles are weaker in developed and established democracies. Once the discretional component of executive power is isolated, there are significant cycles in all democracies. Hence, what we add to the ongoing debate about the factors behind conditional Political Budget Cycles is a study of the role of effective checks and balances that reduce the discretion of the executive.

The third essay presents evidence of electoraly-motivated changes in the budget balance, public expenditures, composition of public expenditures and provincial revenues in Argentine provinces. The empirical study is made using panel data analysis

viii

for 22 Argentine provinces during the period 1985-2001. Results show that conditioning on the alignment of provincial and federal executives (same political party in power) there is evidence of systematic changes in fiscal policies around elections. The observed changes support the predictions of rational opportunistic models of Political Budget Cycles. In election years, total provincial expenditures increase in aligned provinces, without affecting the fiscal balance, because to the increased discretional transfers from the federal government supporting the provincial incumbent federal revenues. By contrast, deficit increases for unaligned provinces. In addition, expenditure shifts toward current spending and away from capital spending for unaligned provinces in electoral years.

Finally, I wish to thank the members of my Thesis Committee Professors Jorge M.Streb (Chairman), Germán Coloma, Marcos Gallacher and Juan Jorge Medina for their insightful suggestions. A special acknowledgement I owe to Professor Streb for helpful, deep and extensive discussions on issues contained (and not) in this study. I also wish to thank the Director of the Department of Economics, Professor Mariana Conte Grand, for their warm and continuous encouragement. The Instituto de Economía y Sociología at INTA (Instituto Nacional de Tecnología Agropecuaria) has provided important support for developing this study. I am very grateful for it.

Chapter 1

Contracts, Transaction Costs and Agricultural Production in the Pampas

I. Introduction

Land tenure and contractual arrangements are controversial issues in the Pampean agriculture. The early colonial pattern of large land holdings dictated the system of sharecropping agriculture with immigrant farmers that developed after 1860. Some authors describe the sharecropper system as a rational economic arrangement that favored landlords and tenants. There was no collusion on the part of large landholders to bar access to land by the newly arrived European farmers and the land market was open and competitive without legal or economic barriers to entrance (Cortés Conde, 1995). However, other authors contend that tenure regime and sharecropping arrangements had negative social and productive consequences (Scobie, 1964; Ferrer, 1965).

Eventually, through inheritance or sale, many of the very large "estancias" (cattle ranch) were broken up, but the original pattern of land occupation resulted in larger landholdings than in similar regions of the U.S. as the "Corn Belt". In spite of these differences in land tenure arrangements, Gallacher et. al. (2003) suggests that a similar overall performance is observed in agricultural production in both countries because farmers are efficient in resource allocation (including land tenure arrangements).

During the last 15 years, Argentine agricultural production has been rising and land rental (both fixed rent and sharecropping) is a growing practice, implying a greater separation between the property and control of land. In this paper, our objective is to show that land tenure arrangements in the Pampean agriculture align interests and incentives in an efficient way. Using a transaction costs approach, we present empirical evidence about the effects of agricultural contracts (fixed rent, sharecropping) on soil conservation practices and input use (fertilizers).

The organization of the paper is the following. Section II briefly reviews the literature and presents the theoretical background. Section III describes the characteristics of the study area and the data set from the 2002 National Agricultural Census (NAC). Section IV presents the econometric analysis. Section IV has the final comments.

II. Literature Review and Theoretical Background

The analysis of fixed rent and sharecropping contracts has been extensively developed in the literature. In a fixed rent contract, the tenant pays a fixed amount not related to farm production. On the other hand, the sharecropping contract allows the tenant only a fraction of the total product (e.g., between 65 and 70% in Pampean grain production).

In a sharecropping contract the tenant has incentives to under-utilize inputs, this is widely known as the sharecropping problem in its "Marshallian" version (Johnson, 1950). Several reasons have been proposed to explain the use of sharecropping contracts. One incorporates risk in the analysis of contracts (Stiglitz 1988). Under this explanation, sharecropping is a way to share risk between the landlord and the tenant and the sharecropping contract appears as a choice in order to avoid risks. Therefore, the tenant shares not only the product but also part of the risk associated with agricultural production. One reply to this argument is that if there are no restrictions to make multiple fixed rent contracts, it is possible to avoid risk diversifying the use of fixed contracts (Newbery 1977). Alternatively, the "moral hazard" approach suggests that efficient contracts balance the exchange between the costs associated with the risk and the benefits derived from generating optimal incentives for both parties. A sharecropping contract can be seen as a result of this balance (Stiglitz 1988).

These models have been considerably developed in the literature and empirically applied in the study of the contractual relations. Empirical results are mixed about efficiency under fixed and sharecropping contracts, with studies focused on developing countries with traditional agricultural sectors.

Our analysis will concentrate on the relationship between the landlord and the tenant using a theoretical framework associated with the transaction costs approach. Cheung (1968) shows that with well defined property rights the type of contracts does not affect efficient resource allocation. A critical assumption is the absence of transaction costs and in particular the inexistence of monitoring costs in the use of inputs or the effort made by the tenant.

Following Allen and Lueck (2002), we do not consider risk and we add to the analysis the use of specific characteristics of land. Specifically, the soil attributes are treated as an additional input in the production process. When a producer carries out the production in his own land, he manages the resources taking into account the present and future implications of his decisions. By contrast, a tenant with a fixed rent contract will only worry about his current results. Then, if greater yields could be obtained by

putting aside adequate soil management, applications of fertilizers or other practices, the tenant has incentives in this direction.

In sharecropping contracts, if effort is observed imperfectly and there are monitoring costs, there would be incentives to underutilize inputs by the tenant. This implies, also that he may have less incentives to use the soil attributes excessively or to carry out actions with potential harmful effects over the natural resources. This could be seen as a potential benefit of sharecropping contracts (Allen and Lueck 2002).

However, this does not imply that sharecropping is always the most convenient arrangement for the landlord. Transaction costs are important in controlling and dividing the output, because the tenant has incentives to underreport the quantity of crop to the landlord. Of course, the landlord is aware of this problem and he will do all that he can to avoid this behavior.

The relative advantage of a fixed rent contract is to avoid the quantity control. However, it presents the problem of over-utilization of soil attributes. The sharecropping contract reduces the incentives to dig the soil, but it has costs related to the control of quantity and quality of crop.

Some other factors can lead the actions of tenants and landlords to the optimal use of the resources. For example, repeated transactions can build a reputation and reduce the costs of control. If transactions are less frequent but the landlord has good knowledge of the activity, he can reduce the monitoring costs. If control of production is relatively more costly, then he can opt for fixed rent contracts.

It is often argued that short-term contracts do not generate adequate incentives for both the conservation of resources and investments. However, when an owneroperator decides how to manage his land, he has as an inter-temporal profit-maximizing objective. When he considers the option of renting the land to a tenant, the analysis cannot be different. The landlord surely is aware of the incentives that the tenant has to make an over use of the soil attributes in the short term.

Our working hypothesis is that the design of the contracts should align interests of tenants and landlords, minimizing transaction costs. The contract design should make the actions converge in such a way that the results for a tenant will be similar to those of an owner or landlord-operator. However, a greater alignment of interests tends to increase the complexity and the costs of the contracts. Longer contracts may stimulate the conservation of assets and soil, but at the same time require more detailed conditions that are costly to control and enforce. Pampean agricultural production is based mostly on short-term contracts, but the transactions are repeated and frequent. The incentive to build a reputation can act as an alternative mechanism for long-term contracts. A repeated short term contract can have implicit renovation if the tenant carries out the expected actions, but it is revoked easily if not. Our intuition is that we should not observe a systematic bias in resource allocation between annual tenants (fixed rent or sharecropping) *vis à vis* landlord-operators¹.

Hence, our principal conjecture is that contractual arrangements must balance costs and benefits, aligning incentives towards an objective similar to a producerlandlord with full interest in maximizing and conserving his wealth. We do not expect major differences between owner operators and tenants in input use or natural resources conservation.

If the crop share contracts do not give full incentives for the optimal use of inputs, and there are monitoring and control costs, some differences in input use (e.g., fertilizers) could be found in case of fixed rent contracts with respect to sharecropping contracts.

These conjectures are empirically tested in section IV.

III. Study Area and Data

The geographic focus of this study is the central-eastern region of Argentina known as the Pampas, one of the most productive agricultural areas in the world and of major importance to the Argentine economy (85% of the total grain production). Wheat and corn have been the principal crops for the last 100 years and soybean is a more recent crop.

The empirical analysis is carried out using farm level data from the National Agricultural Census 2002 (NAC 2002) of Pergamino County, Province of Buenos Aires.

Cropping systems include maize, soybean, wheat-soybean double crop and characteristic rotations include maize and soybean. Pergamino is representative of the

¹ In Pampean agriculture, annual contracts prevail. According to current legislation, all agrarian contracts must be signed for three years and registered in courts. Even though detailed statistical information is not available on the fulfilment of this requirement, it is a well-know fact in the rural media that the majority of contracts do not comply with this formality. The evidence points out that for different reasons, surely linked to the transaction costs, farmers have opted to set up informal contracts. In this sense, we consider that the actual legal framework is neutral for the selection of the contracts and the productive decisions.

Pampas and it presents characteristics of modern agriculture (defined property rights, modern inputs and technological knowledge) which makes it comparable, for example, with the American "Corn Belt". Figure 1 displays the location of the study area.

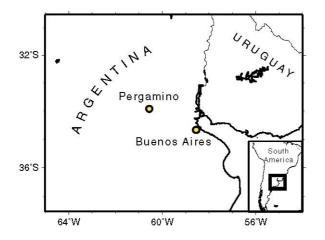


Figure 1. The study area.

The available micro data includes productive, economic and management variables for 1117 farms in a total area of 285,992 hectares, averaging 256 hectares per farm. Figure 2 presents the frequency distribution of farms and area.

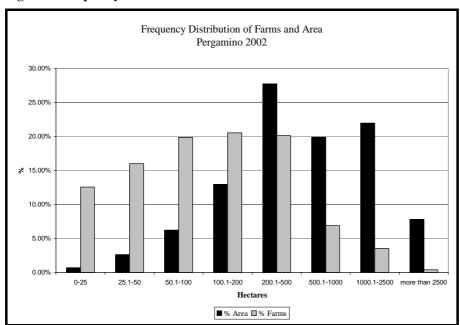


Figure 2. Frequency Distribution of Farms and Area

IV. Econometric Analysis

We carry out estimations of binary election models (Probit) to explain the utilization of soil conservation practices (no tillage or reduced tillage). Selection models (Tobit) are used to explain the cultivated area with no till practices and total fertilized area. From the 1117 farms we considered those that produced at least some of the four principal crops (soybeans, corn, wheat and sunflower). The result is a total of 944 observations available for the study. Dependent and independent variables and their definitions are presented in Table 1.

Table 1. Definition of Variables

Dependent Variables:

CONS: Dummy variable that assumes the value of one if on the cultivated area some conservationist practice is carried out (e.g. no tillage, reduced tillage,).

AREANT: Area with no till practice as percentage of the total area cultivated with soybeans, corn, wheat and sunflower. TOTFERT: Total fertilized area as percentage of the cultivated area in corn, wheat and sunflower.

CWFERT: Fertilized area in corn and wheat crops as percentage of the total implanted area with corn and wheat.

SSFERT: Fertilized area in soybeans and sunflower crops as percentage of the total implanted area with soybeans and sunflower.

Independent Variables:

T: Dummy variable for tenant farms. It assumes the value of one if the ratio between the own cultivated area (OA) and the total area of the farm (ATOT) is less o equal to $0.20 (0.20 \ge OA/ATOT)$.

TF: Dummy variable for type T farms with fixed rent contract. It assumes the value of one if the rent is fixed in a proportion greater or equal than 0.80 with respect to the total rented area.

TS: Dummy variable for type T farms with sharecropping contract. It assumes the value of one if the sharecropped area is a proportion greater or equal than 0.80 with respect to the total area rented.

T_OTHER: Dummy variable that takes value of one for type T farms that belong neither to the category TF nor to the category TS (T_OTHER = T - TF - TS).

OWN_TEN: Dummy variable for farms that combine own land and tenancy. It assumes the value of one if 0.20 < OA/ATOT < 0.80.

CULTA: Total cultivated area with wheat, corn, soybeans and sunflower, in thousands of hectares.

SOY: Dummy variable that assumes the value of one if the farm produces only soybeans

SUMM: Dummy variable that assumes the value of one if the farm carries out just summer crops (corn-soybeans) PLOWS: Total number of plows (or similar equipment)

TRACT: Dummy variable that takes the value one if the farm has one or more tractors.

DIR: Total number of machinery for direct seed-planting (no till machinery)

SERV: Total area contracted for services of plowing and soil preparation in thousand of hectares

MAINT: Total area contracted for maintenance work and conservation of the crops, in thousands of hectares.

EDU: Education of the producer measured in a scale between 1 and 7.5 (1: no education; 7.5: complete college education) (this variable assumes the value of zero when the farm is some type of partnership or corporation).

EDUD: Dummy variable that assumes the value of one when the variable EDU assumes the value of zero (it controls for possible bias in the coefficient associated with EDU due to the inclusion of zeros)

RESID: Dummy variable that assumes the value of one if the producer or any of the partners resides on the farm.

MANAG: Dummy variable that assumes the value of one if the farm keeps formal accounting and productive records.

PUBEXT: Dummy variable that assumes the value one if the farm receives extension services from some public organization (state or federal).

PRIVADV: Dummy variable that assumes the value of one if the farm uses some private technical advise (independent professionals, companies, NGOs)

CONS is a binary variable that identifies the use of the conservation practices (when CONS=1). A group of four continuous variables measures the relative adoption of no till practices (AREANT) and fertilizing (TOTFER), the relative fertilization in cereals (CWFER), and fertilization in oilseeds (SSFER). Table 2 presents the probit estimation for the binary dependent variable CONS.

<u>Variables</u>	CONS	CONS	AREANT	AREANT	TOTFERT	TOTFER
	(1)	(2)	(3)	(4)	(5)	(6)
Т	-0.177		-2.654		-7.593	
	(-1.55)		(-0.56)		(-1.91)*	
TF		-0.251 ^A		-11.192 ^B		-5.901 ^C
		(-1.63)		(-1.75)*		(-1.13)
TS		0.119 ^A		4.867^{B}		-11.034 ^C
		(0.59)		(0.57)		(-1.47)
A_OTHER		-0.300		3.426		-7.845
		(-1.68)*		(0.48)		(-1.30)
OWN_TEN	-0.103	-0.106	-1.986	-2.035	-2.347	-2.342
	(-0.89)	(-0.92)	(-0.42)	(-0.43)	(-0.62)	(-0.62)
CULTA	-0.365	-0.361	-2.964	-20.754	-7.036	7.119
	(-2.43)**	(-2.39)**	(-0.50)	(-0.47)	(-1.40)	(-1.42)
SUMM	-0.156	-0.165	-23.440	-23.825		. ,
	(-1.62)	(-1.71)*	(-5.82)***	(-5.92)***		
SOY	· · · ·				-63.220	-63.122
					(-15.58)***	(-15.54)**
PLOWS	-0.177	-0.177	-6.291	-6.192		(
	(-5.42)***	(-5.42)***	(-4.85)***	(-4.78)***		
TRACT	-0.676	-0.670	-27.386	-28.174	-7.798	-7.770
	(-5.12)***	(-5.04)***	(-4.91)***	(-5.04)***	(-1.78)*	(-1.77)*
DIR	0.585	0.594	23.749	23.893	4.333	4.299
DIK	(6.87)***	(6.93)***	(7.76)***	(7.80)***	(1.84)*	(1.83)*
SERV	0.552	0.557	20.453	21.407	(1.04)	(1.05)
SERV	(2.34)**	(2.36)**	(2.18)**	(2.28)**		
MAINT	(2.34)	(2.50)	(2.10)	(2.20)	5.635	5.578
					(2.70)***	(2.67)***
EDU	0.107	0.111	4.738	4.860	2.593	2.548
EDU	(3.36)***	(3.50)***	(3.53)***	(3.62)***	(2.32)**	(2.27)**
EDUD	0.627	0.650	20.461	20.322	16.190	16.104
EDOD	(3.20)***	(3.30)***	(2.45)**	(2.44)**	(2.36)**	(2.35)**
MANAC	0.241	0.238	6.436	7.136	13.906	13.843
MANAG	(2.25)**	(2.21)**			(3.73)***	(3.69)***
DUDENT		0.452	(1.44) 13.312	(1.60) 13.260	9.621	(3.69)****
PUBEXT	0.458					
	(2.16)**	(2.13)**	(1.57)	(1.56)	(1.37)	(1.38)
PRIVADV	0.221	0.210	9.725	9.514	4.441	4.569
DECID	(2.00)**	(1.90)*	(2.13)**	(2.08)**	(1.15)	(1.18)
RESID	-0.271	-0.270	-14.960	-14.897	-7.642	-7.673
a	(-2.45)**	(-2.42)**	(-3.28)***	(-3.28)***	(-2.07)**	(2.07)**
Constant	-0.224	-0.236	44.939	44.695	19.833	19.956
	(-1.05)	(-1.11)	(5.00)***	(4.99)***	(2.61)***	(2.62)***
Method of Estimation	Probit	Probit	Tobit	Tobit	Tobit	Tobit
No. Observations	944	944	944	944	944	944
Censored Observations			324	324	353	353
(Dep. Var.<=0)	-	-				
Not Censored Obs.	-	-	620	620	591	591
Log-Likelihood	-524.05	-521.15	-3620.897	-3618.903	-3243.137	-3242.953
LR Test	213.44***	219.26***	240.12***	244.11***	390.10***	390.46***
Pseudo R ²	0.171	0.174	0.0321	0.0326	0.0567	0.0568

Table 2. Probit (Conservation Practices) and Tobit (No Till - Fertilization) Estimates

Notes: z statistics in parentheses; *** Significant at the 1%; **Significant at the 5%; *Significant at the 10%; A and B: see Table 3 for Wald test of coefficients equality

The independent variables are grouped in those measuring the type of land tenancy (T, TF, TS, T_OTHER, OWN_TEN) and those that control by productive characteristics (CULTA, SOY, SUMM, SERV, MAINT), physical capital (PLOWS, TRACT, DIR), human capital and management (EDU, RESID, MANAG, PUBEXT, PRIVADV).

In the first model, the variables T and OWN_TEN were included to estimate the effect of these two forms of tenancy on CONS (controlling for covariates). In the second equation the tenancy status is distinguished by type of contract, including the variables TF, TSP and A_OTHER. Our main interest is on coefficients associated with tenancy variables (T, TF and TS), and we observe that those coefficients are not significant in any of the estimations. Only the coefficient associated with the category T_OTHER appears with negative sign and marginally significant at 10% in estimation 2. The estimated coefficient of TS has a positive sign and that of TF has a negative sign (and marginally significant at 11%). Following the theoretical conjecture that there are greater incentives to over use soil attributes in fixed rent contracts, this finding may imply a differential effect between fixed rent and crop share contracts. Table 3 (line A) presents a Wald test that contrasts the hypothesis of equality of both coefficients.

	Statistic	p-value	Statistic	p-value	
А	chi2(1)= 2.44	0.11	D	F(1, 570)= 0.66	0.42
В	F (1, 928) = 2.64	0.10	Е	F(1, 929) = 2.81	0.09
С	F(1, 929) = 0.36	0.55	-	-	-

 Table 3. Wald Test of Coefficients Equality (Fixed Rent and Sharecropping Contracts)

The result shows that (marginally) at 11% we can reject the null hypothesis of equality. This suggests some differential effect of greater adoption of conservation practices in cases of sharecropping contracts. So, the tenancy status appears relatively neutral in terms of conservation practices, with a slightly superior adoption of conservation practices in crop share contracts.

Regarding control variables, it is clear that the quantity and type of available machinery affects the adoption of conservation practices, since the effect of PLOWS and TRACT over CONS appears to be systematically negative and significant, while the effect of DIR is positive and significant. Variables related with human capital and management presents a positive and significant effect over the adoption of conservation practices.

Columns 3 to 6 in Table 2, present the estimations using no till area (AREANT) and fertilized area (TOTFERT) as a percentage of the total farming area as dependent variables. Farms that do not carry out soil conservation practices or do not fertilize always have a percentage equal to zero. To address this problem of sample selection, we used models of simultaneous selection (Tobit) to perform the estimations.

Equation 3, with no till practices (AREANT) as dependent variable, shows that the estimated coefficient for variable T is not significant. On the other hand, in equation 4, the coefficient associated with fixed rent (TF) is negative and significant. This result is similar to the conservation practices equation. In the same way, we perform a Wald test to contrast equality between the estimated coefficients for TF and TS. Results (line B Table 4) suggest a greater use of no till practices for crop share tenants.

The coefficient associated with tenancy (T) is negative and significant at 10% in equation 5. However, controlling by contract type, there are no significant differential effects relative to the base category (landlords). We also tested the null hypothesis of equality between these coefficients (line C Table 4). The Wald test does not reject the null hypothesis of coefficients equality.

The effect of the dummy variable SOY, that controls farms dedicated only to soybean production, appears negative and significant in fertilization equations. Fertilization in soybeans is much less frequent, since marginal yield response is reduced. In order to control this effect we analyzed the practice of fertilization in two sub samples. One sub sample includes farms producing cereal crops and the other those producing oilseeds. Estimation results for each sub sample are presented in Table 4 (equations 7 to 10).

Equation 7, shows that the tenancy variable is significant and positive when fertilization in corn and wheat (CWFERT) is the dependent variable. Equation 8 includes dummy variables for sharecropping and fixed rent contracts, and the Wald test (line D in Table 4) suggests equality between estimated coefficients.

For oilseed crops fertilization (SSFRT, equation 9) the coefficient associated with T is negative and significant. When the effects are separated by contract type (equation 10), the negative effect on fertilization by the tenants is explained principally by the group of sharecropping tenants. The Wald test (line E in Table 4) allows the rejection of the null hypothesis of equality.

Variables	CWFERT	CWFERT	SSFERT	SSFERT
	(7)	(8)	(9)	(10)
Т	15.757		-44.403	
	(2.65)***	D	(-2.33)**	
TF		12.054 ^D		-31.592 ^E
		(1.59)		(-1.30)
TS		22.316 ^D		-129.616 ^E
		(1.97)**		(-2.34)**
A_OTHER		17.491		-28.223
		(1.91)***		(-0.98)
OWN_TEN	9.995	10.032	13.518	13.680
	(1.83)*	(1.84)*	(0.82)	(0.83)
CULTA	-3.316	-6.111	-40.744	-42.146
	(-0.95)	(-0.92)	(-1.41)	(-1.45)
TRACT	-2.447	-2.732	-25.239	-27.166
	(-0.35)	(-0.39)	(-1.39)	(-1.50)
DIR	10.007	10.049	-0.068	-0.316
	(3.03)***	(3.05)***	(-0.01)	(-0.03)
MAINT	3.033	3.124	25.986	25.666
	(1.12)	(1.15)	(2.47)**	(2.43)**
EDU	3.613	3.675	5.124	4.339
	(2.15)**	(2.19)**	(1.05)	(0.89)
EDUD	24.803	24.937	18.245	14.485
	(2.46)**	(2.24)**	(0.60)	(0.47)
MANAG	20.514	20.742	54.670	55.606
	(3.72)***	(3.73)***	(2.98)***	(3.03)***
PUBEXT	24.788	24.706	-5.005	-4.807
	(2.42)**	(2.41)**	(-0.16)	(-0.16)
PRIVADV	9.158	8.821	9.492	10.924
	(1.53)	(1.47)	(0.56)	(0.67)
RESID	-11.683	-11.544	-32.624	-33.204
	(-2.17)**	(-2.15)**	(-1.85)*	(-1.88)*
Constant	61.878	61.840	-185.040	-180.928
	(5.35)***	(5.26)***	(-5.09)***	(-4.98)***
Method of Estimation	Tobit	Tobit	Tobit	Tobit
No. Observations	584	584	943	943
Censored Observations	51	51	824	824
(Var. Dep.<=0)				÷
Not Censored Observatons	533	533	119	119
Log likelihood	-2951.476	-2951.1134	-965.845	-963.829
Likelihood Ratio Test	79.87***	80.59***	35.79***	38.92***
Pseudo R2	0.013	0.013	0.018	0.020

Table 4. Tobit Estimates (Cereals and Oilseeds Fertilization)

Notes: z statistics in parentheses; *** Significant at the 1%; **Significant at the 5%; *Significant at the 10%; C, D and E: see Table 3 for Wald test of coefficients equality.

Though the tenancy effect on fertilization is negative when all crops are considered together, it appears to be reasonable to differentiate the effect analyzing separately the cereal and oilseed crops, because they have a different marginal response. Cereal crops present a greater response to nitrogen fertilization. On the other hand, for soybeans this fertilizer has little marginal effect on yields. The application of phosphorus an element with positive residual effects for subsequent crops is more frequent. The fertilization decision includes two criteria: sufficiency and replacement. The sufficiency criterion is to fertilize only when the level of nutrients in the soil is below the critical value. On the other hand, the replacement criterion, is to fertilize systematically, adding the quantities of nutrients that the crops extract.

We interpret the empirical findings as follows: for cereal crops, even though the tenants do not have incentives to apply the replacement criteria (because they only have a temporary property right on the land) they do have strong incentives to apply the sufficiency criterion to increase yields. Empirical results show that the effect of sufficiency criterion seems to be important, implying that tenants tend to fertilize, on average, more than the owner operators. We can conjecture that owner operators will resort to other practices that substitute the application of fertilizers in cereals (e.g. crop rotations or soybean fertilization as precedent crop).

The theoretical analysis indicates that incentives for fertilizing could be lower in sharecropping contracts. This situation is not clearly distinguished in the estimations since we do not find significant differences between coefficients. Perhaps, greater information about contracts is necessary to distinguish the effects. It is observed that in oilseed crops (soybeans) the effect of the tenancy category is clearly negative over fertilization, particularly in the case of the sharecropping contracts. In this case the sufficiency criteria may have a low impact, since the effects of fertilizers are reduced, and also there are low incentives for replacement, resulting in a clear negative effect.

Summarizing, for cereal crops the tenants (fixed rent or sharecroppers) tend to fertilize more than owners. For oilseed, due to the lower marginal response and the greater residual effect of phosphorus, a negative effect is observed for tenants, in particular for sharecroppers.

V. Final Comments

Land tenancy and contract arrangements used in the Pampean agricultural production are important and controversial issues. However, at least to the best of our knowledge, there are no studies that approach the subject with a transaction costs analytical framework and empirically contrast the conjectures. Our study debates the potential effects over soil conservation or input use of tenancy and duration of contracts. The empirical results show some differential effects but do not support a general and clear negative effect in tenant farms. Finally, our empirical results are consistent with the theoretical conjecture that the different contract arrangements tend to minimize transaction costs, resulting in a similar resource allocation without superiority of land ownership over land rental by tenants.

References

- Allen, Douglas W. and Dean Lueck (2002), *The Nature of the Farm: Contracts, Risk and Organization in Agriculture*. Cambridge, Massachusetts, The MIT Press.
- Cheung, Steven N. S.(1968), "Private Property Rights and Sharecropping". *Journal of Political Economy*, Vol. 76, no. 6, 1107-1122.
- Cortés Conde, Roberto (1995), *La Economía Argentina en el Largo Plazo*. Buenos Aires, Argentina, Universidad de San Andrés.
- Ferrer, Aldo (1965), La Economía Argentina. México-Buenos Aires, Fondo de Cultura Económica.
- Gallacher, Marcos; Daniel Lema; Elena Barrón and Víctor Brescia (2002) "Decision-Environment and Land Tenure: A Comparison of Argentina and U.S.", CEMA Working Paper N° 229, Universidad del CEMA, Buenos Aires, Argentina.
- Johnson, D. Gale (1950), "Resource Allocation under Share Contracts". *Journal of Political Economy*, Vol 58, no.6, 111-23.
- Newbery, D.M.G. (1977), "Risk Sharing, Sharecropping and Uncertain Labour Markets". *Review of Economic Studies* 44, 585-94.
- Scobie, James (1964), "Revolution on the Pampas. A Social History of Argentine Wheat". Austin, Texas, University of Texas Press.
- Stiglitz, Joseph (1988), "Economic Organization, Information and Development". In H.
 Chenery and T.N. Srinivasan eds., *Handbook of Development Economics*, Chapter 5, Vol. I, Elsevier Science Publishers, Amsterdam.

Chapter 2

Discretional Political Budget Cycles and Separation of Powers*

I. Introduction

Without discretionary power, there is no room for political budget cycles (PBC). Unlike asymmetric information, the degree of discretion of the executive has been overlooked in the empirical literature on PBC, perhaps because theoretical papers on opportunistic cycles usually model fiscal policy in terms of a single policy maker with full discretion. However, in the U.S. two-party system Alesina and Rosenthal (1995) show how divided government is a tool to moderate the executive. A similar logic might apply in an opportunistic framework, where an opposition legislature may play a special role in moderating PBC. Indeed, Schuknecht (1996) suggests that stronger PBC in developing countries might be due to the existence of weaker checks and balances there.

Hence, what we add to the ongoing debate in Shi and Svensson (2002a, 2002b), Persson and Tabellini (2002), and Brender and Drazen (2004) about the factors behind conditional PBC is a study of the role of effective checks and balances that reduce the discretion of the executive. To measure the nominal presence of a legislative veto player, we use the Henisz (2000) political constraints index. We then construct a measure of effective checks and balances, as the product of the presence of a legislative veto player and the International Country Risk Guide (ICRG) measures of rule of law.

We focus on the behavior of the budget surplus, because it is the most sensitive indicator of aggregate PBC. We also look at the effect of checks and balances on the persistence of the budget surplus, taking into account the literature on the costs of coalition governments and divided government in terms of slower adjustment to shocks (Sachs and Roubini 1989, Alt and Lowry 1994), and more generally the suggestion in Tsebelis (2002) that more veto players imply that it is harder to change the status quo.

^{*} This chapter is based in a research project on Political Budget Cycles developed in collaboration with Jorge M. Streb and Gustavo Torrens.

We specially thank Alejandro Saporiti for helping to start this project. Adi Brender and Allan Drazen provided their database on political budget cycles. It was great to receive insightful suggestions from Marco Bonomo and Sebastián Galiani. We benefited from comments by María Laura Alzúa, Mauricio Cárdenas, Alejandro Corbacho, Andrés Escobar, Marcela Eslava, Leonardo Hernández, Jorge Nougués, Ernesto Stein, and participants at the meetings of the LACEA Political Economy Group in Cartagena, the AAEP in Buenos Aires, and the Encontro Brasileiro de Econometria in João Pessoa, at the Conference on Monetary and International Economics of La Plata and at seminars at UdeSA, UTDT, UCEMA and UNLP.

Section II briefly reviews the empirical literature on PBC most closely connected to our study. Section III presents the theoretical framework behind this study. Section IV describes the dataset, which draws mainly on the Brender and Drazen (2004) cross-country panel of democracies, and the Henisz (2002) political constraints dataset. Section V presents econometric evidence on electoral budget cycles, isolating the discretional PBC. Section VI has the conclusions and questions for further research.

II. Empirical literature

There is a rich empirical literature on electoral cycles in fiscal policy. Tufte (1978) provides early evidence on opportunistic fiscal cycles in the United States and other countries. Recently, there has been a wave of empirical work on aggregate PBC using panels of countries. We concentrate on the studies by Shi and Svensson (2002a, 2002b), Persson and Tabellini (2002), and Brender and Drazen (2004), which are the foundation of our research.

We describe these studies below. Briefly stated, Shi and Svensson (2002a, 2002b) find PBC are particularly pronounced in developing countries, relating this to greater corruption and less informed voters. In the subset of democratic countries, Persson and Tabellini (2002) find PBC are stronger in presidential countries and in countries with proportional elections. Brender and Drazen (2004), who also analyze democratic countries, find that new democracies have strong PBC, but in the remnant countries, whether developed or developing, and whatever their form of government, electoral rules, or level of democracy, PBC are not significant.

A. Shi and Svensson

Shi and Svensson (2002b) analyze, for a panel of 91 countries over the 1975-1995 period, the influence of a variable *ele* that takes value 1 in electoral years, and 0 elsewhere. They find that there is a pre-electoral cycle in the fiscal surplus that is much stronger in developing countries: the surplus falls 1.4 percentage points (p.p.) of GDP, against 0.6 p.p. in developed countries. The reason for this difference is not the revenue cycle, which falls 0.3 p.p. in both groups, but rather that spending rises much more strongly in developing countries. They are able to explain these differences across groups of countries in terms of larger rents for incumbents in developing countries, using as proxies either the Transparency International measure of degree of corruption, or an average of five ICRG institutional indicators (rule of law, corruption in

government, quality of the bureaucracy, risk of expropriation of private investment, and risk of repudiation of contracts).

Shi and Svensson (2002a) look at a panel of 123 countries over the 1975-1995 period. Besides the pre-electoral effects captured with *ele*, they look at the combined pre- and post-electoral effects with a variable *pbc* that equals 1 in electoral years, -1 in post-electoral years, and 0 otherwise. The variable pbc, which imposes the restriction that the contraction after elections is of the same magnitude as the expansion prior to elections, almost invariably turns out to be more significant in statistical terms than the ele variable. They again find that PBC are pervasive, and that cycles are stronger in developing countries: *pbc* has a coefficient of -1.0 in developing countries, and -0.4 in developed countries. They explain the differences in terms of a variable sum, a weighted average of two indicators. First, the variable rents, an average of the five ICRG indicators mentioned above. The rationale is that low rents (i.e., a higher value of *rents*) indicate smaller incentives to remain in power. Second, the variable informed voters, the product of number of radios per capita and a dummy that measures the freedom of broadcasting. The rationale is that a greater proportion of informed voters can reduce the problems of asymmetric information that allow cycles to take place. They find that the composite variable sum explains the differences between developing and developed cycles in regard to *ele* (however, they overlook to report the results with *pbc*).

B. Persson and Tabellini

Persson and Tabellini (2002) restrict their panel to 60 democratic countries over the 1960-1998 period. They distinguish between the pre-electoral component of electoral cycles in fiscal policy, *ele*, and the post-electoral component, ele(+1), which takes value 1 in post-electoral years, and 0 elsewhere.

Though they do not test whether the differences are statistically significant, there appears to be a clear asymmetry in government expenditure, which is significantly cut the year after elections, while there is no pattern in the year before elections. On the other hand, tax cuts before elections are followed by similar hikes after elections. This pattern is reflected in the electoral behavior of the budget surplus, which falls 0.1 p.p. of GDP before elections, and rises 0.4 p.p. afterwards. Controlling for the effect of the level of democracy, they find cycles not only in the whole range of democracies (polity index from the Polity IV dataset between 1 and 10), but also in the countries with the best democratic institutions (polity index of 9 or 10).

Persson and Tabellini also analyze the effect of electoral rules and forms of government on PBC. As to electoral rules, they find a statistically significant difference in the case of spending before elections, which tends to fall in majoritarian countries, and to rise in proportional countries (though these effects are not statistically significant in themselves, the difference is). As to the form of government, the differences are more prominent. In presidential countries, the post-electoral effects of a fall in expenditure, and a rise of taxes and surplus, are stronger than in parliamentary countries, and the differences tend to be statistically significant.

C. Brender and Drazen

Brender and Drazen (2004) study a panel of 68 democratic countries over the 1960-2001 period. They concentrate on pre-electoral effects using the *ele* variable. They distinguish between new and old democracies. Countries are new democracies during the first four competitive elections, before becoming established democracies. The idea behind this is that voting may require a local learning process that matures with electoral experience, so the problems of asymmetric information may be alleviated over time.

When all countries are pooled, the electoral effect on the budget surplus of the first four competitive elections is between -1 and -1.2 percentage points of GDP, while the rest of the elections have a negligible effect on the budget surplus. When they partition the data, Brender and Drazen find that PBC are statistically significant in new democracies. On the other hand, old democracies show no evidence of cycles using the *ele* variable, whether in OECD countries or not, and whatever the level of democracy (countries with a polity index between 0 and 9, or an index of 10), the form of government (presidential or parliamentary), or the electoral rules (majoritarian or proportional).

III. Theoretical framework

Two key references on rational electoral cycles are Rogoff (1990) and Lohmann (1998a). They have different implications on the likelihood of PBC, and on the effects of PBC on the probability of reelection. Rogoff (1990) models electoral cycles in fiscal policy building on earlier work by Rogoff and Sibert (1988). Under asymmetric information, he shows that cycles can be interpreted as a signal of the competency of the incumbent. In equilibrium, only competent incumbents engage in PBC, and PBC

increase the probability of reelection. Lohmann (1998a) models electoral cycles in monetary policy. She makes the nice point that even if one abstracts from the signaling problem, there will still be cycles under asymmetric information about the policy process. The underlying issue is a credibility problem, by which the executive cannot credible commit to not pursue expansionary policy before elections. This credibility problem carries over to fiscal policy. Shi and Svensson (2002a), in a setup that includes government debt, show that the incumbent will have an incentive to raise total expenditure and lower taxes, thereby increasing the budget deficit. In equilibrium, all types of incumbents engage in cycles, so cycles do not increase the probability of reelection.

The standard results on rational PBC not only require asymmetric information, but also a fiscal authority with discretion over fiscal policy; once one drops the assumption of a single fiscal authority, the possibility of PBC will depend on the leeway that the legislature allows the executive in pursuing electoral destabilization (Streb (2003)). This may be empirically relevant, since Alesina, Roubini, and Cohen (1997, chaps. 4 and 6) trace the lack of recent evidence on opportunistic cycles in the United States back to the fact that after 1980 many federal transfer programs have become mandatory by acts of Congress, so they cannot be easily manipulated for short run purposes.

Persson, Roland and Tabellini (1997) sparked off fruitful research on the implications of separation of powers for fiscal policy, but they did not consider its specific implications for PBC. Saporiti and Streb (2004) formally analyze the implications for PBC of considering that in constitutional democracies the process of drafting, revising, approving and implementing the budget requires the concourse of the legislature.² In a framework of asymmetric information on the budgetary process similar to the Lohmann (1998a) timing, the moderating influence of the legislature is largest when the status quo is given by the previous period's budget. In terms of the time-consistency literature on "rules versus discretion" stemming from Kydland and Prescott (1977), which discusses how to solve the credibility problems faced by policy-makers, separation of powers is needed to make the budget rule credible, i.e., to commit the executive to not doing stimulative policies in electoral periods.

 $^{^{2}}$ In the case of monetary policy, Lohmann (1998b) and Drazen (2001) study how the delegation to an independent central bank can moderate electoral cycles. However, a single authority decides fiscal policy.

The interpretation we follow here is that separation of powers has a bite in the fiscal process when the executive and legislative branches are not perfectly aligned. This draws on the insight of Alesina and Rosenthal (1995) on the moderating influence of an opposition legislature. Through the metric of veto players (Tsebelis (2002)), this insight applies not only to divided government in presidential systems, but more generally to coalition governments. Coalition members start to compete among themselves for votes, so it is particularly hard for different political parties to collude close to elections. Given this interpretation, the Saporiti and Streb (2004) model has sharp empirical implications: if there is perfect compliance with the budget law, the budget rule is credible if the party of the executive's leader does not control the legislature.³ On the other hand, if there is imperfect compliance, the budget rule is never credible. Consequently, PBC should be larger either in countries with low legislative checks and balances, or low observance of the rule of law. We explore this conjecture.

IV. Data and Econometric Specification

We use the Brender and Drazen (2004) dataset. Additionally, we resort to the Henisz (2002) POLCON dataset. The precise definitions and sources of the variables used in the regressions are given in Table1.

Brender and Drazen (2004) compile a panel data set that covers 68 developed and developing democracies, with annual observations for the period between 1960 and 2001. The sample is restricted to years in which the polity index from the Polity IV Project is non-negative, when the country is a democracy with competitive elections. They construct election dates with data from the Institute for Democracy and Electoral Assistance, the International Foundation for Electoral Systems, the Database of Political Institutions (DPI) Version 3, and several other sources.

Brender and Drazen depurate the IMF *International Financial Statistics* (IFS) fiscal series on government surplus, total expenditure, and total revenue and grants, and calculate them as percentage of GDP (drawn from the IFS). They draw on the World Bank *World Development Indicators* for control variables like per capita GDP, GDP growth rates and share of international trade.

³ This is related to the approach in Lohmann (1998b) on the conditions for independent monetary policy in Germany.

Variable	Description	Source
Texp	Total government expenditure as a percentage of GDP	B&D(2004)
Trg	Total government revenue and grants as a percentage of GDP	B&D(2004)
Bal	Fiscal balance as a percentage of GDP, given by trg-texp	B&D(2004)
lngdp_pc	Natural log of GDP per capita	B&D(2004)
Gdpr	Annual growth rate of real GDP	B&D(2004)
Trade	Share of international trade as a percentage of GDP	B&D(2004)
pop65	Fraction of population above 65	B&D(2004)
pop1564	Fraction of population between 15 and 64	B&D(2004)
ln(1+pi)	Natural log of 1 plus the inflation rate	IFS
Polcon3	Political constraints index	H(2002)
vetoplayer	Takes value 1 if $polcon3 \ge 2/3$, and $3/2*polcon3$ otherwise	O.C.
Law	Law and Order index, combined with the ICRG Rule of Law index in the early	H(2002) and
	years when the former is not available, divided by 6	ICRG
Lawd	Dummy, takes value 1 for country if $law \ge 4$ always, 0 otherwise	O.C.
Checks	Effective veto player, given by vetoplayer*law	O.C.
Checksd	Alternative measure of effective veto player, given by vetoplayer*lawd	O.C.
Ele	Takes value 1 in election year, 0 otherwise	B&D(2003)
Pbc	ele minus its lead $ele(+1)$, takes value 1 in election year, -1 in the following	O.C.
	year, and 0 otherwise	
pbc_dis	Discretional component of cycle, given by $pbc^*(I - checks)$	O.C.
pbc_disd	Discretional component of cycle, given by $pbc^*(I - checksd)$	O.C.
Demo	Takes value 1 if Polity Index≥0.	B&D(2004)
Oecd	Takes value 1 if country belongs to OECD, 0 otherwise	B&D(2004)
Newd	Takes value 1 if country is new democracy, 0 otherwise	B&D(2004)
Pres	Takes value 1 if form of government is presidential, 0 if parliamentary	B&D(2004)
Prop	Takes value 1 if electoral rule is proportional, 0 if majoritarian	B&D(2004)

Notes: B&D(2003) refers to Brender and Drazen (2003), and similarly for B&D(2004); H(2002), to Henisz (2002); IFS, to the IMF *International Financial Statistics*; O.C., to variables that are our own construction.

From the Henisz (2002) POLCON dataset, we use the political constraints index *polcon3*. This index takes into account the extent of alignment across the executive and

legislative branches of government, and was designed by Henisz (2000) to measure the political constraints facing the executive when implementing a policy. More alignment increases the feasibility of policy change and implies less political constraints for the executive. The minimum is a value of 0, which implies no constraints and absolute political discretion for the executive. As the value of *polcon3* increases, more political constraints are implied. With a single legislative chamber, *polcon3* may reach a maximum of 2/3; while with two chambers the maximum is 4/5, when neither of the chambers is aligned with the executive.⁴

The Henisz (2000) political constraints measure is derived in a spatial model under the assumption that the status quo policy is uniformly distributed over the policy space [0,1]. Instead, based on the approximation that in many countries the status quo policy is given by the previous budget, and the fact that a legislature can prevent PBC provided that the status quo is given by the previous non-electoral year budget (Saporiti and Streb (2004)), our variable of interest is whether a legislative veto player exists or not. Hence, we define a variable *vetoplayer* that rescales *polcon3*, dividing it by 2/3, and which equals 1 for values of *polcon3* equal to 2/3 or more, because values of 2/3 or more imply that the executive faces at least one veto player. In consequence, *vetoplayer* varies in the [0,1] interval.

We do not have a direct measure of adherence to the budget law. Instead, the POLCON dataset reports the ICRG index on Law and Order, which measures the degree of rule of law based on a scale from 0 (low) to 6 (high) characterizing the strength and impartiality of the legal system and the general observance of the law. In earlier years when the Law and Order index is not available, we use instead the ICRG Rule of Law index.⁵ We divide these indices by 6, so *law* varies in the [0,1] interval.

Our measure of effective checks and balances is *checks=vetoplayer*law*, which combines *vetoplayer* with *law* to capture both the legislative checks and balances and the degree of compliance with the law. This is our main variable to condition PBC.

Following the theoretical framework and previous empirical literature on electoral cycles in fiscal policy, a relation between a given fiscal variable y in country *i* and year $t(y_{i,t})$ and the electoral cycle can be described as follows:

⁴ Henisz (2000, 2002) has another measure of political constraints, *polcon5*, that takes into account whether the country is a federal system or not, and whether the judicial system is independent or not. Federalism might be double-counted there, since it is already included in a second chamber of a legislature (Tsebelis (2002), chap. 8).

⁵ When there are overlapping observations, Rule of Law is an unbiased predictor of Law and Order, since the intercept is zero and the coefficient is 1. Therefore, we use the more recent series on Law and Order, supplementing it with Rule of Law when the former has missing observations.

where $E_{i,t}$ is a dummy election variable, $x_{i,t}$ is a vector of *m* controls, $z_{i,t}$ is a proxy

$$y_{i,t} = \sum_{j=1}^{k} \beta_{j} y_{i,t-j} + \sum_{j=1}^{m} \gamma_{j} x_{j,i,t} + \delta_{E} E_{i,t} + \lambda z_{i,t} + \eta z_{i,t} E_{i,t} + \varphi z_{i,t} y_{i,t-1} + \mu_{i} + \varepsilon_{i,t} \quad , \tag{1}$$

variable for effective checks and balances conditioning the electoral policy manipulations, μ_i is a specific country effect, and the term $\varepsilon_{i,t}$ is a random error that is assumed i.i.d. This specification represents a dynamic panel model, where the dependent variable is a function of its own lagged levels, a set of controls and the electoral timing conditioned by effective checks and balances.

Estimates are performed using two methods, Fixed Effects (FE) and Generalized Method of Moments (GMM) for dynamic models of panel data using the procedure developed by Arellano and Bond (1991).

V. Empirical Evidence

We now turn to the evidence on aggregate PBC, focusing on the budget surplus. We first introduce effective checks and balances, to isolate the influence of discretional executive power on PBC. We then look at the sensitivity of the results when restricted to developed or developing countries. To make sure the impact of executive discretion on electoral cycles is not driven by a larger degree of uninformed and inexperienced voters, we then contrast, at one corner, developed countries that are established democracies with, at the other, less developed countries that are new democracies. Finally, we partition these subsets according to form of government and electoral rules.

We use the same control variables as Brender and Drazen (2004), except for the use the growth rate of real GDP to control for cyclical effects.⁶ We additionally control for the effect of inflation and its square, ln(1+pi) and ln(1+pi)sq, to account for issues like lack of indexation of tax bases and tax collection lags. We exclude Sweden from the sample, due to a jump in the fiscal series in the early 1990s, so our panel is reduced to 67 countries (see Table 2). The data is annual, though monthly data would be ideal, since the estimates with annual data are downward biased and may lead to underestimate the size of PBC.⁷ Descriptive statistics are presented in Table 3.

⁶ The use of the output gap measured with the Hodrick-Prescott filter does not affect the results. Since a lagged budget surplus term is included, this captures the negative effects of low growth (and hence a recession with below-trend output) on future budget surpluses.

⁷ As Akhmedov and Zhuravskaya (2004) show for Russia, the effects of PBC are strongest in the months closest to elections, and shifts of opposite sign in fiscal policies around elections partly cancel out with low frequency (quarterly or annual) data. In the Latin American environment where inflation is a means of taxation, Stein, Streb and Ghezzi (2004) also find that the manipulation of nominal exchange rate policy follows a short-run PBC, where on average the changes are concentrated in the four months up to elections, and the four months that follow (the

Country	oecd	newd	pres	prop	Years with <i>demo</i> \ge 0	checks	checksd
Argentina	0	1	1	1	1973-75; 83-2001	0.41	0.00
Australia	1	0	0	1	1960-2001	0.74	0.71
Austria	1	0	0	1	1960-2001	0.64	0.64
Belgium	1	0	0	1	1960-2001	0.98	0.89
Bolivia	0	1	1	1	1982-2001	0.22	0.00
Brazil	0	1	1	1	1960-63; 85-2001	0.23	0.00
Bulgaria	0	1	1	1	1990-2001	0.47	0.59
Canada	1	0	0	0	1960-2001	0.64	0.63
Chile	0	1	1	0	1960-72; 89-2001	0.56	0.62
Colombia	0	0	1	1	1960-2001	0.15	0.00
Costa Rica	0	0	1	1	1960-2001	0.38	0.56
Cyprus	0	0	1	1	1960-62; 68-2001	0.33	0.00
Czech Rep.	0	1	1	1	1990-2001	0.73	0.78
Denmark	1	0	0	1	1960-2001	0.80	0.79
Dominican Rep.	0	1	1	1	1978-2001	0.36	0.00
Ecuador	0	1	1	1	1960; 68-71; 79-2001	0.24	0.00
El Salvador	0	1	1	1	1984-2001	0.21	0.00
Estonia	0	1	1	1	1991-2001	0.49	0.00
Fiji	0	1	1	0	1970-86; 90-99	n.a.	n.a.
Finland	1	0	0	1	1960-2001	0.81	0.81
France	1	0	0	1	1960-2001	0.56	0.59
Germany	1	0	0	1	1960-2001	0.60	0.61
Greece	1	1	1	1	1960-66; 75-2001	0.37	0.00
Guatemala	0	1	1	1	1966-73; 86-2001	0.15	0.00
Honduras	0	1	1	1	1982-2001	0.18	0.00
Hungary	0	1	0	1	1990-2001	0.63	0.70
Iceland	1	0	0	1	1960-2001	0.77	0.75
India	0	0	0	1	1960-2001	0.35	0.00
Ireland	1	0	0	1	1960-2001	0.54	0.64
Israel	0	0	1	1	1960-2001	0.43	0.00
Italy	1	0	0	1	1960-2001	0.66	0.74
Japan	1	0	0	1	1960-2001	0.75	0.77
Korea	0	1	0	1	1960; 63-71; 88-2001	0.35	0.00
Lithuania	0	1	1	1	1991-2001	0.47	0.64
Luxembourg	1	0	0	1	1960-2001	0.74	0.73
Madagascar	0	1	1	1	1900-2001	0.37	0.75
Malaysia	0	0	0	0	1992-2001	0.37	0.00
Mali	0	1	1	0	1900-2001	0.31	0.00
Mauritius	0	0	0	0	1992-2001	n.a.	n.a.
Mexico	0	1	1	1	1988-2001	0.23	0.00
	0	1	0	0	1988-2001		
Nepal Notherlands						n.a.	n.a.
Netherlands	1	0	0	1	1960-2001	0.73	0.79
New Zealand	1	0	0	1	1960-2001	0.53	0.52
Nicaragua	0	1	1	1	1990-2001	0.30	0.00

Table 2. Country Characteristics

exchange rate becomes 3% more appreciated than average in the run-up to presidential elections and 3% more depreciated after, because the government first steps down on the monthly rate of depreciation and then releases it).

Country oe		newdpres prop			Years with $demo \ge 0$	checks	checksd
Norway	1	0	0	1	1960-2001	0.73	0.72
Pakistan	0	1	0	0	1962-68; 73-76; 88-98	0.24	0.00
Panama	0	1	1	1	1960-67; 89-2001	0.18	0.00
Papua	0	0	0	1	1975-2001	0.46	0.00
Paraguay	0	1	1	1	1989-2001	0.31	0.00
Peru	0	1	1	1	1960-67; 80-99	0.15	0.00
Philippines	0	1	1	0	1960-71; 87-2001	0.24	0.00
Poland	0	1	1	1	1989-2001	0.39	0.46
Portugal	1	1	1	1	1976-2001	0.54	0.63
Romania	0	1	0	1	1990-2001	0.47	0.00
Russia	0	1	1	1	1992-2001	0.07	0.00
Slovakia	0	1	0	1	1993-2001	0.69	0.76
Slovenia	0	1	0	1	1991-2001	0.68	0.79
South Africa	0	0	1	1	1960-91; 94-2001	0.21	0.00
Spain	1	1	1	1	1978-2001	0.56	0.71
Sri Lanka	0	0	1	1	1960-2001	0.14	0.00
Switzerland	1	0	0	1	1960-2001	0.54	0.58
Trinidad	0	0	0	0	1962-2001	0.42	0.60
Turkey	1	1	1	1	1961-70; 73-79; 83-2001	0.38	0.00
UK	1	0	0	0	1960-2001	0.48	0.53
US	1	0	1	0	1960-2001	0.61	0.59
Uruguay	0	1	1	1	1960-70; 85-2001	0.39	0.00
Venezuela	0	0	1	1	1960-2001	0.33	0.00
Total	23	36	37	55		0.45	0.33

 Table 2. Country Characteristics (Cont.)

Notes: n.a. stands for not available; *checks* and *checksd* are computed for years with *demo*≥0.

	OECD countries				Non-OECD countries					Total					
	Ι	bal	texp	trg	checks	Ι	bal	texp	trg	checks	Ι	bal	texp	trg	checks
Old	19	-1.8	29.7	28.2	0.68	12	-2.8	25.7	22.6	0.32	31	-2.1	28.2	26.1	0.55
democracies		(3.6)	(10.3)	(9.5)	(0.15)		(4.6)	(11.0)	(9.9)	(0.18)		(4.0)	(10.7)	(10.0)	(0.23)
New	4	-5.1	27.9	22.9	0.47	32	-1.9	22.4	20.6	0.32	36	-2.4	23.4	21.0	0.34
democracies		(3.2)	(13.2)	(11.9)	(0.14)		(2.9)	(9.9)	(9.4)	(0.21)		(3.2)	(10.7)	(9.9)	(0.20)
Total	23	-2.2	29.5	27.5	0.64	44	-2.3	23.9	21.5	0.32	67	-2.2	26.6	24.4	0.45
		(3.7)	(10.7)	(10.0)	(0.17)		(3.8)	(10.5)	(9.7)	(0.20)		(3.8)	(11.0)	(10.3)	(0.24)

Table 3. Descriptive Statistics

Note: I refers to number of countries in each group; standard deviation reported in parenthesis below mean values.

A. Effective Checks and Balances and Discretional Component of PBC

We look at the influence of electoral cycles on the behavior of the budget surplus as a percentage of GDP, *bal*. We concentrate on the electoral dummy *pbc*, which takes value

1 in electoral years, -1 in post-electoral years, and 0 otherwise. This variable is meant to capture both pre and post-electoral effects, following the approach in Shi and Svensson (2002a). It is constructed with the *ele* variable in Brender and Drazen (2003), which only takes elections when the polity index is non-negative, combined with its lead, ele(+1).⁸

Persson and Tabellini (2002) remark that pre and post electoral effects may differ, so we first check if the restriction that the coefficient estimate of *ele* is equal to the coefficient estimate of minus ele(+1) is not rejected by the data.

Column (1) of Table 4 shows that the restriction that the pos-electoral contraction in the budget surplus as a percentage of GDP (*bal*) is of the same size as the pre-electoral expansion is not rejected by the annual data. We can interpret the effect of PBC as short-run displacements: the surplus falls below its trend, and then jumps above it, if expenditures are speeded up, and taxes postponed, around elections.

Column (2) of Table 4 shows that the electoral cycle measured by the *pbc* dummy variable shows a fall of 0.3 p.p. of GDP in the surplus before elections, and an equivalent rise after elections. The pattern observed by Shi and Svensson (2002a,b) that electoral cycles are stronger in developing countries appears here, though the difference is not statistically significant.⁹

Column (5) whether effective checks balances tests and (checks=vetoplayer*law) have a moderating influence on PBC, i.e., whether the coefficient estimate of the compound variable *pbc_checks=pbc*checks* shows the theoretically expected positive sign. We also use in column (3) an alternative measure *pbc_checksd=pbc*checksd*, where we define a dummy variable *lawd* that takes value 1 if *law* is larger than 4 in all years that are reported for a given country, and 0 otherwise, so checksd=vetoplayer*lawd. This treatment implies treating rule of law as a fixed characteristic, so each country has either low or high rule of law. This has the advantage of extending the available data to the whole period, since the data on rule of law is only available since 1982. The disadvantage is losing the variation over time of rule of law. Columns (3) and (5) of Table 4 show that either version of effective checks and balances moderate PBC, though in column (5) they do not have a significant influence by themselves (the probability value is 0.113).

⁸ Brender and Drazen (2004) adjust the election years in several countries, based on the difference between fiscal and calendar year. We prefer to stick to the original election dates in Brender and Drazen (2003).

⁹ Dividing *pbc* in column (2) of Table 1 into *pbc_oecd=pbc*oecd* and *pbc_noecd=pbc*(1-oecd)*, the coefficients are -0.214 (t=-2.14) and -0.401(t=-3.60). With p-value 0.2118, an F-test cannot reject the equality of both coefficients.

0 (12					
0.613	0.613	0.615	0.615	0.469	0.469
(31.57)***	(31.57)***	(30.74)***	(30.76)***	(16.17)***	(16.19)***
0.463	0.475	0.578	0.578	0.400	0.406
(1.37)	(1.40)	(1.64)*	(1.64)*	(0.55)	(0.56)
0.091	0.091	0.106	0.106	0.107	0.107
(5.01)***	(4.99)***	(5.57)***	(5.57)***	(4.27)***	(4.27)***
0.003	0.003	0.001	0.001	0.010	0.010
(0.62)	(0.61)	(0.24)	(0.24)	(1.08)	(1.07)
-0.031	-0.034	-0.062	-0.062	0.341	0.341
(-0.39)	(-0.44)	(-0.76)	(-0.76)	(1.85)*	(1.85)*
0.037	0.037	0.036	0.036	0.013	0.014
(0.98)	(0.99)	(0.87)	(0.87)	(0.15)	(0.16)
1.504	1.499	1.612	1.607	1.555	1.545
(2.54)**	(2.53)**	(2.68)***	(2.67)***	(2.13)**	(2.12)**
-0.095	-0.091	-0.107	-0.105	-0.187	-0.184
(-0.55)	(-0.53)	(-0.62)	(-0.61)	(-0.93)	(-0.91)
				-0.975	-0.978
				(-1.42)	(-1.43)
		-0.043	-0.032		
		(-0.05)	(-0.04)		
-0.223					
(-1.75)*					
0.371					
(2.92)***					
	-0.297	-0.465		-0.793	
	(-3.99)***	(-3.91)***		(-3.30)***	
				0.700	
				(1.59)	
		0.398			
					-0.851
					(-4.61)***
			-0.483		()
-8.065	-8.105	-8.622		-10.236	-10.345
					(-1.32)
					Fixed-
					effects
					0.3546
					0.2891
					0.3118
					64
				860	860
		00	00		200
0.4733	-	-	-	-	-
0					
				A	
-	-	-	-	0.7061	-
	0.463 (1.37) 0.091 (5.01)*** 0.003 (0.62) -0.031 (-0.39) 0.037 (0.98) 1.504 (2.54)** -0.095 (-0.55) -0.223 (-1.75)*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 4. Discretional PBC in All Democracies

Notes: t statistics in parentheses; * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level. To control for time effects, dummies are included for each five-year period from 1960-64 to 1995-99, while the years 2000-01 are the base level. These coefficients are not reported.

Our main interest is in the net effect of checks and balances, given our conjecture that at least one effective veto player will prevent PBC. Specifically, the variable that isolates what can be called the discretional component of cycles is $pbc_dis=pbc*(1-checks)$, or $pbc_disd=pbc*(1-checksd)$. The discretional component of

PBC is an adjustment that implies, at one extreme, that if the legislature is perfectly aligned with the executive (*vetoplayer*=0), or if the observance of rule of law is very low (*law*=0, *lawd*=0), the original *pbc* variable is unchanged. At the other extreme, if the legislature is not aligned with the executive and constitutes a veto player (*vetoplayer*=1), and there is a high value of rule of law (*law*=1, *lawd*=1), an election year would not be counted as such because the electoral cycle would be completely counteracted by the legislative checks and balances.

Given that the coefficients of *pbc* and *pbc_checks* (*pbc_checksd*) are of the similar magnitude but opposite sign, we formally test the hypothesis that the coefficient of *pbc* is equal to minus the coefficient of *pbc_checks* (*pbc_checksd*). The F-tests in Table 4 do not allow to reject this.¹⁰ Columns (4) and (6) present the estimates with the discretional component of cycles.

The effects of discretional PBC are significant at the 1% level, as are those of standard PBC in column (2). However, once we isolate the discretional component, the estimated impact is larger for a country with no effective checks and balances: in contrast to the base estimate of 0.30 p.p. of GDP using *pbc*, the effect is 0.48 p.p. of GDP according to *pbc_disd*, and 0.85 p.p. of GDP according to *pbc_dis*. Part of the difference is due to different time periods: when *pbc_disd* in (4) is restricted to the same period as (6), the coefficient rises to 0.66 p.p. of GDP. As to the remainder, *pbc_disd* captures average rather than marginal effects, showing the influence of political constraints with switch from a low rule of law to a high rule of law country. In what follows we focus on *pbc_dis*.

There are elections on average every four years. Figure 1 depicts the time path around a year of elections *t* of the average budget surplus implied by *pbc* (-0.45) and by the discretional component *pbc_dis* (-0.85), around the mean value of *bal*= -2.50 in the 1982-2001 period (a common set of observations are used for comparability).

¹⁰ This also avoids multicollinearity, given the pair-wise correlation of 0.90 between *pbc* and *pbc_checks*, and 0.77 between *pbc* and *pbc_checksd*.

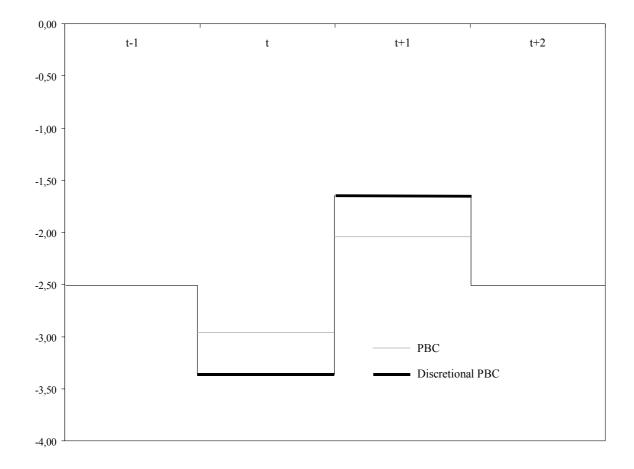


Figure 1. Time Path of Budget Balance around Elections

B. OECD and non-OECD countries

Our aim now is to review the Schuknecht (1996) conjecture that stronger PBC in developing countries might be related to weaker checks and balances there.

Effective checks and balances are indeed smaller in developing countries: *checks* equals 0.32 in non-OECD countries, compared to 0.64 in OECD countries (see Table 3). Consequently, discretionality is larger in non-OECD countries, which implies stronger PBC in non-OECD countries: multiplying the average degree of discretionality in each group by the coefficient estimate in column (6) of Table 4 implies that PBC in developing countries have an impact of -0.6 p.p. of GDP in non-OECD countries, against -0.3 p.p. of GDP in OECD countries. This agrees with Shi and Svensson (2002a, b), though the channel is that conjectured by Schuknecht (1996): larger checks and balances moderate cycles in developed countries.

Dependent variable: <i>bal</i>	(1)	(2)	(3)	(4)	(5)	(6)
bal(-1)	0.781	0.781	0.783	0.783	0.777	0.777
	(35.26)***	(35.29)***	(35.38)***	(35.41)***	(23.97)***	(23.99)***
lngdp_pc	0.672	0.675	0.678	0.678	0.375	0.384
	(1.35)	(1.36)	(1.36)	(1.37)	(0.41)	(0.42)
Gdpr	0.153	0.153	0.153	0.154	0.198	0.199
•	(6.28)***	(6.29)***	(6.31)***	(6.31)***	(4.81)***	(4.84)***
Trade	-0.004	-0.004	-0.004	-0.004	-0.002	-0.002
	(-0.55)	(0.55)	(-0.57)	(-0.57)	(-0.11)	(-0.12)
pop65	-0.023	-0.023	-0.026	-0.026	0.229	0.228
	(-0.30)	(-0.31)	(-0.34)	(-0.34)	(1.42)	(1.42)
pop1564	0.028	0.028	0.028	0.278	-0.956	-0.097
P ⁰ P ¹⁰ 01	(0.61)	(0.61)	(0.60)	(0.60)	(-0.81)	(-0.82)
ln(1+pi)	-2.882	-2.886	-2.818	-2.828	-2.947	-2.999
	(-1.24)	(-1.24)	(-1.22)	(-1.22)	(-0.76)	(-0.77)
ln(1+pi)sq	2.710	2.721	2.614	2.629	5.025	5.161
ma pring	(0.68)	(0.68)	(0.66)	(0.66)	(0.88)	(0.90)
checks	(0.00)	(0.00)	(0.00)	(0.00)	-0.441	-0.456
CHECKS					(-0.50)	(-0.51)
checksd			-0.116	-0.120	(-0.50)	(-0.51)
спескза			(-0.16)	(-0.120		
ele	0.225		(-0.10)	(-0.17)		
	-0.225					
-1-(-1)	(-1.87)*					
ele(+1)	0.246					
,	(2.03)**	0.000	0.702		1.050	
pbc		-0.236	-0.703		-1.250	
		(-3.40)***	(-3.15)***		(-3.03)***	
pbc_checks					1.396	
					(2.25)**	
pbc_checksd			0.730			
			(2.20)**			
pbc_dis						-1.061
						(-4.02)***
pbc_disd				-0.675		
				(-4.06)***		
constant	-8.238	-8.248	-8.217	-8.218	-0.549	-0.518
	(-1.42)	(-1.42)	(-1.42)	(-1.42)	(-0.05)	(-0.05)
Method of	Fixed-	Fixed-	Fixed-	Fixed-	Fixed-	Fixed-
estimation	effects	effects	effects	effects	effects	effects
R ² within	0.7348	0.7348	0.7366	0.7366	0.7100	0.7097
R ² between	0.9821	0.9820	0.9824	0.9824	0.9770	0.9771
R ² overall	0.8466	0.8465	0.8474	0.8474	0.8504	0.8503
No. countries	23	23	23	23	23	23
	779	779	779	779	387	387
No. observations					2.07	201
p-value F-test:	0.9152	_		-	_	_
p-value F-test: ele = -ele(+1)	0.9152	-	-	-	-	-
No. observations p-value F-test: ele = -ele(+1) $pbc= - pbc_checks$ pbc= -	0.9152	-	-	-	0.5519	-

Table 5. Discretional PBC in OECD Countries

Notes: t statistics in parentheses; * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level. To control for time effects, dummies are included for each five-year period from 1960-64 to 1995-99, while the years 2000-01 are the base level. These coefficients are not reported.

Dependent variable: <i>bal</i>	(1)	(2)	(3)	(4)	(5)	(6)
<i>bal(-1)</i>	0.483	0.482	0.472	0.472	0.199	0.205
	(15.90)***	(15.91)***	(14.43)***	(14.45)***	(4.62)***	(4.75)***
lngdp_pc	0.021	0.033	0.172	0.173	-0.093	-0.016
014	(0.04)	(0.07)	(0.34)	(0.34)	(-0.09)	(-0.02)
Gdpr	0.057	0.056	0.069	0.069	0.056	0.056
•	(2.21)***	(2.18)**	(2.44)**	(2.44)**	(1.80)*	(1.80)*
Trade	0.010	0.010	0.010	0.010	0.029	0.277
	(1.43)	(1.43)	(1.22)	(1.22)	(2.50)**	(2.37)**
pop65	0.301	0.297	0.188	0.186	-0.190	-0.222
	(1.36)	(1.34)	(0.74)	(0.74)	(-0.33)	(-0.39)
pop1564	0.021	0.021	0.027	0.027	-0.071	-0.048
	(-0.34)	(0.34)	(0.40)	(0.41)	(-0.44)	(-0.30)
ln(1+pi)	1.219	1.209	1.322	1.325	0.079	0.083
· •	(1.57)	(1.56)	(1.64)	(1.64)	(0.09)	(0.09)
ln(1+pi)sq	-0.133	-0.128	-0.155	-0.155	-0.010	-0.004
	(-0.61)	(-0.59)	(-0.68)	(-0.68)	(-0.04)	(-0.02)
Checks				. ,	-0.698	-0.756
					(-0.75)	(-0.81)
Checksd			0.970	0.972	. ,	
			(0.48)	(0.48)		
Ele	-0.270		. ,	. ,		
	(-1.21)					
<i>ele</i> (+1)	0.439					
	(1.97)*					
Pbc		-0.355	-0.396		-0.317	
		(-2.67)***	(-2.54)**		(-0.96)	
pbc_checks					-0.631	
•					(-0.75)	
pbc_checksd			0.191			
•			(0.34)			
pbc_dis						-0.697
						(-3.00)***
pbc_disd				-0.405		
				(-2.61)***		
Constant	-6.066	-6.102	-7.179	-7.211	0.657	-0.940
	(-1.19)	(-1.20)	(-1.23)	(-1.24)	(0.06)	(-0.08)
Matheat a Constinue (Fixed-	Fixed-	Fixed-	Fixed-	Fixed-	Fixed-
Method of estimation	effects	effects	effects	effects	effects	effects
R ² within	0.3232	0.3230	0.3082	0.3080	0.1933	0.1882
R ² between	0.2728	0.2764	0.3275	0.3310	0.2812	0.3196
R ² overall	0.3489	0.3504	0.3743	0.3757	0.2279	0.2438
No. countries	44	44	41	41	41	41
No. observations	796	796	709	709	473	473
p-value F-test:						
ele = -ele(+1)	0.6379	-	-	-	-	-
$pbc = - pbc_checks$	-	-	-	-	0.1029	-

Table 6. Discretional PBC in Non-OECD Countries

Notes: t statistics in parentheses; * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level. To control for time effects, dummies are included for each five-year period from 1960-64 to 1995-99, while the years 2000-01 are the base level. These coefficients are not reported.

Discretional PBC do not give the slightest hint that cycles are different in OECD and non-OECD countries.¹¹ However, as a sensitivity test we divide the estimates into

¹¹ For example, breaking down *pbc_dis* in column (6) of Table 1 into *pbc_dis_oecd=pbc_dis*oecd* and *pbc_dis_noecd=pbc_dis*(1-oecd)*, the coefficients are -0.856 (t=-2.31) and -0.850 (t=-3.99). With p-value 0.9875, an F-test cannot reject the hypothesis that both coefficients are identical.

separate two groups. Table 5 shows the same estimates as Table 1, but restricted to OECD countries, while Table 6 shows non-OECD countries.

The results for OECD countries basically parallel those for the complete set of democracies. The differences appear for non-OECD countries, where our measures of legislative checks and balances in columns (3) and (5) of Table 6 are not statistically significant. Part of the explanation might be a threshold effect: when using the variable *checksd=vetoplayer*lawd*, this variable mostly takes value zero in non-OECD countries because they have low values for rule of law, so a veto player might be ineffective unless a certain minimum threshold of rule of law is surpassed.

What is clear from Tables 5 and 6 is that the model works a lot better in OECD countries, in great extent due to the larger persistence of the budget surplus in OECD countries, which makes it more predictable.

C. Budget Balance, Expenditures and Revenues: Persistence Effects

Besides the direct effect of checks and balances on the level of electoral cycles, we additionally consider their indirect effect on persistence, given the observation in Tsebelis (2002) that more veto players should lead to more persistence of policies.

Column (1) of Table 7 only differs from column (6) of Table 4 in the inclusion of the lagged term $bal(-1)_dis=bal(-1)*(1-checks)$, where the past surplus interacts with the current degree of discretionary power. More discretion (less effective checks and balances) decreases the persistence of budget surpluses (deficits), which can help explain why the budget balance in OECD countries has more persistence than non-OECD countries. As in the literature on the costs of coalition governments and divided government, this might be an indication of how checks and balances can make it harder for governments to adjust the budget surplus (or deficit) in any year. However, this specific variable does not explain the variation within the group of OECD or non-OECD countries, something that is discussed further in the next Sub-section.

	<i>y</i> =	bal	y = t	exp	<i>y</i> =	trg
Dependent variable: y	(1)	(2)	(3)	(4)	(5)	(6)
y(-1)	0.791	1.099	0.720	0.995	0.569	0.440
	(11.87)***	(9.11)***	(9.61)***	(9.15)***	(6.71)***	(5.48)***
Lngdp_pc	0.342	-1.74	-1.737	-0.474	-2.091	-1.379
~	(0.48)	(-0.61)	(-1.21)	(-0.21)	(-1.63)	(-0.80)
Gdpr	0.105	0.159	-0.111	-0.118	0.003	0.004
-	(4.25)***	(4.35)***	(-2.26)**	(-4.22)***	(0.06)	(0.20)
Trade	0.016	0.027	0.014	0.041	0.002	0.017
	(1.75)*	(1.56)	(0.74)	(3.30)	(0.12)	(1.97)**
pop65	0.258	2.988	1.422	5.615	1.859	-0.120
	(1.42)	(0.96)	(3.89)***	(1.70)*	(5.61)***	(-0.07)
pop1564	0.058	0.101	0.181	-0.685	0.157	-2.481
	(0.66)	(0.11)	(1.02)	(-0.96)	(0.98)	(-3.22)***
ln(1+pi)	1.096	3.996	-2.245	-1.540	0.044	-2.681
-	(1.52)	(2.21)**	(-1.57)	(-0.80)	(0.03)	(-2.23)**
ln(1+pi)sq	-0.141	-0.862	0.396	0.401	0.139	0.770
	(-0.71)	(-2.32)**	(1.00)	(1.09)	(0.39)	(2.26)**
Checks	0.326	2.835	-1.088	-18.201	0.825	-0.895
	(0.46)	(1.94)*	(-0.37)	(-3.40)***	(0.29)	(-0.26)
pbc_dis	-0.787	-0.697	0.645	0.637	-0.231	-0.682
	(-4.33)***	(-6.01)***	(1.79)*	(2.51)**	(-0.71)	(-1.75)*
<i>y</i> (-1)_ <i>dis</i>	-0.604	-1.041	-0.007	-0.645	0.093	-0.053
	(-5.34)***	(-5.30)****	(-0.07)	(4.14)***	(0.93)	(-0.48)
Constant	-12.783	-0.176	-0.979	0.096	1.843	0.380
	(-1.65)*	(-0.71)	(-0.06)	(0.57)	(0.13)	(2.79)***
		Arellano-		Arellano-		Arellano-
Method of estimation	Fixed-effects	Bond Two-	Fixed-effects	Bond Two-	Fixed-effects	Bond Two-
		Step		Step		Step
R^2 within	0.3773	-	0.3006	-	0.2228	-
R ² between	0.3392	-	0.8497	-	0.7606	-
R ² overall	0.3557	-	0.7621	-	0.6867	-
Sargan Test ^b	-	1.000	-	1.000	-	1.0000
2 nd Order Serial		0 1107		0.0509		0 (15)
Correlation Test ^c	-	0.1107	-	0.9598	-	0.6452
No. countries	64	62	64	62	64	62
No. observations	860	725	868	733	860	725

Table 7. Discretional PBC in All Democracies: Budget Balance, Expenditure and Revenues

Notes: For fixed effects estimates, t statistics in parentheses; * significant at the 10% level, ** significant at the 1% level. To control for time effects, dummies are included for each five-year period from 1980-84 to 1995-99, while the years 2000-01 are the base level. These coefficients are not reported. For GMM estimates, z statistics in parentheses; * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level. The instruments used in GMM regressions are two lags of the dependent variable and one lag of covariates. Reported coefficients correspond to the lagged first difference of the dependant variable (second lag not reported) and the first difference of covariates (lagged differences not reported). All instruments are treated as strictly exogenous. (a) Using heteroskedastic-consistent estimator of the variance-covariance matrix of the parameter estimates. (b) P-values for rejecting the null hypothesis in test of the over identifying restrictions, asymptotically distributed as a χ^2 under the null hypothesis of instruments uncorrelated with the residuals. In one-step estimations p-values come from the one step homoskedastic estimator. (c) P-values for rejecting the null hypothesis in test for second order serial correlation in the first-difference residuals, asymptotically distributed as N(0,1) under the null of no serial correlation.

To track the possible sources of discretional PBC in the budget surplus, columns (3) and (5) show the results with total expenditure (texp) and total revenue and grants (trg) as dependant variables. The discretional PBC cycle is related to a tendency of expenditure to go up, and revenues to go down, in election years (a pattern that is reversed after elections). These effects are not always statistically significant by themselves in the FE estimates. However, it is clear that their combined effect leads to a significant electoral cycle in the budget in column (1). In this sense, the budget surplus is a more sensitive indicator of PBC than its components.

All the regressions so far use country fixed effects. The use of fixed effects estimators in a regression with lagged dependent variables, as in our case with bal(-1), introduces a potential bias. Since the order of the bias is 1/T, were T is the length of the panel, we expect a small bias.¹² The Arellano-Bond procedure addresses this bias. Nevertheless, it makes use of the lagged values of the explanatory variables as instruments, and this reduces the set of observations. To make sure the estimates are robust to different econometric methodologies, results from the two methods are reported.

Columns (2), (4) and (6) were carried out with the GMM estimator using the Arellano-Bond procedure. We used the one step heteroskedastic-consistent estimator of the variance-covariance matrix of the parameter estimates and the two-step estimator, presenting the best results according to the Sargan test and the second order correlation test. The results from the GMM estimates confirm the results from FE estimates for the relevant variables. Indeed, the GMM estimates of Table 7 show more clearly that effective checks and balances have significant impacts on PBC in the budget surplus, expenditures and revenues. On the other hand, effective checks and balances do not affect the persistence of revenues, only of the budget surplus and expenditures.

D. Rich Established Democracies and Poor Young Democracies

Given the fact that voters in established democracies might behave as fiscal conservatives that punish deficit spending, Brender and Drazen (2004) designed a filter variable *newd* to take into account whether a country is a new democracy or not. We classify a country as *newd* if, according to Brender and Drazen (2004), any of the elections in the sample period belongs to the first four competitive elections.

 $^{^{12}}$ There are on average between 13 and 14 observations per country in columns (1), (3) and (5).

The fact that new democracies have lower effective checks and balances than old democracies (*checks* of 0.34 vs. 0.55) can help explain the results in Brender and Drazen (2004) on PBC being significant in new democracies. Taking into account *newd*, we present estimates for the two most typical groups: OECD countries that are established democracies (19 out of 23 OECD countries fall into that category) and non-OECD countries that are new democracies (32 out of 44 non-OECD countries).

Dependent variable:	Total	Total	Parliamentary	Proportional	Majoritarian
bal	(1)	(2)	(3)	(4)	(5)
<i>bal(-1)</i>	0.716	0.774	0.716	0.722	0.767
	(10.75)***	(5.29)***	(10.54)***	(10.14)***	(1.74)*
lngdp_pc	-0.104	0.573	-0.447	-0.437	-0.044
	(-0.12)	(0.17)	(-0.48)	(-0.43)	(-0.02)
gdpr	0.231	0.235	0.235	0.238	0.228
	(5.12)***	(3.15)***	(4.98)***	(4.66)***	(2.02)*
trade	-0.002	-0.020	-0.007	-0.017	-0.011
	(-0.16)	(-0.83)	(-0.48)	(-0.90)	(-0.18)
pop65	0.517	0.483	0.566	0.534	1.658
	(2.90)***	(0.61)	(3.07)***	(2.75)***	(1.48)
pop1564	0.021	0.223	0.092	0.143	-0.642
	(0.14)	(0.58)	(0.59)	(0.80)	(-0.75)
ln(l+pi)	4.719	8.600	4.732	4.224	21.956
· • ·	(1.17)	(0.99)	(1.14)	(0.97)	(0.69)
ln(1+pi)sq	-9.611	-16.442	-9.421	-8.557	-30.952
	-1.33	(-1.50)	(-1.28)	(-1.10)	(-0.10)
checks	-0.954	-0.373	-0.816	-0.833	-9.359
	(-0.93)	(-0.25)	(-0.78)	(-0.72)	(-2.11)**
pbc_dis	-0.817	-0.749	-0.821	-0.802	-0.912
-	(-2.89)***	(-3.32)***	(-2.76)***	(-2.41)**	(-1.91)*
bal(-1)_dis	0.218	-0.382	0.208	0.202	-0.387
	(1.17)	(-1.03)	(1.09)	(0.97)	(-0.37)
Constant	-7.138	0.022	-8.864	-11.219	25.137
	(-0.60)	(0.31)	(-0.71)	(-0.84)	(0.38)
		Arellano-	Fixed-effects	Fixed-effects	Fixed-effects
Method of estimation	Fixed-effects	Bond One-			
		Step ^a			
R ² within	0.7844	-	0.7836	0.7797	0.8739
R ² between	0.8790	-	0.8353	0.7996	0.9918
R ² overall	0.8292	-	0.8065	0.7900	0.3091
Sargan Test ^b	-	1.000			
2nd Order Serial					
Correlation Test ^c	-	0.2276			
No. countries	19	19	18	16	3
No. observations	319	279	302	266	53

Table 8. Discretional PBC in Established OECD Democracies

Note: For fixed effects estimates and GMM estimates, see notes below Table 4.

Table 9.	Discretional	PBC in	Young Nor	1-OECD	Democracies

Dependent variable:	Total	Total	Presidential	Parliamentary	Proportional	Majoritarian
bal	(1)	(2)	(3)	(4)	(5)	(6)
bal(-1)	0.347	0.263	0.307	0.415	0.274	1.040
	(1.73)*	(1.07)	(1.22)	(1.14)	(1.21)	(2.68)**
lngdp_pc	-1.948	1.490	-3.489	-1.834	-1.728	-12.802
014	(-1.00)	(0.35)	(-1.55)	(-0.34)	(-0.80)	(-1.37)
Gdpr	0.114	0.097	0.126	0.038	0.106	0.106
1	(2.88)***	(1.27)	(2.77)***	(0.40)	(2.41)**	(1.06)
Trade	-0.005	0.002	-0.008	-0.032	-0.005	0.009
	(-0.26)	(0.06)	(-0.35)	(-0.72)	(-0.24)	(0.18)
Pop65	0.081	9.437	0.709	-0.187	0.154	-1.326
1	(0.12)	(1.84)	(0.86)	(-0.09)	(0.21)	(-0.29)
Pop1564	-0.005	-1.264	0.306	0.678	0.008	-1.050
1	(-0.02)	(-1.31)	(0.13)	(0.71)	(0.04)	(-0.90)
ln(1+pi)	1.294	0.256	1.330	-14.020	1.027	12.236
	(1.25)	(0.16)	(1.19)	(-1.38)	(0.93)	(0.88)
ln(1+pi)sq	-0.391	-0.214	-0.407	10.888	-0.349	-95.469
	(-1.46)	(-0.87)	(-1.42)	(1.58)	(-1.22)	(-1.37)
Checks	-2.485	-1.952	-1.981	-1.170	-3.693	5.427
	(-1.96)**	-(1.49)	(-1.27)	(-0.48)	(-2.52)**	(1.92)*
Pbc_dis	-0.626	-0.755	-0.583	-0.986	-0.807	0.107
-	(-2.01)**	(-2.91)***	(-1.70)*	(-1.08)	(-2.26)**	(0.26)
bal(-1)_dis	-0.423	0.327	-0.396	-0.084	-0.344	-1.140
	(1.44)	(1.03)	(-1.10)	(-0.10)	(-1.04)	(-2.13)**
Constant	12.398	0.037	18.960	-23.638	10.192	158.757
	(0.81)	(0.27)	(1.13)	(-0.48)	(0.60)	(1.41)
		Arellano-	Fixed-effects			
Method of	Fixed-effects	Bond One-	1 1100 0110005	Fixed-effects	Fixed-effects	Fixed-effects
estimation	1	Step ^a		i intea entretto	i nited enteetis	1 1100 0110000
R^2 within	0.1379	-	0.1410	0.3828	0.1481	0.6023
R^2 between	0.0394	-	0.2876	0.9269	0.0263	0.5365
R^2 overall	0.0011	-	0.0176	0.8230	0.0249	0.4363
Sargan Test ^b	-	1.000	0.0170	0.0200	0.0217	0.1505
2nd Order Serial						
Correlation Test ^c	-	0.1134				
No. countries	30	28	24	6	26	4
No. observations	294	235	251	43	255	39

Note: For fixed effects estimates and GMM estimates, see notes below Table 4.

Columns (1) and (2) of Table 8 show that PBC are significant even if one restricts the sample to rich established democracies, where Shi and Svensson (2002a) and Brender and Drazen (2004) note that voters are more informed and experienced. The main difference with column (1) of Table 7 is that the degree of discretion does not significantly affect the persistence of the budget deficit. Similar remarks hold for poor new democracies in Table 9.

Persson and Tabellini (2002) focus on the effects of different forms of government (presidential or parliamentary) and electoral rules (proportional or majoritarian) on PBC. The approach followed here in principle attempts to reduce these institutional differences to a common metric of veto players (Tsebelis (2002)).

The finding in Persson and Tabellini (2002) of stronger PBC in countries with presidential systems can be linked in our framework to lower effective checks and

balances compared to countries with parliamentary systems (*checks* of 0.33 vs. 0.60).¹³ We cannot explain differences between countries with proportional or majoritarian electoral rules, because they do not differ much according to checks and balances (*checks* of 0.46 vs. 0.41).

Introducing dummies to condition discretional PBC for form of government or electoral rules leads to find that cycles do not differ significantly between these groups. Given the large standard errors of coefficients, we do not present the full results, but rather show the sensitivity of the estimates in Tables 8 and 9 when they are restricted to subgroups of countries. The results on discretional PBC in Table 8 for rich established democracies remain unchanged, except for the subset of presidential countries where there are insufficient degrees of freedom to run a separate regression. As for poor new democracies in Table 9, we are not able to get significant results for parliamentary and majoritarian countries, but we have few observations (and large standard errors).

Our results always show clear evidence of discretional PBC in countries with proportional electoral rules, but this might be simply due to the fact that this is the group with the most observations (in our complete sample, 55 of the 67 countries have this electoral rule). In poor new democracies, presidential countries have significant discretional PBC, and in rich established democracies, parliamentary and majoritarian countries have significant discretional PBC.

VI. Final remarks

Aggregate electoral cycles are more controversial than electoral cycles in the composition of government spending, due to the weak evidence on aggregate PBC in OECD countries. Following the insight in Alesina and Rosenthal (1995) that divided government moderates executive discretion, we use the Henisz political constraints index to derive the presence of a legislative veto player, and combine it with the degree of rule of law to have a measure of the effective checks and balances that the executive faces and isolate the discretional component of PBC.

Given the literature on how coalition governments and divided government can make it harder to adjust to shocks (Roubini and Sachs (1989), Alt and Lowry (1994)), we also control for the influence of effective checks and balances on the persistence of the budget surplus. Though we find that less discretion indeed increases the persistence

¹³ 18 of the 37 presidential systems are in Latin America, a region characterized by developing countries that are almost all new democracies

of the budget surplus, this result vanishes when we consider OECD and non-OECD countries separately.

Our main finding is that effective checks and balances play a significant role in moderating PBC in OECD countries, reducing the size of cycles. After conditioning for this, discretional PBC are still present in the countries with the best-informed and experienced voters, namely, OECD countries that are established democracies. This points to a promising path using more detailed measures of veto players and budget institutions.

Our results complement those of Alt and Lassen (2004), who find electoral cycles in fiscal balance in advanced industrialized democracies when there is low transparency, while no such cycles can be observed with high transparency. Together with asymmetric information and learning by voters (and policy players), the message here is that discretionality matters. Incidentally, transparency might not be independent from checks and balances, since the requirement of reliable information on government activities is usually a demand of opposition parties.

Finally, our results can be given an econometric interpretation. There is a errorsin-variables problem in the existing literature if the discretionary component of PBC is the relevant variable. We can also give an omitted variable interpretation, where effective checks and balances is the missing variable. This omission is particularly serious in OECD countries that are established democracies, because they are positively correlated with high checks and balances, biasing the estimate of PBC downwards.

References

- Akhmedov, Akhmed And Zhuravskaya, Ekaterina (2004), "Opportunistic Political Cycles: Test in a Young Democracy Setting", *Quarterly Journal of Economics*, 119, 1301-1338.
- Alesina, Alberto, And Rosenthal, Howard (1995), *Partisan Politics, Divided Government and the Economy* (Cambridge, UK: Cambridge University Press).
- Alesina, Alberto, Roubini, Nouriel And Cohen, Gerald D. (1997), *Political Cycles and the Macroeconomy* (Cambridge, MA: MIT Press).
- Alt, James E., And Lassen, David D. (2004), "The Electoral Cycle in Debt is Where You Can't See It: Fiscal Transparency and Electoral Policy Cycles in Advanced Industrialized Democracies" (Manuscript, Harvard University and University of Copenhagen).
- Alt, James E., And Lowry, Robert C. (1994), "Divided Government, Fiscal Institutions, and Budget Deficits: Evidence from the States", *American Political Science Review*, 88, 811-828.
- Arellano, Manuel And Bond, Stephen (1991), "Some Tests Of Specification For Panel Data: Monte Carlo Evidence and an Application to Employment Equations", *Review of Economic Studies*, 58, 277-297.
- Brender, Adi And Drazen, Allan (2003), "Where Does The Political Budget Cycle Really Come From?" (Discussion Paper 4049, CEPR).
- Brender, Adi And Drazen, Allan (2004) "Political Budget Cycles In New Versus Established Democracies" (Working Paper 10539, NBER).
- Drazen, Allan (2001), "Laying Low During Elections: Political Pressure And Monetary Accommodation" (Manuscript, University of Maryland).
- Henisz, Witold J. (2000), "The Institutional Environment For Growth", *Economics and Politics*, 12, 1-31.
- Henisz, Witold J. (2002), "Polcon_2002 Codebook" (Manuscript, University Of Pennsylvania).
- Kydland, Finn E., And Prescott, Edward C. (1977), "Rules Rather Than Discretion: The Inconsistency of Optimal Plans", *Journal of Political Economy*, 85, 473-91.
- Lohmann, Suzanne (1998a), "Rationalizing the Political Business Cycle: A Workhorse Model", *Economics and Politics*, 10, 1-17.

- Lohmann, Suzanne (1998b), "Institutional Checks and Balances and the Political Control of the Money Supply", *Oxford Economic Papers*, 30, 360-377.
- Persson, Torsten, Roland, Gerard And Tabellini, Guido (1997), "Separation of Powers and Political Accountability", *Quarterly Journal of Economics*, 112, 1163-1202.
- Persson, Torsten And Tabellini, Guido (2002), "Do Electoral Cycles Differ Across Political Systems?" (Manuscript, IGIER and Bocconi University).
- Rogoff, Kenneth (1990), "Equilibrium Political Budget Cycles", American Economic Review, 80, 21-36.
- Rogoff, Kenneth and Sibert, Anne (1988), "Elections and Macroeconomic Policy Cycles", *Review of Economic Studies*, 55, 1-16.
- Roubini, Nouriel And Sachs, Jeffrey D. (1989), "Political and Economic Determinants of Budget Deficits in the Industrial Democracies", *European Economic Review*, 33, 903-33.
- Saporiti, Alejandro D. And Streb, Jorge M. (2004), "Separation of Powers and Political Budget Cycles" (Manuscript, Universidad del CEMA).
- Schuknecht, Ludger (1996), "Political Business Cycles in Developing Countries", *Kyklos*, 49, 155-70.
- Shi, Min And Svensson, Jakob (2002a), "Conditional Political Budget Cycles" (Discussion Paper 3352, CEPR).
- Shi, Min And Svensson, Jakob (2002b), "Political Budget Cycles in Developed and Developing Countries" (Manuscript, IIES, Stockholm University).
- Stein, Ernesto H., Streb, Jorge M. And Ghezzi, Piero (2004), "Real Exchange Rate Cycles around Elections", *Economics & Politics*, forthcoming.
- Streb, Jorge M. (2005), "Signaling in Political Budget Cycles. How Far are You Willing to Go?", *Journal of Public Economic Theory*, 7, 229-252.
- Tufte, Edward R. (1978), *Political Control of the Economy* (Princeton, NJ: Princeton University Press).
- Tsebelis, George (2002), Veto Players. How Political Institutions Work (New York, NY: Russell Sage Foundation).

Chapter 3

Conditional Political Budget Cycles in Argentine Provinces

I. Introduction

In this paper, we investigate the presence of electoraly-motivated manipulations in fiscal outcomes in Argentine provinces. We empirically address two main questions: Are political budget manipulations present in executive election periods in Argentine provinces? And, are there any systematic differences in the size and composition of expenditures and revenues in provinces politically aligned with the federal executive?

The political budget cycles literature relates elections and policy makers' behavior conjecturing that by rising public expenditures in election periods the incumbent can increase his chance of reelection. The first generation studies were based on the idea of adaptive expectations, assuming that in the future the voter will act partly based on what happened in the past. Thus, he or she can systematically be deceived. Later on, following the trend in economic analysis, rational expectations were introduced in formal models. Rational voters builds conjectures related to the competency of the politician and by increasing spending the incumbent can signal his level of competence. Regarding the incumbent motivations, there is a division between opportunist politicians and partisan politicians; namely, those who want to rule for the sake of power itself and those who want to do so in order to put their preferred policies into practice.

In Argentina, the literature has not yet deeply analyzed the phenomenon of budget cycles in election times. Meloni (2001) explores this issue by analyzing the change in provincial current expenditure and its relation with the votes obtained by the governing party. However, this study was not explicitly performed within the framework of the political budget cycle theory.

Considering the federal organization of Argentine provinces, it might seem relevant to sort out evidence about the existence of cycles in fiscal variables that may represent some kind of opportunist behavior on the part of the incumbent looking for reelection. This paper empirically analyzes the evidence of cycles in fiscal balance, expenditures and revenues in 22 Argentine provinces during the period between 1985 and 2001, using econometric methods for panel data. We consider the executive election date as the main explanatory variable for budget cycles. The rest of this paper is structured as follows. The next section briefly summarizes the theoretical framework on

political budget cycles. Section III presents the data set. Section IV describes the empirical specification and econometric techniques. The empirical results and discussion are reported in section V. Finally, Section VI concludes.

II. The Political Budget Cycle

A. Previous Literature

The first models that formalize the political behavior that generates cycles in economic variables in relation to the electoral calendar can be separated into two different views. One of them, called `Opportunistic Political Business Cycle´ makes emphasis on the opportunistic nature of the politician. This means that they have no other preference but to hold office, for which reason they act in such a manner to maximize the chances of being re-elected. The pioneering work of Nordhaus (1975) is within this trend, depicting the politician as a manipulator of pre-electoral outcomes. Lindbeck (1976) also follows this line.

There is another branch of the literature, the one in `Partisan Political Business Cycle' that stresses the partisan nature – as an ideological aspect- of the incumbent (Hibbs 1977). In this case, cycles in economic variables are originated in the ideological preferences of the politician.

First generation models are based on adaptive expectations. This behavior is sometimes called `myopic' (or irrational) on the part of the voter since, once the politician adopts expansive policies, the voter does not remember or does not take into account those recessive policies adopted by the incumbent in the past that they are likely to repeat in the future. It is worth noting that these models are based on the assumption of a negative relation between unemployment and inflation; that is, the possibility of exploiting a `Phillips curve'.

Models based on rational expectations (Kydland and Prescott 1977; and Barro and Gordon 1983) started to appear in the 80s. During the 90s -as well as in the present work- emphasis is made on fiscal policy rather than on monetary policy as the generator of cycles. Among the papers that are representative of this period are those by Rogoff and Sibert (1988) and Rogoff (1990). Here, the opportunist politician manipulates the expenditure policy during electoral years with the sole purpose of showing that they are competent, thus increasing their chances of winning the elections.

Recently, the literature has explored not only the level effect on fiscal variables but also the so-called composition effect; that is, how expenditure components (such as consumption and investment) change during this cycle of electoral origin. Among the contributions, those of Schucknecht (2000) and Block (2002) can be mentioned. Research into how institutional variables can impose (or relax) constraints on the cycle is not less relevant. That is, how strong institutions should temper the cycle and how, on the other hand, weak institutions would make way for the opportunist politician to distort policies. This kind of study, based on the exploration of institutional variables and their effects on the level and composition of the cycle can be seen in Shi and Svensson (2002) and in Block (2002).

This paper follows the line of models called `opportunist –rational' that, according to the definition by Alesina, Rubini and Cohen (1997), present the following distinctive characteristics:

- (i) Short-term manipulation of fiscal or monetary policy.
- (ii) Strengthening of policies after the elections.
- (iii) Non-systematic effects on unemployment.
- (iv) Politicians struggling for re-election.

B. Theoretical Framework

According to the Rogoff (1990) approach, opportunistic politicians generates cycles in the economic variables while trying to show their competency, which cannot be directly observed by the voter. In this way, they are trying to increase their chances of being reelected. One of the main issues is asymmetry in information: if the voters were able to directly observe the capacity or ability of the politician, their decision would be obvious.

The fact is that if ability is not easily observable then there is some possibility that the politicians manipulate fiscal policy in such a manner that they might seem to have more competency than the one they really have, thus augmenting the chances of winning the election. Rogoff's model could be outlined as follows: the politician produces a public good using two inputs, taxes and their competency. The latter can be thought of as a parameter of productivity, since capable incumbents need fewer resources to make more things and vice-versa.

The voters observe taxes and expenditure (which have different grades of visibility) and use that information to make inferences about the politician's capacity, which is not directly observable since other factors also influence elections vote is probabilistic and, there is some likelihood q that the politicians might be re-elected, and

(1-q) that might not. This information is known by them, for which reason they are tempted to take political steps so as to augment their chances for re-election q.

Rogoff concludes that given the informational asymmetries regarding the politician's capacity, expenditure will be increased by competent politicians - particularly the most clearly perceived by the voter- so as to pretend to be the most capable politician. In equilibrium, this behavior increases reelection chances of competent politicians.

Some aspects of visible and non-visible expenditures are worth noting. We have so far only referred to biases in expenditure towards its most visible components. Which type of expenditure are the most visible is not a clear-cut classification. Rogoff states that at election times, expenditure biases towards current expenditure, and this means an increase in current expenditure as a percentage of total expenditure. This point of view is not universally shared and empirical evidence appears divided.

Schuknecht (2000) assumes that the bias in expenditure in developing countries is towards capital goods. He states that starting great public works right before the elections, and then bringing them to a halt immediately after seems to be easier than increasing current expenditure, since the latter can entail short and long term commitments.

In the same vein, Krueger and Turán (1993) -when analyzing the electoral process in Turkey- argue that there are pre-electoral increases in both investment and infrastructure programs.

The empirical analysis in Schuknecht's study is performed using relative per capita levels of expenditures. Current expenditure and capital expenditure (as percentage of per capita GDP), both increase before elections. Nevertheless, the composition effect, that is, the current (or capital) expenditure as a percentage of total expenditure is not directly analyzed. Consequently, what is in fact found out that total expenditure increases before elections. However, nothing clear can be stated regarding the bias of the composition effect. Similarly, the work by Krueger and Turán does not test the composition effect either.

On the other hand, Block (2002) follows Rogoff's line of thought and argues that the bias in the composition effect moves towards current expenditure. However, he admits that the evidence accounting for his hypothesis becomes stronger when only the richest countries in the sample – controlling by per capita GDP– are taken into account.

43

In this paper we follow the approach presented by Block (2002) using current expenditure as percentage of total expenditures in order to test the possible bias in the expenditure composition ("composition effect") in election periods.

The idea that electoral budget cycles can be found at a sub-national level lies in the federal organization of Argentina. The Argentine Constitution, under sections 122 and 123 states: `*The provinces provide their own local institutions and are governed by them. They choose their governors, legislators and the rest of the provincial officers, without intervention of the Federal Government*´ and `*each province writes its own constitution....regulating its scope and content in the institutional, political, administrative, economic and financial orders*´. The fiscal autonomy of provinces from the federal government is a factor that allows the potential existence of electoral budget cycles at a local level.

III. Data

We construct a panel data set to test the existence of electoral cycles in provincial fiscal variables. Our data set includes data on provincial government budget balance, spending and revenues, political data on provincial executive election dates and political party in power, per capita Gross Geographic Product (GGP) and GGP growth. Our database has annual observations for 22 provinces for the period between 1985 and 2001, averaging four provincial executive elections.

Two provinces were excluded from the original sample. First, the City of Buenos Aires is excluded from the analysis since it was only in the year 1996 that the elections for Chief of Government (i.e. governor) were held. Up to that moment, the City Mayor was directly appointed by the national executive power. Second, the province of Corrientes is the other exception, because it had to undergo two federal interventions during the 90s. The first one, in 1991, was due to disagreement between the provincial electors; and the one in 1999 was due to serious social disturbances. Both provinces were excluded from the database to perform the econometric estimation.

The source of the fiscal data is the Ministry of Economy ("Dirección Nacional de Coordinación Fiscal con las Provincias, Secretaría de Hacienda del Ministerio de Economía y Producción de la Nación"). Geographic Gross Product (GGP) estimates were taken from Mirabella (2002), who approach the provincial GGP using residential electricity consumption. Table 1 presents the variables used for the estimates and Table 2 presents descriptive statistics of the dependent fiscal variables.

Table 1: Definition of Variables

Dependent Variables (fiscal variables). (All values expressed in constant 1993 Argentine Pesos deflated by the combined prices index -wholesale-consumer- from INDEC)

 DEF_{it} : Fiscal Balance [Deficit (-) Surplus (+)] divided by provincial GGP in province i year t Source: MECON

TEit: Total Public Expenditure divided by GGP from province I in year t. Source: own elaboration based on Ministry of Economy (MECON)

CE_{it}: Current Expenditure divided by public total expenditure in province i in year t. Source: MECON

 TR_{it} : Total Provincial Revenue divided by GGP in the province i in year t (includes revenue from provincial taxes, federal revenue sharing –"coparcicipación federal"- and other federal transfers –"aportes del tesoro"- Source: MECON

PTR_{it}: Revenue from Provincial Taxes divided by provincial GGP in province i in year t. Source: MECON

FRit : Provincial revenues from federal revenue sharing ("coparticipation federal") plus transfers from federal government divided by provincial GGP in province i in year t. Source: MECON

Control Variables

GGP_{it}: Natural log of per capita Geographic Gross Product of province i during year t Source: Mirabella (2002) and National Institute of Statistics and Census (INDEC)

GROWTH_{it}: GGP Growth rate in the province i between the year t and the t-1 Source: Mirabella (2002).

Election Variables

 ELE_{it} : Election dummy. Binary variable that assumes value 1 if in province i elections were held during the year t and 0 otherwise.

Source: own elaboration based on "Guia Electoral".

 $PBC_{i,t}$: Political Budget Cycle dummy. Variable assuming value 1 if $ELE_{i,t}$ is equal to 1; -1 if $ELE_{i,t-1}$ is equal to 1 and 0 otherwise. Source: own elaboration based on "Guia Electoral".

 $ELE+1_{it}$: Post Election dummy. Binary variable that assumes value 1 if $ELE_{i,t-1}$ is equal to 1 and 0 otherwise. Source: own elaboration based on "Guia Electoral".

ELE_UNAL _{ii}: Conditional Election dummy. Binary variable that assumes value 1 if in province i elections were held during the year t and the provincial and federal executive governments were unaligned (different political party), and 0 otherwise. Source: own elaboration based on "Guia Electoral".

ELE_AL_{it}: Conditional Election dummy. Binary variable that assumes value 1 if in province i elections were held during the year t and the provincial and federal executive governments were aligned (same political party), and 0 otherwise. Source: own elaboration based on "Guia Electoral".

PBC_UNAL i: Conditional Political Budget dummy. Binary variable that assumes value 1 if ELE_UNAL it is equal to 1; -1 if ELE_UNAL i.t-1 is equal to 1 and 0 otherwise. Source: own elaboration based on "Guia Electoral".

 PBC_AL_{it} : Conditional Political Budget dummy. Binary variable that assumes value 1 if ELE_AL_{it1} is equal to 1; -1 if ELE_AL_{it-1} is equal to 1 and 0 otherwise. Source: own elaboration based on "Guia Electoral".

	Mean	Std. Dev.	Min.	Max.	No. Obs
DEF	-0.022	0.031	-0.155	0.058	374
TE	0.237	0.123	0.052	0.812	374
CE	0.807	0.091	0.445	0.952	374
TR	0.215	0.113	0.046	0.825	374
PTR	0.028	0.014	0.004	0.121	374
FR	0.186	0.110	0.024	0.704	374

Table 2: Fiscal Variables: Descriptive Statistics

The electoral budget cycle is analyzed through the variables fiscal balance, total expenditure, expenditure composition¹, total provincial revenue, revenue from provincial taxes and revenue from the federal government². The period of analysis ranges from 1985 to 2001.

IV. Empirical Analysis

The theoretical and empirical literature on political budget cycles suggests that the timing of elections should influence fiscal outcomes. The relationship between a fiscal variable, y_{it} , and the electoral cycle can be stated as follows:

$$y_{i,t} = \alpha + \sum_{j=1}^{k} \beta_j y_{i\,t-j} + \sum_{j=1}^{m} \gamma_j x_{j\,i\,t} + \delta_1 e + \eta_i + \varepsilon_{it}$$
(1)

for i = 1...N, t = 1...T, j = 1 ...k, where *e* is a binary election variable indicating if an election took place in province i during the year t; *x* is a vector of control variables that in our estimations include per capita Geographic Gross Product (GGP) and the growth rate of the Geographic Gross Product (GROWTH).

This specification represents a standard dynamic panel, where the dependent variable is a function of its own lagged levels, of set of controls (x_j) , of the time when elections take place and of a specific effect per province (η_i) . The term ε_{it} is a random error that is assumed iid.

Assuming that the unobserved province-specific effects are identical across provinces, that the error term is not serially correlated, and that the explanatory variables are strictly exogenous then it is possible to estimate this relation consistently

¹ Ratio of current expenditure relative to total public expenditure. The most important component of current expenditure are salaries of provincial public servants. On the other hand, construction is the most important item of capital expenditure.

²Provincial revenues from federal revenue sharing ("coparticipation federal") plus special (discretional) transfers from federal government ("Aportes del Tesoro Nacional" – ATN).

through OLS. However, these assumptions may not hold in the panel, particularly the assumption of equality of the unobservable effects per province. This being so, then OLS estimates are inconsistent since the lagged dependent variable is correlated to the error term $w_{i,t} = \eta_i + \varepsilon_{it}$.

It is possible to control the specific effects using the panel data Fixed Effects (FE) estimator. However, the transformed error term will still be correlated with the lagged dependent variable. The bias will depend on T (the length of the panel); and provided T tends to infinite, the FE estimator of the coefficients will be consistent.

Considering these problems, the Generalized Method of Moments (GMM) designed for dynamic models by Arellano and Bond (1991) is performed in the estimations. The Arellano-Bond strategy consists in the differentiation of the equations to eliminate the specific effects and solve the inconsistency using the lagged values of the dependent variable as instruments. Assuming the error term is not serially correlated, the dependent variable lagged two periods or more constitute valid instruments for the new dependent variable in differences. Likewise, the same can be said for the control variables.

It will be assumed in our particular case that the vector from variables x_{jit} is slightly exogenous or predetermined; that is to say, it is not correlated with future realizations of the error term. The elections variable will be considered strictly exogenous.

Estimates are performed using three methods: OLS, Fixed Effects and GMM Arellano-Bond for dynamic panel data. The GMM method seems to be preferable due to the characteristics previously mentioned. Nevertheless, since it makes use of the lagged values of the variables as instruments, the set of observations available is smaller. For this reason and for comparative purposes, results from the three methods are reported.

The political cycle is modeled including the binary variable ELE that assumes value 1 in election years, and 0 in the rest of the years.

As usual in the empirical literature, the variable PBC (Political Budget Cycle) is also used, taking value 1 during the election year, -1 in the following year and 0 in the remaining ones. This variable imposes the restriction that the pre-electoral increase in spending or deficit is equivalent in magnitude to the posterior contraction.

Additionally, we also run the non-restricted regressions with the election dummy ELE and the post election dummy ELE+1, and test the validity of the restriction imposed by the use of PBC.

Our analysis includes six fiscal outcomes as dependent variables to test the electoral manipulation, its origins and consequences: ratio of provincial budget balance to GGP (DEF), ratio of total public expenditure to GGP (TE), current public expenditure relative to total public expenditure (CE), total provincial revenue relative to GGP (TR), revenue from provincial taxes relative to GGP (PTR) and provincial revenues from federal revenue sharing plus transfers from federal government relative to GGP (FR). Two basic controls will be included in the regressions: the per capita geographic gross product (GGP) and growth rate of the GGP (GROWTH).

V. Unconditional Budget Cycles

This section presents the empirical analysis of electoral cycles in fiscal variables, focusing on the provincial budget surplus, expenditures and revenues. We first present the unconditional results of elections over the fiscal variables. We then look at the conditional results, controlling for the alignment between the provincial and federal executives.

A. Budget Balance

Table 3 shows the main unconditional results with respect to the provincial budget balance (deficit); that is equation (1) including the election dummies ELE and PBC and using as controls the GGP and the growth of GGP per capita³.

In the columns 1 to 3, with the three different estimation methods, ELE has the expected negative sign, although is not statistically significant in any case.

In columns 4, 5 and 6 the results are obtained making use of the variable PBC as a regressor for the elections. In this case, the coefficients estimated by OLS, Fixed Effects (FE) and GMM are significantly negative, suggesting that the level of electoral cycle – defined as the increase in deficit during the election year and the contraction in the following- is approximately 0.6% of GGP. For GMM estimation the Sargan test is reported, where the null hypothesis is that the instrumental variables are uncorrelated with the residuals. In addition, the serial correlation test is presented, where the null hypothesis is the absence of second order serial correlation in the first-difference residuals. Estimates satisfy both tests (no rejection of null hypothesis).

³ Full econometric estimation results presented in the Chapter 3 Appendix.

	1	2	2	4	~	
Equation	1	2	3	4	5	6
Estimation	OLS	FIXED	GMM	OLS	FIXED	GMM
Method		EFFECTS			EFFECTS	
ELE	-0.0037	-0.0031	-0.0030			
	(-1.17)	(-0.91)	(-0.97)			
PBC				-0.0064	-0.0060	0.0062
				(-3.22)**	(-3.08)**	(-3.33)**
F-test ^a		2.07			2.07	
p-value		0.0045			0.0045	
Sargan test ^b			283.73			285.22
p-value			0.9994			0.9993
Serial Corr ^c			-0.04			0.210
p-value			0.9677			0.8359
No.obs.	308	304	302	308	308	308
No. provinces	22	22	22	22	22	22
R^2 (adj.)	0.36			0.38		

Table 3: Elections and Fiscal Balance

Notes: Dependent variable DEF is ratio of government surplus to Geographic Gross Product (PBG). Estimated Regressions:

 $DEF_{it} = \alpha + \beta_1 DEF_{it-1} + \beta_2 DEF_{it-2} + \beta_3 DEF_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + + \gamma_3 ELE_{it} + \eta_i + \epsilon_{it}$

 $DEF_{it} = \alpha + \beta_1 DEF_{it-1} + \beta_2 DEF_{it-2} + \beta_3 DEF_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it}$

The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_{i=} \eta \forall i$. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged one or more periods are used as instruments. Two lags of the dependent are included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

Table 4: Elections and	Fiscal Balance		
Equation	1	2	3
Estimation Method	OLS	FIXED EFFECTS	GMM
ELE	0.0020	0.0023	0.0016
	(0.60)	(0.66)	(0.50)
ELE+1	0.0140	0.0135	0.0141
	(3.98)***	(4.07)***	(4.34)***
F-test:	8.27	7.71	8.78
ELE = -ELE + 1			
p-value	0.0043	0.0059	0.0030
F-test ^a		2.11	
p-value		0.0036	
Sargan test ^b			277.02
p-value			0.9998
Serial Corr ^c			1.25
p-value			0.2131
No. obs.	308	308	308
No. provinces	22	22	22
R^2 (adj.)	0.40		

Notes: Dependent variable DEF is ratio of government surplus to Geographic Gross Product (PBG). Estimated Regressions:

$$\begin{split} DEF_{it} &= \alpha + \beta_1 DEF_{it-1} + \beta_2 DEF_{it-2} + \beta_3 DEF_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it} \\ DEF_{it} &= \alpha + \beta_1 DEF_{it-1} + \beta_2 DEF_{it-2} + \beta_3 DEF_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it} \\ The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction <math display="inline">\eta_i = \eta \forall i$$
. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged one or more periods are used as instruments. Two lags of the dependent are included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level (a) F-test is an F test of the null hypothesis that all province-specific effects in the FE-specification are equal. (b) P-values for rejecting the null hypothesis of instruments uncorrelated with the residuals. (c) P-values for rejecting the null hypothesis in test for second order serial correlation in the first-difference residuals, asymptotically distributed as N(0,1) under the null of no serial correlation.

The PBC variable is meant to capture both pre and post-electoral effects. However as Persson and Tabellini (2002) remark, pre and post electoral effects may differ, so we check if the restriction that the coefficient estimate of ELE is equal to the coefficient estimate of minus ELE in t+1, is not rejected by the data. Estimate results are presented in Table 4.

Table 4 shows that the electoral dummy ELE is non significant and the post electoral dummy ELE+1 is positive and significant. In all estimates, the F test soundly rejects the restriction imposed by the PBC variable, that the post-electoral contraction in the budget surplus as a percentage of GGP is of the same size as the pre-electoral expansion. We can interpret the results as follows: a) there is no evidence of surplus falling in election periods, b) the restriction that surplus falls below its trend, and then jumps above it, is not supported by the data and, c) the significant effect of PBC is driven by the jump of surplus in post electoral periods.

B. Expenditures: Total and Composition

Tables 5 and 6 show the effects of the electoral cycle over total public expenditure in the provinces, measured as a proportion of GGP.

In the OLS and GMM regressions, the coefficients are positive and significant for ELE, with a value indicating that the expenditure over GGP increases approximately one percentage point during the year of elections. We found a short run cycle in spending, approximately of 0.6-0.8 percentage points of GGP, in the OLS, FE and GMM regressions with PBC as explanatory variable.

Results in Table 6 also suggest that the PBC significance is due to reductions in expenditure in the post election years, and the F tests does not reject the null hypothesis of equality between ELE and -ELE+1.

Tables 7 and 8 shows the estimates performed to evaluate the "composition effect" in provincial expenditure around elections. The dependent variable CE represents the expenditure in consumption goods as a proportion of total provincial expenditure. None of the estimates present statistically significant results to provide evidence supporting the hypothesis of a shift in spending towards consumption goods or investment goods in election years. The case of the PBC shows similar results, even though the coefficient estimated by GMM shows some evidence of a slight bias towards capital goods in electoral years and towards consumption goods in post electoral years.

		-				
Equation	1	2	3	4	5	6
Estimation	OLS	FIXED	GMM	OLS	FIXED	GMM
Method		EFFECTS			EFF.	
ELE	0.0115	0.0057	0.0100			
	(2.50)**	(1.50)	(2.34)***			
PBC				0.0082	0.0057	0.0074
				(3.15)***	(2.55)**	(2.83)***
F-test ^a		11.30			11.47	
p-value		0.0000			0.0000	
p value		0.0000			0.0000	
Sargan test ^b			254.35			250.02
p-value			1.0000			1.0000
Serial Corr. ^c			1.00			1.41
p-value			0.3166			0.1600
No sha	209	200	200	200	200	209
No. obs.	308	308	308	308	308	308
No. provinces	22	22	22	22	22	22
R^2 (adj.)	0.90			0.90		

Table 5: Elections and Total Expenditure

Notes: Dependent variable TE is the ratio of total provincial expenditure to Geographic Gross Product (PBG).

Estimated Regressions:

 $TE_{it} = \alpha + \beta_1 TE_{it-1} + \beta_2 TE_{it-2} + \beta_3 TE_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it}$

 $TE_{it} = \alpha + \beta_1 TE_{it-1} + \beta_2 TE_{it-2} + \beta_3 TE_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it}$

The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_{i} = \eta \forall i$. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged one or more periods are used as instruments. Two lags of the dependent variable are included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

Equation	1	2	3
Estimation Method	OLS	FIXED EFFECTS.	GMM
ELE	0.0086	0.0026	0.0074
	(1.63)	(0.64)	(1.59)
ELE+1	-0.0078	-0.0087	-0.0073
	(-1.44)	(-2.26)**	(-1.61)
F-test:	0.01	0.88	0.00
ELE = -ELE + 1			
p-value	0.9271	0.3484	0.9961
F-test ^a		11.51	
p-value		0.0000	
Sargan test ^b			249.74
p-value			1.0000
Serial Corr ^c			1.42
p-value			0.1568
No. obs.	308	308	308
No. provinces	22	22	22
R^2 (adj.)	0.90		

 Table 6: Elections and Total Expenditure

Notes: Dependent variable TE is the ratio of total provincial expenditure to Geographic Gross Product (PBG).

Estimated Regressions:

 $TE_{it} = \alpha + \beta_1 TE_{it-1} + \beta_2 TE_{it-2} + \beta_3 TE_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it}$

 $TE_{it} = \alpha + \beta_1 TE_{it\text{-}1} + \beta_2 TE_{it\text{-}2} + \beta_3 TE_{it\text{-}3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it}$

The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_i = \eta \forall i$. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged one or more periods are used as instruments. Two lags of the dependent variable are included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

Equation	1	2	3	4	5	6
Estimation	OLS	FIXED	GMM	OLS	FIXED	GMM
Method		EFFECTS			EFFECTS	
ELE	0.0000	0.0014	-0.0058			
	(0.00)	(0.21)	(-0.90)			
PBC				-0.0039	-0.0025	-0.0066
				(-0.99)	(-0.65)	(-1.69)*
F-test ^a		2.18			2.16	
p-value		0.0025			0.0028	
Sargan test ^b			244.93			243.05
p-value			1.0000			1.0000
Serial Corr. ^c			-0.89			-0.52
p-value			0.3739			0.6014
No. obs.	308	308	308	308	308	308
No. provinces	22	22	22	22	22	22
R ² (adj.)	0.60			0.60		

Table 7: E	lections and	d Composition	n Effect
------------	--------------	---------------	----------

Notes: Dependent variable CE is the ratio of current expenditure to total provincial expenditure. Estimated Regressions:

 $CE_{it} = \alpha + \beta_1 CE_{it-1} + \beta_2 CE_{it-2} + \beta_3 CE_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it}$

 $CE_{it} = \alpha + \beta_1 CE_{it-1} + \beta_2 CE_{it-2} + \beta_3 CE_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it}$

The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_i = \eta \forall i$. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged one or more periods are used as instruments. Two lags of the dependent variable are included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

Table 8:	Elections	and	Comp	osition	Effect
----------	-----------	-----	------	---------	--------

	1	2	3
Equation	1	2	-
Estimation Method	OLS	FIXED EFFECTS	GMM
ELE	0.0039	0.0046	-0.0016
	(0.53)	(0.66)	(-0.23)
ELE+1	0.0108	0.0090	0.0112
	(1.64)	(1.37)	(1.67)*
F-test: ELE =-ELE+1	1.60	1.49	0.76
p-value	0.2073	0.2228	0.3831
F-test ^a		2.15	
p-value		0.0030	
Sargan test ^b			244.37
p-value			1.0000
Serial Corr ^c			-0.36
p-value			0.7182
No. obs.	208	308	308
	308		
No. provinces \mathbf{P}^2	22	22	22
R^2 (adj.)	0.58	ent expenditure to total provincia	

Notes: Dependent variable CE is the ratio of current expenditure to total provincial expenditure. Estimated Regressions:

 $CE_{it} = \alpha + \beta_1 CE_{it-1} + \beta_2 CE_{it-2} + \beta_3 CE_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + + \gamma_3 ELE_{it} + \eta_i + \epsilon_{it}$

 $CE_{it} = \alpha + \beta_1 CE_{it-1} + \beta_2 CE_{it-2} + \beta_3 CE_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it}$

The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_{i=} \eta \forall i$. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged one or more periods are used as instruments. Two lags of the dependent variable are included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

C. Revenues: Total, Federal and Provincial

To track the possible changes in fiscal revenues around elections Tables 9, 10, 11, 12, 13 and 14 present the estimates considering as dependent variables total provincial revenue (TR) and its components: revenue from federal sources (FR), that includes federal tax sharing and other federal transfers (mostly discretional) and revenue from provincial taxes (PTR).

Tables 9 to 12 show the results with total revenue (TR) and federal revenue (FR) as dependent variables. The electoral years are related to a significant tendency of revenues to go up, explained by the increase in federal revenue, and is important to note that federal revenue is 90% of total provincial revenues.

The PBC variable is non significant in all regressions, so there is no evidence of cycles around elections. The most significant effect is the revenue increase in election years, and the discretional transfers from the federal government could explain that. The federal tax sharing is mostly determined by fixed coefficients and cannot be easily manipulated.

Results in Tables 13 and 14 show non significant manipulations in provincial taxes; in all regressions revenue from this source is not sensitive to the election and PBC dummy variables. This seems reasonable, because in most provinces local taxes are a very small part of total revenues. Changes (reductions) in this variable may have a non relevant effect over the voter's perceptions about competency of the incumbent, reducing his incentives to engage in electoral manipulations over provincial taxes.

Table 9: Elections and Total Revenue						
Equation	1	2	3	4	5	6
Estimation	OLS	FIXED	GMM	OLS	FIXED	GMM
Method		EFFECTS			EFFECTS	
ELE	0.0111	0.0051	0.0095			
	(2.62)*	(1.59)	(2.44)**			
PBC				0.0025	0.0004	0.0019
				(0.90)	(0.21)	(0.83)
F-test ^a		17.19			17.41	
p-value		0.0000			0.0000	
Sargan test ^b			270.19			273.64
p-value			0.9999			0.9999
Serial Corr. ^c			1.25			0.98
p-value			0.2096			0.3289
No. obs.	308	308	308	308	308	308
No. provinces	22	22	22	22	22	22
R ² (adj.)	0.89			0.89		

Notes: Dependent variable TR is the ratio of current expenditure to total provincial expenditure. Estimated Regressions:

 $TR_{it} = \alpha + \beta_1 TR_{t-1} + \beta_2 TR_{it-2} + \beta_3 TR_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it}$

 $TR_{it} = \alpha + \beta_1 TR_{it\text{-}1} + \beta_2 TR_{it\text{-}2} + \beta_3 TR_{it\text{-}3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it}$

The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_i = \eta \forall i$. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged one or more periods are used as instruments. Two lags of the dependent variable are included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

Table 10: Elections and To	otal Revenue
----------------------------	--------------

Equation	1	2	3
Estimation Method	OLS	FIXED EFFECTS.	GMM
ELE	0.0138	0.0070	0.0125
	(2.91)***	(2.08)**	(3.05)***
ELE+1	0.0075	0.0055	0.0085
	(1.44)	(1.75)*	(2.07)**
F-test: ELE =-ELE+1	630	5.59	9.76
p-value	0.0126	00187	0.0018
F-test ^a		17.18	
p-value		0.0000	
Sargan test ^b			274.97
p-value			0.9999
Serial Corr ^c			1.00
p-value			0.3194
No. obs.	305	305	302
No. provinces	22	22	22
R^2 (adj.)	0.89		

Notes: Dependent variable TR is the ratio of current expenditure to total provincial expenditure. Estimated Regressions:

 $TR_{it} = \alpha + \beta_1 TR_{t-1} + \beta_2 TR_{it-2} + \beta_3 TR_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it}$

 $TR_{it} = \alpha + \beta_1 TR_{it-1} + \beta_2 TR_{it-2} + \beta_3 TR_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it}$

The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_{i=\eta} \forall i$. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged one or more periods are used as instruments. Two lags of the dependent variable are included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

Equation	1	2	3	4	5	6
Estimation	OLS	FIXED	GMM	OLS	FIXED	GMM
Method	OLD	EFFECTS	OMIN	OLD	EFFECTS	Givini
ELE	0.0114	0.0053	0.0097		Lifeis	
	(2.89)***	(1.74)*	(2.73)***			
	(,)	()	()			
PBC				0.0028	0.0004	-0.0023
				(1.09)	(0.23)	(1.06)
F-test ^a		15.51			15.76	
p-value		0.0000			0.0000	
h						
Sargan test ^b			254.86			258.41
p-value			1.0000			1.0000
			1 40			1.05
Serial Corr. ^c			1.49			1.25
p-value			0.1355			0.2115
No. obs.	308	308	308	308	308	308
110.005.	508	508	308	508	308	508
No. provinces	22	22	22	22	22	22
R^2 (adj.)	0.90			0.90		
	0.70			0.70		

Table 11: Elections and Revenue from Federal Government ⁴
--

Notes: Dependent variable FR is the ratio of federal revenues to Gross Geographic Product (PBG). Estimated Regressions:

 $FR_{it} = \alpha + \beta_1 FR_{it\text{-}1} + \beta_2 FR_{it\text{-}2} + \beta_3 FR_{it\text{-}3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{FR}$

 $FR_{it} = \alpha + \beta_1 FR_{it-1} + \beta_2 FR_{it-2} + \beta_3 FR_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{FR}$

The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_i = \eta \forall i$. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged one or more periods are used as instruments. Two lags of the dependent variable are included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

⁴Provincial revenues from revenue sharing ("coparticipation") plus (discretional) transfers from federal government (i.e. "Aportes del Tesoro Nacional" – ATN).

Equation	1	2	3
Estimation Method	OLS	FIXED EFFECTS.	GMM
ELE	0.0138	0.0073	0.0124
	(3.25)***	(2.28)**	(3.33)***
ELE+1	0.0071	0.0057	0.0078
	(1.54)*	(1.92)*	(2.09)**
F-test: ELE =-ELE+1	8.03	6.69	10.92
p-value	0.0049	0.0102	0.0456
F-test ^a		15.55	
p-value		0.0000	
Sargan test ^b			258.52
p-value			1.0000
Serial Corr ^c			1.30
p-value			0.1944
No. obs.	308	308	308
No. provinces	22	22	22
R^2 (adj.)	0.91		

Table 12: Elections and Revenue from Federal Government⁵

Notes: Dependent variable FR is the ratio of federal revenues to Gross Geographic Product (PBG). Estimated Regressions:

 $FR_{it} = \alpha + \beta_1 FR_{it-1} + \beta_2 FR_{it-2} + \beta_3 FR_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \gamma_4 ELE + 1_{it} + \eta_i + \epsilon_{it}$

 $FR_{it} = \alpha + \beta_1 FR_{it-1} + \beta_2 FR_{it-2} + \beta_3 FR_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it}$

The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_{i=} \eta \forall i$. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged one or more periods are used as instruments. Two lags of the dependent variable are included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

⁵Provincial revenues from revenue sharing ("coparticipation") plus (discretional) transfers from federal government.

Equation	1	2	3	4	5	6
Estimation	OLS	FIXED	GMM	OLS	FIXED	GMM
Method		EFFECTS			EFFECTS	
ELE	0.0002	0.0002	0.0002			
	(0.23)	(0.22)	(0.23)			
		~ /	× /			
PBC				-0.0002	-0.0002	-0.0003
				(-0.55)	(-0.51)	(-0.70)
				(((
F-test ^a		3.30			3.30	
p-value		0.0000			0.0000	
P (divis		0.0000			0.0000	
Sargan test ^b			338.55			340.42
p-value			0.8362			0.8476
p fuide			0.0202			0.0170
Serial Corr. ^c			0.26			-0.09
p-value			0.7969			0.9280
p value			0.7707			0.9200
No. obs.	308	308	308	308	308	308
No.°	22	22	22	22	22	22
provinces						
R^2 (adj.)	0.84			0.84		

Table 13: Elections and Revenue from Provincial Taxes

Notes: Dependent variable PTR is the ratio of provincial revenues to Geographic Gross Product (PBG). Estimated Regressions:

 $PTR_{it} = \alpha + \beta_1 PTR_{it-1} + \beta_2 PTR_{it-2} + \beta_3 PTR_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it}$

 $PTR_{it} = \alpha + \beta_1 PTR_{it-1} + \beta_2 PTR_{it-2} + \beta_3 PTR_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it}$ The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_{i=1} \eta \forall i$. t statistics reported in parentheses, calculated using heteroskedastic-

consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged one or more periods are used as instruments. Two lags of the dependent variable are included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

Table 14: Elections and Revenue from Provincial Taxes						
Equation	1	2	3			
Estimation Method	OLS	FIXED EFFECTS.	GMM			
ELE	0.0005	0.0004	0.0005			
	(0.66)	(0.56)	(0.66)			
ELE+1	0.0009	0.0008	0.0011			
	(1.10)	(1.12)	(1.51)			
F-test: ELE =-ELE+1	1.30	1.049	1.78			
p-value	0.2559	0.3083	0.1823			
P fuide	0.2007	010000	0.1020			
F-test ^a		3.28				
p-value		0.0000				
Sargan test ^b			344.69			
p-value			0.7708			
Serial Corr ^c			-0.13			
p-value			0.8958			
No. obs.	304	304	302			
No. provinces	22	22	22			
R^2 (adj.)	0.84					

Notes: Dependent variable PTR is the ratio of provincial revenues to Geographic Gross Product (PBG). Estimated Regressions:

 $PTR_{it} = \alpha + \beta_1 PTR_{it-1} + \beta_2 PTR_{it-2} + \beta_3 PTR_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it}$

 $PTR_{it} = \alpha + \beta_1 PTR_{it\text{-}1} + \beta_2 PTR_{it\text{-}2} + \beta_3 PTR_{it\text{-}3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it}$

The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_{i=\eta} \forall i$. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged one or more periods are used as instruments. Two lags of the dependent variable are included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level (a) F-test is an F test of the null hypothesis that all province-specific effects in the FE-specification are

VI. Conditional Findings: Political Alignment Between Provincial and Federal Executives

The results reported in the previous section suggest that there are some systematic increase in expenditures and federal revenues in electoral years, but no electoral or cyclical effects were detected over the budget balance. Decisions over spending are clearly taken at provincial level, but the federal revenues are not a decision variable for the provincial executive. If this is so, how can the provincial executive manipulate at the same time expenditures and federal revenues? What can explain this pattern?

In this section, we will focus on explaining these facts, looking for differences in the behavior of incumbents conditioning for the political alignment between the provincial and federal executive. Our conjecture is that when both executives are members of the same political party (political alignment), the more probable the federal executive increases the discretional transfers to the province, allowing the provincial executive to increase spending without significant effects over the budget balance.

When both executives (provincial and federal) are not aligned, and with an aligned candidate running for the provincial election, the federal government is not interested in increasing the discretional transfers to the incumbent. On the contrary, probably the federal government can reduce the transfers, rending spending manipulations more difficult to the provincial executive and inducing budget deficits.

We then look at the sensitivity of the previous results when conditioned to political alignment between provincial and federal executives. The conditional election variables ELE_UNAL, ELE_AL and the conditional cycle variables PBC_UNAL, PBC_AL are now included in the regressions to estimate the differential effect of political alignment.

A. Budget Balance

Table 15 presents the results with the budget balance as the dependent variable. In columns 1 to 3 the coefficients estimates for the conditional election variable are presented. The coefficients associated to the unaligned provinces are all negative and significant at 10% in OLS and GMM regressions and marginally significant (11%) in FE. The election year has no significant effect over fiscal balance in aligned provinces.

The regression results indicates that while the election increases the deficit between 0.8 to 1.0 percentage points in unaligned provinces, the election effect is not relevant in aligned provinces.

Equation	1	2	3	4	5	6
Estimation	OLS	FIXED	GMM	OLS	FIXED	GMM
Method		EFFECTS.			EFF.	
ELE_UNAL	-0.0106	-0.0091	-0.0084			
	(-1.93)*	(-1.61)	(-1.80)*			
ELE_AL	-0.0003	-0.0002	0.0003			
	(-0.09)	(-0.04)	(0.09)			
PBC_UNAL				-0.0085	-0.0079	-0.0091
				(-2.34)**	(-2.51)**	(-3.19)***
PBC_AL				-0.0052	-0.0048	-0.0043
				(-2.31)**	(-1.97)*	(-1.82)*
F-test ^a		2.03			2.07	
p-value		0.0056			0.0045	
Sargan test ^b			283.40			284.92
p-value			0.9994			0.9993
Serial Corr ^c			-0.19			0.10
p-value			0.8472			0.9165
No. obs.	308	304	302	308	308	308
No. provinces	22	22	22	22	22	22
R^2 (adj.)	0.37			0.38		

Table 15: Elections and Fiscal Balance conditional on alignment of provincial and federal government

Notes: Dependent variable DEF is ratio of government surplus to Geographic Gross Product (PBG). Estimated Regressions:

$$\begin{split} DEF_{it} &= \alpha + \beta_1 DEF_{it-1} + \beta_2 DEF_{it-2} + \beta_3 DEF_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it} \\ DEF_{it} &= \alpha + \beta_1 DEF_{it-1} + \beta_2 DEF_{it-2} + \beta_3 DEF_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it} \\ The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction <math display="inline">\eta_i = \eta \forall i$$
. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged one or more periods are used as instruments. Two lags of the dependent are included.

The conditional PBC coefficient estimates, columns 4 to 6, result in all cases negative and significant for aligned and unaligned provinces. These results are driven mostly by an increase in budget surplus in post electoral years in both aligned an unaligned provinces, and are consistent with those obtained in the unconditional regressions.

B. Expenditures: Total and Composition

Table 16 shows the effects of the conditional electoral variables over total public expenditure. Results in columns 1 to 3 show that in electoral years, when the province is politically aligned with federal government spending rises significantly. Depending on estimation method, the increasing in spending ranges between 0.8 to 1.4 percentage points of GGP. For unaligned provinces the estimates are non-significant in all regressions.

The estimated coefficients for the conditional PBC variable are significant, but the effect is driven, as in the unconditional estimates, by the spending contraction in the post electoral period in both, aligned and unaligned provinces.Regarding the composition of expenditures, Table 17, in columns 1 to 3, shows a positive and significant increase in current spending in electoral years for unaligned provinces. However, there are no significant effects over spending composition in aligned provinces. The coefficients associated to the conditional cycle variable, in columns 4 to 6, are non significant in all specifications.

These results suggest that an important shift happens in the expenditure composition towards current goods in unaligned provinces during electoral years. The magnitude of the shift is approximately 1.9 percentage points of total expenditure, reassigned from investment to consumption goods.

65

Equation	1	2	3	4	5	6
Estimation	OLS	FIXED	GMM	OLS	FIXED	GMM
Method		EFFECTS.			EFF.	
ELE_UNAL	0.0062	0.0005	0.0015			
	(0.70)	(0.07)	(0.28)			
ELE_AL	0.0140	0.0082	0.0101			
	(3.05)***	(1.81)*	(2.59)***			
PBC_UNAL				0.0107	0.0073	0.0034
				(2.10)**	(1.99)**	(1.05)
PBC_AL				0.0068	0.0049	0.0045
				(2.31)**	(1.74)*	(1.87)*
F-test ^a		11.29			11.42	
p-value		0.0000			0.0000	
Sargan test ^b			354.41			350.88
p-value			0.5287			0.5813
Serial Corr ^c			-0.61			-0.59
p-value			0.5406			0.5567
No. obs.	308	308	286	308	308	286
No. provinces	22	22	22	22	22	22
R ² (adj.)	0.90			0.90		

Table 16: Elections and Total Expenditure conditional on alignment of provincial and federal government

Notes: Dependent variable TE is ratio of total provincial expenditure to Geographic Gross Product (PBG). Estimated Regressions:

 $TE_{it} = \alpha + \beta_1 TE_{it-1} + \beta_2 TE_{it-2} + \beta_3 TE_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it}$

 $TE_{it} = \alpha + \beta_1 TE_{it-1} + \beta_2 TE_{it-2} + \beta_3 TE_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it}$

The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_i = \eta \forall i$. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged two or more periods are used as instruments. One lag of the dependent variable is included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

Equation	1	2	3	4	5	6
Estimation	OLS	FIXED	GMM	OLS	FIXED	GMM
Method		EFFECTS.			EFF.	
ELE_UNAL	0.0190	0.0195	0.0198			
	(1.85)*	(1.76)*	(1.82)*			
ELE_AL	-0.0092	-0.0072	-0.0084			
	(-1.16)	(-0.92)	(-1.12)			
PBC_UNAL				0.0012	0.0031	0.0012
				(0.20)	(0.49)	(0.20)
PBC_AL				-0.0068	-0.0058	-0.0073
				(-1.41)**	(-1.19)	(-1.57)
F-test ^a		2.14			2.17	
p-value		0.0030			0.0026	
Sargan test ^b			235.44			230.71
p-value			1.0000			1.0000
Serial Corr ^c			-0.09			0.01
p-value			0.9250			0.9897
No. obs.	308	308	286	308	308	286
No. provinces	22	22	22	22	22	22
R^2 (adj.)	0.60			0.60		

Table 17: Elections and Composition Effect conditional on alignment of provincial and federal government

Notes: Dependent variable CE is the ratio of current expenditure to total provincial expenditure. Estimated Regressions:

 $CE_{it} = \alpha + \beta_1 CE_{it\text{-}1} + \beta_2 CE_{it\text{-}2} + \beta_3 CE_{it\text{-}3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it}$

 $CE_{it} = \alpha + \beta_1 CE_{it-1} + \beta_2 CE_{it-2} + \beta_3 CE_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it}$

The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_i = \eta \forall i$, t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged two or more periods are used as instruments. One lag of the dependent variable is included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

C. Revenues: Total, Federal and Provincial

Tables 18, 19 and 20 present the conditional estimates considering as dependent variables the total provincial revenue (TR), revenue from federal source (FR) and revenue from provincial taxes (PTR).

There is a strong positive relationship between elections in aligned provinces and federal revenues in the data, independent of the estimation technique. In politically aligned provinces, a positive and significant effect over revenues is present in electoral years, explained by the increase in discretional federal revenues. The magnitude of the effect is important, from 0.8 to 1.6 percentage points of GGP of increase in federal revenues depending on the estimation technique.

By contrast, for the conditional election dummy in unaligned provinces, the estimated coefficients are non significant in all cases. The conditional cycle dummy is non significant in all regressions, suggesting that there is no evidence of cycles around elections, independently of political alignment.

Results in Table 20 are similar to those obtained in the unconditional regressions. For aligned or unaligned provinces, in all regressions revenue from provincial taxes is not sensitive to the election dummy or the PBC dummy.

To sum up, the findings reported above fit the conjectures about the behavior of federal and provincial governments considering the political alignment. If the provincial executive is aligned with the federal government, the discretional transfers from this source are bigger in electoral years, and the provincial incumbent is able to increase the total expenditures proportionally, without increasing the fiscal deficit. Our empirical results show that discretional transfers from the federal governments allows the provincial incumbent to increase the spending in 0.8 - 1.4 percentage points of GGP.

On the other side, if the provincial executive is unaligned, the federal transfers remain approximately constant. With constant revenues from provincial taxes, if the incumbent increases the spending he also increases the fiscal deficit, but in this case he is constrained by the borrowing alternatives. The other alternative action available to the incumbent is to change the expenditure composition, from investment goods to more visible consumption goods. Our empirical results suggest that this last alternative appears to be the more relevant discretional decision for unaligned provincial executives. Estimates show that the redirection of spending toward consumption goods in electoral years is about 1.9 percentage points of total expenditure for unaligned provinces.

Equation	1	2	3	4	5	6
Estimation	OLS	FIXED	GMM	OLS	FIXED	GMM
Method		EFFECTS.			EFF.	
ELE_UNAL	0.0005	-0.0067	-0.0061			
	(0.08)	(-1.25)	(-1.20)			
ELE_AL	0.0162	0.0108	0.0090			
	(3.37)***	(-2.85)***	(2.57)*			
PBC_UNAL				-0.00005	-0.0014	-0.0057
				(-0.01)	(-0.46)	(-1.96)*
PBC_AL				0.0039	0.0014	-0.0003
				(1.16)	(0.62)	(-0.15)
F-test ^a		17.60			17.36	
p-value		0.0000			0.0000	
Sargan test ^b			364.10			373.00
p-value			0.3863			0.2693
Serial Corr ^c			-0.75			-1.09
p-value			0.4523			0.2770
No. obs.	308	308	286	308	308	286
No. provinces	22	22	22	22	22	22
R^2 (adj.)	0.89			0.89		

Table 18: Elections and Total Revenue conditional on alignment of provincial and federal government

Notes: Dependent variable TR is the ratio of current expenditure to total provincial expenditure. Estimated Regressions:

 $TR_{it} = \alpha + \beta_1 TR_{t\text{-}1} + \beta_2 TR_{it\text{-}2} + \beta_3 TR_{it\text{-}3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it}$

 $TR_{it} = \alpha + \beta_1 TR_{it-1} + \beta_2 TR_{it-2} + \beta_3 TR_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it}$

The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_i = \eta \forall i$, t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged two or more periods are used as instruments. One lag of the dependent variable is included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

	1	2	2		~	
Equation	1	2	3	4	5	6
Estimation	OLS	FIXED	GMM	OLS	FIXED	GMM
Method		EFFECTS.			EFF.	
ELE_UNAL	0.0007	-0.0066	-0.0064			
	(0.11)	(-1.30)	(-1.35)			
ELE_AL	0.0166	0.0110	0.0082			
	(3.66)***	(3.07)***	(2.49)**			
PBC_UNAL				0.0003	-0.0014	-0.0051
				(0.08)	(-0.50)	(-1.88)*
PBC_AL				0.0042	0.0015	-0.0004
				(1.30)	(0.68)	(-0.21)
F-test ^a		15.94			15.72	
p-value		0.0000			0.0000	
Sargan test ^b			346.63			353.74
p-value			0.6431			0.5387
p fulle			010101			0.0007
Serial Corr ^c			-0.36			-0.58
p-value			0.7156			0.5629
No. obs.	308	308	286	308	308	286
Ντ '						
No. provinces	22	22	22	22	22	22
R ² (adj.)	0.91			0.90		

 Table 19: Elections and Revenue from Federal Government⁶ conditional on alignment of provincial and federal government

Notes: Dependent variable FR is the ratio of federal revenues to Gross Geographic Product (PBG). Estimated Regressions:

 $FR_{it} = \alpha + \beta_1 FR_{it-1} + \beta_2 FR_{it-2} + \beta_3 FR_{it-3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \gamma_4 ELE + 1_{it} + \eta_i + \epsilon_{it}$

 $FR_{it} = \alpha + \beta_1 FR_{it\text{-}1} + \beta_2 FR_{it\text{-}2} + \beta_3 FR_{it\text{-}3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it}$

The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction $\eta_{i=} \eta \forall i$. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS.

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged two or more periods are used as instruments. One lag of the dependent variable is included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

⁶Provincial revenues from revenue sharing ("coparticipation") plus special (discretional) transfers from federal government.

Equation	1	2	3	4	5	6
Estimation	OLS	FIXED	GMM	OLS	FIXED	GMM
Method		EFFECTS.			EFF.	
ELE_UNAL	0.0003	0.0001	0.0008			
	(0.29)	(0.13)	(0.82)			
ELE_AL	0.0001	0.0001	-0.0002			
	(0.14)	(0.19)	(-0.34)			
PBC_UNAL				0.0000	0.0000	0.0000
				(0.00)	(0.04)	(0.15)
PBC_AL				-0.0004	0.0003	-0.0005
				(-0.98)	(-0.68)	(-1.05)
F-test ^a		3.29			3.28	
p-value		0.0000			0.0000	
Sargan test ^b			337.35			338.36
p-value			0.8475			0.8380
Serial Corr ^c			0.33			-0.02
p-value			0.7379			0.9852
N° obs.	308	308	308	308	308	308
N° provinces	22	22	22	22	22	22
R^2 (adj.)	0.84			0.84		

Table 20: Elections and Revenue from	Provincial T	axes o	conditional	on alignment
of provincial and federal government				

Notes: Dependent variable PTR is the ratio of provincial revenues to Geographic Gross Product (PBG). Estimated Regressions:

 $\begin{array}{l} PTR_{it} = \alpha + \beta_1 PTR_{it\text{-}1} + \beta_2 PTR_{it\text{-}2} + \beta_3 PTR_{it\text{-}3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 ELE_{it} + \eta_i + \epsilon_{it} \\ PTR_{it} = \alpha + \beta_1 PTR_{it\text{-}1} + \beta_2 PTR_{it\text{-}2} + \beta_3 PTR_{it\text{-}3} + \gamma_1 PBG_{it} + \gamma_2 CREC_{it} + +\gamma_3 PBC_{it} + \eta_i + \epsilon_{it} \\ The coefficient estimates on the lagged dependent variables add up to a value less than unity. OLS imposes the restriction \\ \eta_i = \eta \forall i. t statistics reported in parentheses, calculated using heteroskedastic-consistent standard errors for OLS. \end{array}$

In GMM estimation (Arellano-Bond One Step) z statistics in parentheses. The election dummy variables are treated as strictly exogenous. Variables CREC and PBG are treated as predetermined and levels lagged one or more periods are used as instruments. Two lags of the dependent variable are included. * significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level

VII. Conclusions

This paper presents empirical evidence of systematic effects in fiscal balance, public expenditures and revenues in Argentine provinces as a function of elections and political alignment. Our findings are consistent with the predictions of the theoretical literature on rational opportunist political cycles: there are fiscal policy manipulations during elections, and there is a strengthening of the policies after elections.

The data also reveals that there are important systematic differences between provinces in the size and composition of the electoral manipulations, depending on the political alignment with the federal executive. Specifically, the political alignment between provincial and federal executives implies more discretional transfer of federal revenues and increases the election induced provincial spending without increasing the fiscal deficit. Politically unaligned provinces are constrained by constant federal transfers and fiscal deficits are more frequent in election years. In addition, an important spending switch from capital goods to consumption goods is present in election years for unaligned provinces.

Finally, we believe that our conditional findings fit the predictions of the theoretical models of opportunistic rational behavior and reveals that the institutional and political features are important issues to explain the electoral motivated policy cycles. It is highly likely that further work in the identification of institutional control variables as the effective division of powers and institutional development of the provinces could contribute to study the quantitative effects of electoral cycles more in depth.

References

- Alesina A.; Roubini N. and Cohen G (1997): "Political Cycles and the macroeconomy"; Cambridge: MIT Press.
- Arellano, M., and S. Bond (1991): "Some Tests of Specifications for Panel Data: Monte Carlo Evidence and an Application to Employment Equations", *Review of Economic Studies*) 58:277-97.
- Block S (2002): "Elections, Electoral Competitiveness, and Political Budget Cycles in Developing Countries"; CID Working Paper N° 78.
- Hibbs, D. (1977): "Political Parties and Macroeconomic Policy," American Political Science Review, 71:467-87.
- Krueger, A. and I. Turan (1993): "The Politics and Economics of Turkish Policy Reform in the 1980's," in R.Bates and A. Krueger, eds., Political and Economic Interactions in Economic Policy Reform: Evidence from Eight Countries, Oxford: Basil Blackwell.
- Lindbeck, A. (1976): "Stabilization Policies in Open Economies with Endogenous Politicians," *American Economic Review Papers and Proceedings*, p. 1-19.
- Meloni, O. (2001): "Gobernadores y elecciones: ¿Es "negocio" ser austero? Evidencia a partir de Data en Panel"; XXXVI Reunión Anual de la AAEP.
- Mirabella de Sant, M.(2002):"Diferencias de bienestar entre provincias de Argentina";XXXVII Reunión Anual de la AAEP.
- Nordhaus, W.(1975): "The Political Business Cycle," *Review of Economic Studies* 42:169-90.
- Persson, Torsten and Tabellini, Guido (2002), "Do Electoral Cycles Differ Across Political Systems?" (Manuscript, IGIER and Bocconi University).
- Rogoff, K.(1990): "Equilibrium political budget cycles"; American Economic Review; v. 80; N° 1; p. 21-36.
- Shi M. and Svensson J.(2001): "Conditional Political Business Cycles"; Working Paper; IIES Stockholm University.
- Schucknecht, L.(2000) "Fiscal Policy Cycles and Public Expenditure in Developing Countries"; Public Choice, 102 115 130.

Appendix Chapter 3 Econometric Estimation Output

TABLES 3 and 4 - Elections and Fiscal Balance

. *OLS . regress def	def_1 def_2	def_3 growt]	n lggp el	le, robu	st	
Regression wit	ch robust star	ndard errors			Number of obs F(6, 301) Prob > F R-squared Root MSE	
 def	Coef.	Robust Std. Err.		P> t	[95% Conf.	Interval]
def_1 def_2 def_3 grow lggp ele _cons	.4501836 .0273253 .1371861 .0964675 .0008223 0036922 0178905	.0612624 .0706419 .0657659 .0203988 .0022823 .0031471 .0197735	7.35 0.39 2.09 4.73 0.36 -1.17 -0.90	0.000 0.699 0.038 0.000 0.719 0.242 0.366	.3296268 1116893 .0077669 .056325 003669 0098854 0568022	.5707405 .1663398 .2666053 .1366099 .0053136 .002501 .0210212
. regress def	def_1 def_2	def_3 grow 3	lggp pbc,	robust		
Regression wit	th robust star	dard errors			Number of obs F(6, 301) Prob > F R-squared Root MSE	= 308 = 25.03 = 0.0000 = 0.3817 = .02434
 def	Coef.	Robust Std. Err.		P> t	[95% Conf.	Interval]
def_1 def_2 def_3 grow lggp pbc _cons	.4580231 .0400662 .1196514 .0877438 .0008499 0064528 0190134	.0589188 .0694408 .0653006 .0202285 .0022743 .0020012 .0196672	7.77 0.58 1.83 4.34 0.37 -3.22 -0.97	0.000 0.564 0.068 0.000 0.709 0.001 0.334	.3420781 0965847 0088522 .0479367 0036257 0103908 057716	.5739681 .1767171 .248155 .1275509 .0053254 0025147 .0196891
. regress def	def_1 def_2	def_3 grow 1	lggp ele	ele1,ro	bust	
Regression wit	th robust star	dard errors			Number of obs F(7, 300) Prob > F R-squared Root MSE	= 23.47 = 0.0000 = 0.3965
def	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
def_1 def_2 def_3 grow lggp ele ele1 _cons	.4963217 .043854 .0789868 .0823988 .0009685 .0019633 .0140562 0238065	.0581574 .0675271 .0658754 .0196784 .0022395 .0032787 .0035301 .0195584	8.53 0.65 1.20 4.19 0.43 0.60 3.98 -1.22	0.000 0.517 0.231 0.000 0.666 0.550 0.000 0.224	.3818737 0890327 0506495 .0436736 0034385 0044889 .0071093 0622954	.6107697 .1767407 .2086232 .1211239 .0053756 .0084155 .0210031 .0146824

. test ele=-ele1

(1) ele + e	ele1 = 0					
. ,	300) = 8 rob > F = 0					
. regress def	def_1 def_2	def_3 grow 1	lggp ele_	_1, robus	st	
Regression wit	h robust star	ndard errors			Number of obs F(6, 301) Prob > F R-squared Root MSE	$= 22.53 \\ = 0.0000 \\ = 0.3704$
def	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
def_1 def_2 def_3 grow lggp ele_1 _cons	.4554651 .0587623 .0998277 .0965407 .0008047 0079034 0168815	.0200904 .0022336 .0031948	0.36	0.000 0.413 0.159 0.000 0.719 0.014 0.382	0141905	.5698889 .1998184 .2389969 .136076 .0052002 0016164 .0210865
. *FE . xtreg def d			gp ele,fe			
Fixed-effects Group variable	-	ression			of obs =	
Ĩ	. (1)• 10			Number	of groups =	22
R-sq: within between					r group: min = avg = max =	14 14.0
R-sq: within between	= 0.2168 1 = 0.1758 . = 0.1926				c group: min = avg = max =	14 14.0 14 12.92
R-sq: within between overall	= 0.2168 1 = 0.1758 = 0.1926 = -0.2074	Std. Err.	t	Obs per F(6,280	c group: min = avg = max =	14 14.0 14 12.92 0.0000
R-sq: within between overall corr(u_i, Xb) def def_1 def_2 def_3 grow lqqp	= 0.2168 = 0.1758 = 0.1926 = -0.2074 Coef. .3177049 0530212 .024791 .0828221 .0237088 0030769	.057287 .0610658 .0575514 .0199167 .0111388 .003379	5.55 -0.87 0.43 4.16 2.13 -0.91	Obs per F(6,280 Prob > P> t 0.000 0.386 0.667 0.000 0.034 0.363	r group: min = avg = max = 0) = F = [95% Conf. .2049371 1732275 0884974 .0436166 .0017824	14 14.0 14 12.92 0.0000 Interval] .4304727 .0671851 .1380794 .1220276 .0456352 .0035745
<pre>R-sq: within between overall corr(u_i, Xb) def def_1 def_2 def_3 grow lggp ele <number line<br="">cons </number></pre>	= 0.2168 = 0.1758 = 0.1926 = -0.2074 	.057287 .0610658 .0575514 .0199167 .0111388 .003379	5.55 -0.87 0.43 4.16 2.13 -0.91 -2.30	Obs per F(6,280 Prob > P> t 0.000 0.386 0.667 0.000 0.034 0.363 0.022	r group: min = avg = max = 0) = F = [95% Conf. .2049371 1732275 0884974 .0436166 .0017824 0097283 4123124	14 14.0 14 12.92 0.0000 Interval] .4304727 .0671851 .1380794 .1220276 .0456352 .0035745
<pre>R-sq: within between overall corr(u_i, Xb) def def_1 def_2 def_3 grow lggp ele cons sigma_u sigma_e </pre>	= 0.2168 = 0.1758 = 0.1926 = -0.2074 Coef. .3177049 .0530212 .024791 .0828221 .0237088 .0030769 .2222733 .01619047 .02383394 .3157495	.057287 .0610658 .0575514 .0199167 .0111388 .003379 .0965414	5.55 -0.87 0.43 4.16 2.13 -0.91 -2.30	Obs per F(6,280 Prob > P> t 0.000 0.386 0.667 0.000 0.034 0.363 0.022 mce due t	<pre>c group: min =</pre>	14 14.0 14 12.92 0.0000 Interval] .4304727 .0671851 .1380794 .1220276 .0456352 .0035745 0322341
<pre>R-sq: within between overall corr(u_i, Xb) def def_1 def_2 def_3 grow lggp ele cons sigma_u sigma_e rho </pre>	= 0.2168 = 0.1758 = 0.1926 = -0.2074 Coef. .3177049 0530212 .024791 .0828221 .0237088 0030769 2222733 .01619047 .02383394 .3157495 .1 u_i=0:	.057287 .0610658 .0575514 .0199167 .0111388 .003379 .0965414 (fraction of F(21, 280) =	5.55 -0.87 0.43 4.16 2.13 -0.91 -2.30 of variar = 2.0	Obs per F(6,280 Prob > P> t 0.000 0.386 0.667 0.000 0.034 0.363 0.022 mce due t	<pre>c group: min =</pre>	14 14.0 14 12.92 0.0000 Interval] .4304727 .0671851 .1380794 .1220276 .0456352 .0035745 0322341
<pre>R-sq: within between overall corr(u_i, Xb) def def_1 def_2 def_3 grow lggp ele cons sigma_e rho F test that al</pre>	<pre>= 0.2168 = 0.1758 = 0.1926 = -0.2074 Coef. .3177049 .0530212 .024791 .0828221 .0237088 .0030769 .2222733 .01619047 .02383394 .3157495 .1 u_i=0: lef_1 def_2 def (within) regularing .2224</pre>	.057287 .0610658 .0575514 .0199167 .0111388 .003379 .0965414 (fraction of F(21, 280) =	5.55 -0.87 0.43 4.16 2.13 -0.91 -2.30 of variar = 2.0	Obs per F(6,280 Prob > P> t 0.000 0.386 0.667 0.000 0.034 0.363 0.022 mce due t 0.002 Number	<pre>c group: min =</pre>	14 14.0 14 12.92 0.0000 Interval] .4304727 .0671851 .1380794 .1220276 .0456352 .0035745 0322341 F = 0.0045

corr(u_i, Xb)	= -0.2075			F(6,280) Prob > F	=	
def	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
def_1 def_2 def_3 grow lggp pbc _cons sigma_u	.3254006 039916 .0106597 .0739673 .0240468 005962 2258234 .01616389	.0558988 .0602769 .0563708 .0198411 .0109716 .0019374 .0950851	5.82 -0.66 0.19 3.73 2.19 -3.08 -2.37	0.850 - 0.000 0.029 0.002 -	.2153653 .1585694 .1003047 .0349106 .0024495 .0097757 .4129958	.4354359 .0787373 .1216241 .1130241 .0456441 0021483 038651
sigma_e rho	.02347551 .32161581	(fraction o	of varian	ce due to u	ı_i)	
F test that al	_				Prob > 1	F = 0.0045
. xtreg def o	lef_1 def_2 d	ef_3 grow lgo	gp ele el	el,fe		
Fixed-effects Group variable		ression		Number of Number of		308 22
	= 0.2606 n = 0.1755 L = 0.2205			Obs per gr	coup: min = avg = max =	14 14.0 14
corr(u_i, Xb)	= -0.2158			F(7,279) Prob > F	=	
def	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
def_1 def_2 def_3 grow lggp ele ele1 _cons	.3626414 0362964 0304867 .0681588 .0246348 .00233 .0134629 2346324	.0568463 .0595818 .0576452 .019719 .0108446 .0035477 .0033113 .0940198	$\begin{array}{c} 6.38 \\ -0.61 \\ -0.53 \\ 3.46 \\ 2.27 \\ 0.66 \\ 4.07 \\ -2.50 \end{array}$	0.597 - 0.001 0.024 0.512 - 0.000	.2507393 .1535834 .1439614 .0293419 .0032873 .0046536 .0069445 .4197106	.4745436 .0809906 .0829881 .1069756 .0459824 .0093137 .0199812 0495542
	.01631482 .02319926 .3309053	(fraction o	of varian	ce due to u	ı_i)	
F test that al	ll u_i=0:	F(21, 279) =	= 2.1	1	Prob > 1	F = 0.0036
. test ele=-el						
F(1,	279) = cob > F =					
. xtreg def de	ef_1 def_2 de	f_3 grow lggg	p ele_1,	fe		
Fixed-effects Group variable	-	ression			obs = groups =	
	= 0.2296 h = 0.1707 L = 0.1995			Obs per gr	coup: min = avg = max =	14.0
corr(u_i, Xb)	= -0.2044			F(6,280) Prob > F		13.91 0.0000

_____ def | Coef. Std. Err. t P>|t| [95% Conf. Interval] _____ ----+--def_1.3204663.05631635.690.000.2096092.4313233def_2-.0205643.0623507-0.330.742-.1433.1021714 def_3 -.0139053 .0583848 -0.24 0.812 -.1288342 .1010235 grow.0827858.01970534.200.000.0439964lggp.0236165.01104732.140.033.0018702ele_1-.0081503.0034749-2.350.020-.0149907_cons-.2204952.0957485-2.300.022-.4089734 .1215752 .0453629 -.00131 -.032017 sigma_u .01624652 sigma_e | .02363812 rho | .32082923 (fraction of variance due to u_i) F test that all $u_i=0$: F(21, 280) = 2.14 Prob > F = 0.0031 . *GMM . xtabond def l(0).ele , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs = 308 Group variable (i): id Number of groups = 22 Wald chi2(7) = 81.59 Obs per group: min = Time variable (t): y 14 avg = 14 max = 14 One-step results _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] def def LD .3408471 .0566994 6.01 0.000 .2297183 L2D -.0208584 .0558308 -0.37 0.709 -.1302847 .4519759 .0885679 grow .0475126 .046633 1.02 0.308 -.0438864 .1389115 .016412 .0204578 0.80 0.422 -.0236846 .0565085 D1 .0475126 LD lqqp D1 | .04739 .0457473 1.04 0.300 -.0422731 .1370532 -.0469277 .0442286 -1.06 0.289 -.1336142 LD .0397587 ele D1 -.0030125 .0030957 -0.97 0.330 -.00908 .0007439 .000439 1.69 0.090 -.0001166 .003055 .0016044 cons _____ _____ Sargan test of over-identifying restrictions: chi2(365) = 283.73Prob > chi2 = 0.9994Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -12.96 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.04Pr > z = 0.9677. xtabond def l(0).pbc , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs 308 Number of groups = Group variable (i): id 22 Wald chi2(7) = 94.84 Time variable (t): y Obs per group: min = 14 14 avg = max = 14

One-step results

Coef. Std. Err. z P>|z| [95% Conf. Interval] def _____ ----+-def LD .3450258 .0551634 6.25 0.000 .2369075 L2D -.0058309 .0546304 -0.11 0.915 -.1129046 .4531441 .1012427 grow .0553255 -.034176 .0456648 1.21 0.226 .0203464 1.37 0.172 D1 | .1448269 LD | .0277843 -.012094 .0676626 lggp .0283867 0.63 0.527 .1163949 ן 1ס .044903 -.0596215 LD -.0306544 .0433259 -0.71 0.479 -.1155715 .0542628 pbc L -.0061786 .0018565 -3.33 0.001 -.0098174 .000723 .0004296 1.68 0.092 -.0001191 -.0025399 D1 | -.0061786 _cons .001565 _____ _____ Sargan test of over-identifying restrictions: chi2(365) = 285.22Prob > chi2 = 0.9993Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -12.18 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 0.21 Pr > z = 0.8359. xtabond def 1(0).ele ele1, lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs = 308 Number of groups = Group variable (i): id 22 Wald chi2(8) = 103.48 Time variable (t): y Obs per group: min = 14 avg = 14 max = 14 One-step results _____ _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] def -----def LD | .3785501 .0564379 6.71 0.000 L2D | -.01835 .0548835 -0.33 0.738 .2679338 .4891663 L2D -.1259197 .0892198 grow .0466037 .0458397 1.02 0.309 -.0432405 D1 | .136448 LD | .0323178 .0204377 1.58 0.114 -.0077395 .072375 lqqp D1.0358335.04504770.800.426-.0524583LD-.0394206.0435052-0.910.365-.1246892 .1241254 .0458479 ele .0016323 .0032359 0.50 0.614 -.00471 D1 | .0079745 ele1 D1 0141011 .003246 4.34 0.000 .0077391 .0204631 0008327 .0004321 1.93 0.054 -.0000142 .0016796 cons _____ Sargan test of over-identifying restrictions: chi2(365) = 277.02Prob > chi2 = 0.9998Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -12.40 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 1.25 Pr > z = 0.2131. test D1.ele=-D1.ele1 (1) D.ele + D.ele1 = 0 chi2(1) = 8.78Prob > chi2 = 0.0030

. xtabond def l(0).ele_1 , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.))

Arellano-Bond dynamic panel-data estimation Group variable (i): id	Number of obs Number of groups	= =	308 22
	Wald chi2(7)	=	84.27
Time variable (t): y	Obs per group: min avg max	r =	14 14 14

One-step results

_____ def | Coef. Std. Err. z P>|z| [95% Conf. Interval] _____ def LD.3477119.05652056.150.000.2369337L2D-.0147656.0559278-0.260.792-.124382 .45849 -.124382 .0948509 grow .0433804 .0466379 0.93 0.352 -.0480282 .0126031 .0204134 0.62 0.537 -.0274065 D1 | .134789 LD .0526127 lggp D1 | .0567226 .0452583 1.25 0.210 -.031982 LD | -.0541481 .0437954 -1.24 0.216 -.1399854 D1 | -.031982 .1454273 .0316893 ele_1 D1 | -.0072052 .0033172 -2.17 0.030 -.0137068 -.0007036 _cons | .0007185 .000441 1.63 0.103 -.0001459 .0015829 Sargan test of over-identifying restrictions: chi2(365) = 276.99 Prob > chi2 = 0.9998 Arellano-Bond test that average autocovariance in residuals of order 1 is 0:

Areliano-Bond test that average autocovariance in residuals of order 1 is 0. H0: no autocorrelation z = -13.21 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 1.59 Pr > z = 0.1118

TABLES 5 and 6 - Elections and Total Expenditure

. *OLS . regress te	te_1 te_2 te_	_3 grow lggp	ele, rob	oust		
Regression wit	th robust star	ndard errors			Number of obs F(6, 301) Prob > F R-squared Root MSE	
		Robust				
te	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]
te_1	.8529785	.121196	7.04	0.000	.6144797	1.091477
te_2	1169038	.1443267	-0.81	0.419	400921	.1671133
te_3	.1654418	.0681497	2.43	0.016	.0313317	.299552
grow	1441292	.0274022	-5.26	0.000	1980534	090205
lggp	.0015893	.0037383	0.43	0.671	0057672	.0089458
ele	.0114646	.00458	2.50	0.013	.0024518	.0204774
_cons	.0078443	.0348913	0.22	0.822	0608174	.0765061
. regress te Regression wit			pbc, rok	pust	Number of obs F(6, 301) Prob > F R-squared Root MSE	
		Robust				
te	Coef.	Std. Err.	t	P> t	[95% Conf.	Intervall
te_1	.8758927	.1205354	7.27	0.000	.638694	1.113091
te_2	1268693	.1412937	-0.90	0.370	4049177	.1511792
te_3	.1526218	.0657014	2.32	0.021	.0233295	.2819141
grow	1394992	.0269941	-5.17	0.000	1926203	0863781
lggp	.0014448	.0036981	0.39	0.696	0058325	.0087221
pbc	.0082134	.0026115	3.15	0.002	.0030743	.0133525
_cons	.0120095	.0346679	0.35	0.729	0562126	.0802317
. regress te	te_1 te_2 te_	_3 grow lggp	ele ele1	,robust		
Regression wit	ch robust star	ndard errors			Number of obs F(7, 300) Prob > F R-squared Root MSE	$= 118.04 \\ = 0.0000 \\ = 0.8984$
		Robust				
te	Coef.	Std. Err.	t 	₽> t	[95% Conf.	Interval]
te_1	.8744431	.1288108	6.79	0.000	.620956	1.12793
te_1		.1460104			4131252	
te_2 te_3			2.34	0.020	.0240987	
		.0269902	-5.17	0.020		
laan	1395424 .0014549	.0036944	0.39	0.694		
	.0086581		1.63	0.104		.0190996
ele1		.005399	-1.44		018426	.0028236
_cons	.0117077	.0342289	0.34	0.733	0556516	.0790669

. test ele=-ele1

(1) ele + e	ele1 = 0					
	300) = 0 cob > F = 0					
. regress te	te_1 te_2 te_	_3 grow lggp	ele_1, r	robust		
Regression wit	ch robust star	ndard errors			Number of obs F(6, 301) Prob > F R-squared Root MSE	= 116.88 = 0.0000 = 0.8958
te	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
te_1 te_2 te_3 grow lggp ele_1 cons . *FE . xtreg te te	1362872 .1712412 1519528 .0014792 .0017953 .0111131	.0270019 .0037438 .0042057 .0350294	7.24 -0.96 2.33 -5.63 0.40 0.43 0.32	0.000 0.693 0.670		0988164 .0088464
Fixed-effects Group variable	(within) reg				of obs = of groups =	
	= 0.3810 h = 0.7690 L = 0.6013			Obs per	group: min = avg = max =	14.0
corr(u_i, Xb)	= 0.6280			F(6,280 Prob >	,	28.72 0.0000
te	Coef.	Std. Err.	 <u>+</u>			
te_1			t 	₽> t	[95% Conf.	Interval]
te_3 grow lqqp	1069057 1179495 0282712 .0057427	.0418403 .0225352 .0127286	10.07 -2.61 -2.56 -5.23 -2.22 1.50	0.000 0.009 0.011 0.000 0.027 0.135	.3826095 2405003 1892671	.5686305 0337947 0245443 0735896 0032152 .013292
te_3 grow lggp ele _cons sigma_u	1069057 1179495 0282712 .0057427 .4229095 .08462865 .02712363	.0418403 .0225352 .0127286 .0038351	10.07 -2.61 -2.56 -5.23 -2.22 1.50 3.69	0.000 0.009 0.011 0.000 0.027 0.135 0.000	.3826095 -2405003 -1892671 -1623093 -0533271 -0018066 .1974114	.5686305 0337947 0245443 0735896 0032152 .013292
te_3 grow lggp ele _cons sigma_u sigma_e	1069057 1179495 0282712 .0057427 .4229095 .08462865 .02712363 .9068474	.0418403 .0225352 .0127286 .0038351 .1145549 (fraction o	10.07 -2.61 -2.56 -5.23 -2.22 1.50 3.69	0.000 0.009 0.011 0.000 0.027 0.135 0.000	.3826095 2405003 1892671 1623093 0533271 0018066 .1974114	.5686305 0337947 0245443 0735896 0032152 .013292 .6484075
te_3 grow lggp ele _cons sigma_u sigma_e rho	1069057 1179495 0282712 .0057427 .4229095 08462865 .02712363 .9068474 Ll u_i=0:	.0418403 .0225352 .0127286 .0038351 .1145549 (fraction of F(21, 280) =	10.07 -2.61 -2.56 -5.23 -2.22 1.50 3.69 	0.000 0.009 0.011 0.000 0.027 0.135 0.000	.3826095 2405003 1892671 1623093 0533271 0018066 .1974114	.5686305 0337947 0245443 0735896 0032152 .013292 .6484075
te_3 grow lggp ele _cons 	1069057 1179495 0282712 .0057427 .4229095 08462865 .02712363 .9068474 	.0418403 .0225352 .0127286 .0038351 .1145549 (fraction of F(21, 280) = grow lggp pl	10.07 -2.61 -2.56 -5.23 -2.22 1.50 3.69 	0.000 0.009 0.011 0.000 0.027 0.135 0.000 	.3826095 2405003 1892671 1623093 0533271 0018066 .1974114	.5686305 0337947 0245443 0735896 0032152 .013292 .6484075 F = 0.0000

corr(u_i, Xb)	= 0.6150			F(6,280) Prob > F	=	29.86 0.0000
te	Coef.	Std. Err.	 t	P> t	[95% Conf.	Interval]
te_1 te_2 te_3 grow lggp pbc _cons sigma_u	.4894211 1395606 1182188 1124959 0295899 .0057465 .4357615 .08470662	.0470915 .0516395 .0418429 .0225231 .012621 .0022564 .1134771	10.39 -2.70 -2.83 -4.99 -2.34 2.55 3.84	0.000 0.007 0.005 0.000 0.020 0.011 0.000	.3967228 2412115 2005853 156832 0544339 .0013048 .212385	.5821193 0379096 0358522 0681599 0047458 .0101881 .659138
sigma_u sigma_e rho	.02692198	(fraction o	of varian	ce due to	u_i)	
F test that a	ll u_i=0:	F(21, 280) :	= 11.4	7	Prob > 1	F = 0.0000
. xtreg te te	e_1 te_2 te_3	grow lggp e	le ele1,f	e		
Fixed-effects Group variable	-	ression		Number of Number of		308 22
	= 0.3921 n = 0.7295 L = 0.5751			Obs per g	group: min = avg = max =	14 14.0 14
corr(u_i, Xb)	= 0.5971			F(7,279) Prob > F		25.71 0.0000
te	Coef.	Std. Err.	 t	P> t	[95% Conf.	Interval]
te_1 te_2 te_3 grow lggp ele ele1 _cons	1474147 1227199 1116561 0307563	.0479183 .052323 .0421252 .0225456 .0126846 .0040573 .0038406 .1142822	10.39 -2.82 -2.91 -4.95 -2.42 0.64 -2.26 3.92	0.000 0.005 0.004 0.000 0.016 0.525 0.025 0.000	.4033686 2504126 2056435 1560371 0557259 0054069 0162252 .223325	.5920234 0444168 0397963 0672751 0057867 .0105666 0011049 .6732545
sigma_e	.08528202 .02692765 .90934139	(fraction (of varian	ce due to	u_i)	
F test that a						F = 0.0000
	ele1 = 0 279) = cob > F =	0.3484	e 1 fe			
Fixed-effects Group variable	(within) reg		,		obs = groups =	
R-sq: within between					group: min = avg = max =	14 14.0
corr(u_i, Xb)	= 0.5971			F(6,280) Prob > F	=	28.38 0.0000

_____ te | Coef. Std. Err. t P>|t| [95% Conf. Interval] _____+ te_1.4804651.047405810.140.000.3871481te_2-.1400705.0528345-2.650.008-.2440737 .573782 -.0360672 te_3 | -.1180047 .0440876 -2.68 0.008 -.2047899 -.0312195 -.1215008 .0224652 -5.41 0.000 -.165723 grow -.0772786
 .0127572
 -2.33
 0.020
 -.0548588

 .0040691
 0.98
 0.330
 -.0040398

 .1146815
 3.82
 0.000
 .2125887
 lggp | -.0297466 ele_1 | .0039702 ____1 | .0039702 _____ 0039702 -.0046344 .0119802 .438336 .2125887 .6640833 sigma_u | .08593566 sigma_e | .02718584 rho | .90902645 (fraction of variance due to u_i) _____ F test that all $u_i=0$: F(21, 280) = 11.61 Prob > F = 0.0000 . *GMM . xtabond te l(0).ele , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs 308 = Group variable (i): id Number of groups = 22 Wald chi2(7) = 261.18Time variable (t): y Obs per group: min = 14 avg = 14 max = 14 One-step results _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] te te LD | .6642248 .0520248 12.77 0.000 .562258 L2D | -.2526925 .0519487 -4.86 0.000 -.35451 .7661915 -.150875grow -.1017775 .0638095 -1.60 0.111 -.2268418 .1231811 .0287537 4.28 0.000 .0668249 D1 | -.1017775 .0232868 LD .1795374 lqqp -.0872688 D1 | .062897 -1.39 0.165 -.2105447 .036007 -.0131114 .0604702 -0.22 0.828 -.1316307 LD .105408 ele D1 0100806 .0043157 2.34 0.020 .001622 0022204 .0005992 3.71 0.000 .0010461 .0185392 .0033947 cons _____ Sargan test of over-identifying restrictions: chi2(365) = 254.35Prob > chi2 = 1.0000Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -9.70 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 1.00Pr > z = 0.3166. xtabond te l(0).pbc , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs 308 Number of groups = 22 Group variable (i): id Wald chi2(7) = 262.49 Time variable (t): y Obs per group: min = 14 14 avg = max = 14

One-step results

Coef. Std. Err. z P>|z| [95% Conf. Interval] te _____ ----+-te .6816699 .0517816 13.16 0.000 .5801799 LD | .7831599 L2D -.2665863 .0507628 -5.25 0.000 -.3660795 -.167093 grow D1 -.1016196 .0638553 -1.59 0.112 -.2267738 LD .1157484 .02918 3.97 0.000 .0585566 .0235345 .1729401 lggp -.0825743 .0629637 -1.31 0.190 -.2059809 | 1ת .0408323 LD | -.0163862 .0604938 -0.27 0.786 -.1349519 .1021794 pbc D1 0073755 .0026063 2.83 0.005 .0022673 .01248 .0021614 .0005987 3.61 0.000 .000988 .00333 .0124837 _cons .0033349 _____ Sargan test of over-identifying restrictions: chi2(365) = 250.02Prob > chi2 = 1.0000Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -9.86 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 1.41 Pr > z = 0.1600. xtabond te l(0).ele ele1, lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs = 308 Number of groups = 22 Group variable (i): id Wald chi2(8) = 261.95 Time variable (t): y Obs per group: min = 14 avg = 14 max = 14 One-step results _____ _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] te te .0533813 12.79 0.000 .0528449 -5.03 0.000 .5779854 LD .6826108 .7872361 L2D -.265755 -.3693291 -.1621809 grow D1 | -.1016882 .0640968 -1.59 0.113 -.2273157 .0239392 LD | .1155703 .029261 3.95 0.000 .0582198 .1729208 lqqp .063254 -1.30 0.193 -.2062865 .0607757 -0.27 0.789 -.1353502 .0416647 D1 | -.0823109 T'D | -.016232 .1028863 ele .0073918 .0046407 1.59 0.111 -.0017038 D1 | .0164873 ele1 .0016077 D1 -.0073544 .0045725 -1.61 0.108 -.0163164 .002157 .0006031 3.58 0.000 .000975 cons .003339 _____ Sargan test of over-identifying restrictions: chi2(365) = 249.74Prob > chi2 = 1.0000Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -10.20 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 1.42 Pr > z = 0.1568. test D1.ele=-D1.ele1 (1) D.ele + D.ele1 = 0 chi2(1) = 0.00Prob > chi2 = 0.9961

. xtabond te l(0).ele_1 , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs = 308 Group variable (i): id Number of groups = 22 Wald chi2(7) = 250.92 Time variable (t): y Obs per group: min = 14 14 avg = max = 14 One-step results

te		Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
te		+ 					
	LD	.6882782	.0531348	12.95	0.000	.5841358	.7924205
	L2D	2839229	.0512149	-5.54	0.000	3843022	1835436
grow							
	D1	087486	.064571	-1.35	0.175	2140429	.0390709
	LD	.1358809	.0288623	4.71	0.000	.0793119	.1924499
lggp							
	D1	1172843	.0627715	-1.87	0.062	2403143	.0057457
	LD	.011062	.0605704	0.18	0.855	1076537	.1297777
ele_1							
	D1	.0038208	.0046096	0.83	0.407	0052139	.0128555
_cons		.0021637	.0006088	3.55	0.000	.0009705	.003357
Sargan (test of	 E over-identi	ving restri	ctions:			

Sargan test of over-identifying restrictions: chi2(365) = 248.75 Prob > chi2 = 1.0000

Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -10.29 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 1.72 Pr > z = 0.0848

TABLES 7 and 8 - Elections and Composition Effect

. *OLS . regress ce	ce_1 ce_2 ce_	_3 grow lggp	ele, rob	oust		
Regression wit	h robust star	ndard errors			Number of obs F(6, 301) Prob > F R-squared Root MSE	
ce	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
ce_1 ce_2 ce_3 grow lggp ele _cons	.597824 0213287 .1615112 .0682283 0076872 .0000105 .2929964	.0629698 .0697938 .0522125 .0422724 .0052917 .0068845 .058347	9.49 -0.31 3.09 1.61 -1.45 0.00 5.02	0.000 0.760 0.002 0.108 0.147 0.999 0.000	.4739073 1586743 .0587634 0149585 0181006 0135374 .1781766	.7217407 .116017 .264259 .1514152 .0027262 .0135585 .4078161
. regress ce	ce_1 ce_2 ce_	_3 grow lggp	pbc, rob	oust		
Regression wit	h robust star	ndard errors			Number of obs F(6, 301) Prob > F R-squared Root MSE	= 67.85
ce	Coef.	Robust Std. Err.		₽> t	[95% Conf.	Interval]
ce_1 ce_2 ce_3 grow lggp pbc _cons	.5959227 0103155 .154159 .0619434 007643 0038566 .2911026	.0627891 .0694357 .0525895 .0422938 .0052931 .0039057 .0585234	9.49 -0.15 2.93 1.46 -1.44 -0.99 4.97	0.000 0.882 0.004 0.144 0.150 0.324 0.000	.4723615 1469564 .0506694 0212857 0180592 0115425 .1759358	.7194839 .1263255 .2576485 .1451724 .0027731 .0038293 .4062695
. regress ce	ce_1 ce_2 ce_	_3 grow lggp	ele elei	l,robust		
Regression wit	h robust star	ndard errors			Number of obs F(7, 300) Prob > F R-squared Root MSE	= 57.92 = 0.0000 = 0.5998
ce	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
ce_1 ce_2 ce_3 grow lggp ele ele1 _cons	0137019 .1427931 .0602011 0074531 .0039174	.0417522 .0052384 .0074204	9.41 -0.20 2.67 1.44 -1.42 0.53 1.64 4.88	0.000 0.844 0.008 0.150 0.156 0.598 0.102 0.000	.4830884 1502811 .0374092 0219632 0177616 0106852 0021697 .1702741	.7385227 .1228773 .2481769 .1423655 .0028555 .01852 .0238357 .4007183

. test ele=-ele1

(1) ele + e	ele1 = 0					
· · ·	300) = 1 rob > F = 0					
. regress ce	ce_1 ce_2 ce_	_3 grow lggp	ele_1, r	robust		
Regression wit	h robust star	ndard errors			Number of obs F(6, 301) Prob > F R-squared Root MSE	= 74.50 = 0.0000 = 0.6071
 ce	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
grow lggp	.1317214	.0051607 .0069432	1.70		.0291255 0107963	.7330399 .1384903 .2343173 .1481368 .0025007 0061101 .407057
. *FE . xtreg ce ce Fixed-effects Group variable	(within) reg		le,fe		of obs = of groups =	
	= 0.3691 n = 0.9242 n = 0.5915			Obs per	r group: min = avg = max =	14.0
corr(u_i, Xb)	= 0.5274			F(6,280 Prob >		
ce	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ce_3 grow lggp	.1227309 .0790595 0134477 .0013865	.0530716 .0386179 .0224803 .0066562	2.31 2.05 -0.60 0.21	0.021 0.042 0.550 0.835	.3890724 1723684 .0182609 .0030412 0576995 011716 .1188232	.2272008 .1550779 .030804 .014489
sigma_u sigma_e rho		(fraction o	of variar	nce due t	to u_i)	
F test that al	l u_i=0:	F(21, 280) =	= 2.1	L8	Prob > 1	F = 0.0025
. xtreg ce ce		arow lago ph	na fo			
		grow raab br	, те			
Fixed-effects Group variable	(within) reg		JC, 12		of obs = of groups =	

corr(u_i, Xb)	= 0.5258			F(6,280) Prob > F	=	
ce	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ce_1 ce_2 ce_3 grow lggp pbc _cons	.1183684 .073767	.0550021 .0640198 .0534819 .0389992 .0224256 .003918 .180086	9.02 -0.57 2.21 1.89 -0.61 -0.65 2.63	0.000 0.568 0.028 0.060 0.543 0.519 0.009	.3877641 1626085 .0130907 0030019 0578038 0102439 .1191713	.6043044 .0894341 .223646 .150536 .0304843 .0051811 .82816
sigma_u sigma_e rho		(fraction o	f varian	ice due to	u_i)	
F test that al	ll u_i=0:	F(21, 280) =	2.1	.6	Prob >	F = 0.0028
. xtreg ce ce	e_1 ce_2 ce_3	grow lggp el	e ele1,f	e		
Fixed-effects Group variable		ression		Number of Number of	f obs = f groups =	
	= 0.3733 n = 0.9385 L = 0.5967			Obs per o	group: min = avg = max =	14.0
corr(u_i, Xb)	= 0.5514			F(7,279) Prob > F	=	
ce	Coef.	Std. Err.	 t	P> t	[95% Conf.	Interval]
ce_1 ce_2 ce_3 grow lggp ele ele1 _cons	.5094768 0405547 .1060174 .0706142 0107449 .0046506 .0089791 .4473069	.0560442 .0640459 .0543826 .0390503 .0225325 .0070621 .0065703 .1812163	9.09 -0.63 1.95 1.81 -0.48 0.66 1.37 2.47	0.000 0.527 0.052 0.072 0.634 0.511 0.173 0.014	.3991537 1666293 0010348 0062564 0551002 0092511 0039546 .090582	.6198 .0855199 .2130696 .1474848 .0336103 .0185522 .0219128 .8040317
	.02252725 .04671307 .1886821	(fraction o	f varian	ice due to	u_i)	
F test that al	ll u_i=0:	F(21, 279) =	2.1	.5	Prob >	F = 0.0030
. test ele=-el (1) ele + e						
F(1, נע	279) = cob > F =	1.49 0.2228				
. xtreg ce ce_	_1 ce_2 ce_3	grow lggp ele	_1, fe			
Fixed-effects Group variable	-	ression			f obs = f groups =	
	= 0.3877 n = 0.9431 L = 0.6036			Obs per o	group: min = avg = max =	14.0
corr(u_i, Xb)	= 0.5532			F(6,280) Prob > F		29.55 0.0000

	ce	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]		
	ce_1	.5064715	.0543087	9.33	0.000	.3995664	.6133766		
	ce_2	0247478	.0624277	-0.40	0.692	1476349	.0981394		
	ce_3	.0898578	.0534849	1.68	0.094	0154258	.1951415		
	grow	.0772384	.0378411	2.04	0.042	.0027493	.1517276		
	lggp	0101332	.0221414	-0.46	0.648	053718	.0334516		
	ele_1	0194332	.0066483	-2.92	0.004	0325203	0063462		
	_cons	.4520359	.1776843	2.54	0.011	.1022692	.8018026		
-	ma_u	.02273794							
sig	ma_e	.04609108		- I					
	rho	.19573466	(fraction c	of variar	ice due t	o u_1)			
<pre>F test that all u_i=0: F(21, 280) = 2.23 Prob > F = 0.0019 *GMM</pre>									
	nd ce l	(0).ele , lag	s(2) pre(gr	row, lag(1,.)) pr	e(lggp, lag(1	L,.))		
		dynamic panel e (i): id	-data estima	ation	Number Number	_	= 308 = 22		
					Wald ch	i2(7) =	= 142.57		
Time var	iable	(t): y			Obs per	group: min =	= 14		
					-	avq :			
						max :			
One-step	resul	lts							
ce 	 +	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]		
ce									
	LD	.5204356	.0568682	9.15	0.000	.4089759	.6318952		
	L2D	0343043	.0569018	-0.60	0.547	1458298	.0772211		
grow	i								
5	D1	.0892711	.0950972	0.94	0.348	097116	.2756583		
	LD	069051	.0411043	-1.68	0.093	149614	.0115121		
lggp	i								
551	D1	.0052189	.0929107	0.06	0.955	1768827	.1873206		
	LD	0666234	.0900221	-0.74	0.459	2430635	.1098168		
ele									
010	D1	0057964	.0064121	-0.90	0.366	0183639	.006771		
cons		.0049174	.001014	4.85	0.000	.00293	.0069048		
	ا 								
Sargan t		over-identif 365) = 244.	ying restric	tions:					
Arellanc		test that ave					c 1 is 0:		
Arolloro		no autocorrela test that ave					2 ia 0.		
ALEITAIIC		no autocorrela					2 15 0.		
. xtabon	nd ce]	(0).pbc , lag	s(2) pre(gr	row, lag(1,.)) pr	e(lggp, lag(1	L,.))		
Arellanc	-Bond	dynamic panel	-data estima	ation	Number	of obs =	= 308		
		e (i): id				of groups :			
						- <u> </u>			
					Wald ch	i2(7) =	= 145.08		
Time var	riahle	(t): v			Obs ner	group: min :	= 14		
IIIC VAL	TUDIC				one her	avg =			
						avg = max =			
						ıllax -	- 14		
One-step	resul	ts							

Coef. Std. Err. z P> z [95% Conf. Interval] ce _____ Ce LD .5213213 .0559603 9.32 0.000 .4116411 L2D -.0292606 .0561441 -0.52 0.602 -.1393011 .6310014 .0807799 grow D1 | .0920027 .0947985 0.97 0.332 -.093799 .2778045 LD -.0585332 .0416931 -1.40 0.160 -.1402502 .0231838 lqqp D1 -.0067717 .0926874 -0.07 0.942 -.1884357 .1748924 -.056363 .0897739 -0.63 0.530 -.2323166 LD | .1195905 pbc D1 -.0065655 .0038776 -1.69 0.090 -.0141655 .0048776 .001011 4.82 0.000 .0028961 .0010344 .0068591 _cons _____ _____ _____ Sargan test of over-identifying restrictions: chi2(365) = 243.05 Prob > chi2 = 1.0000 Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -12.41 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.52 Pr > z = 0.6014. xtabond ce l(0).ele ele1, lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs = 308 Number of groups = Group variable (i): id 22 Wald chi2(8) = 145.53 Time variable (t): y Obs per group: min = 14 avg = 14 14 max = One-step results _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] ce се .6451989 LD .5329169 .0572878 9.30 0.000 .4206349 L2D | -.0366249 .057022 -0.64 0.521 -.148386 .0751362 grow D1 | 0.92 0.356 -.0987497 .0879901 .0952772 .27473 LD -.0559375 .0419735 -1.33 0.183 -.138204 .026329 lggp D1 -.0017589 .0931851 -0.02 0.985 -.1843983 LD -.0604062 .0902535 -0.67 0.503 -.2372998 .1808805 .1164874 ele -0.23 0.818 -.0149284 D1 | -.0015722 .0068145 .0117839 ele1 D1 .0111912 .0066819 1.67 0.094 -.0019051 .0048946 .0010158 4.82 0.000 .0029037 .0242874 .0068854 cons Sargan test of over-identifying restrictions: chi2(365) = 244.37Prob > chi2 = 1.0000Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -12.55 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.36 Pr > z = 0.7182. test D1.ele=-D1.ele1 (1) D.ele + D.ele1 = 0 chi2(1) = 0.76Prob > chi2 = 0.3831

. xtabond ce l(0)	.ele_1 , 1	ags(2)	pre(grow,	lag	g(1,.)) pr	re(lggp	o, lag	(1,.))
Arellano-Bond dyna Group variable (i	-	-data e	estimation		Number of Number of			
					Wald chi2	2(7)	=	148.01
Time variable (t)	: у				Obs per g	group:	min = avg = max =	14 14 14
One-step results								
ce	Coef.	Std. E	lrr. z		P> z	 [95%	Conf.	Interval]

ce	-	coer.	Sta. Err.	Z	P> Z	[95% CONT.	. Intervalj
ce		 					
	LD	.5460397	.0559632	9.76	0.000	.4363538	.6557256
	L2D	0449919	.0550667	-0.82	0.414	1529206	.0629368
grow							
	D1	.0807695	.0943044	0.86	0.392	1040637	.2656027
	LD	0788889	.0406327	-1.94	0.052	1585274	.0007497
lggp							
	D1	.0262696	.0910579	0.29	0.773	1522006	.2047398
	LD	0790056	.0883866	-0.89	0.371	2522403	.094229
ele_1							
	D1	0148937	.0067283	-2.21	0.027	028081	0017064
_cons		.0046604	.0010169	4.58	0.000	.0026673	.0066536
Cargan	toat of	E ovor idonti:	Fuing roatri	ationa.			

Sargan test of over-identifying restrictions: chi2(365) = 242.60 Prob > chi2 = 1.0000

Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -12.32 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.50 Pr > z = 0.6165

TABLES 9 and 10 - Elections and Total Revenue

. *OLS . regress tr tr_1 tr_2 tr_3 grow lggp ele, robust										
Regression with robust standard errors $\begin{aligned} & \text{Number of obs} = & 308 \\ & F(6, 301) = & 72.19 \\ & \text{Prob} > F = & 0.0000 \\ & \text{R-squared} = & 0.8920 \\ & \text{Root MSE} = & .0332 \end{aligned}$										
 tr	Rol Coef. Std.	 oust Err. t	 P> t	[95% Conf. I	interval]					
tr_1 tr_2 tr_3 grow lggp ele _cons	1.007357 .16 280931 .22 .158464 .08 051079 .02 .0007143 .00 .0111455 .0	59972 6.03 39186 -1.25 54167 1.83 74964 -1.86 31351 0.23 04261 2.62 06862 0.46	0.000 0.211 0.068 0.064 0.820 0.009	.678727 7215751 0115934 1051884 0054552 .0027604 0462533	1.335987 .1597131 .3285214 .0030304 .0068839 .0195306 .0745202					
-	. regress tr tr_1 tr_2 tr_3 grow lggp pbc, robust									
Regression wit	h robust standard		Number of obs F(6, 301) Prob > F R-squared Root MSE							
·		oust								
tr +	Coef. Std. 1	Err. t 	P> t 	[95% Conf. I	nterval]					
tr_1 tr_2 tr_3 grow lggp pbc _cons	299546 .22 .1719821 .08 053444 .02 .0006089 .00 .0024608 .0	35758 6.00 14875 -1.35 42619 2.04 76693 -1.93 31729 0.19 02744 0.90 12325 0.57	0.177 0.042 0.054 0.848 0.371	.679702 735406 .0061651 1078938 0056351 002939 0435607	1.343175 .136314 .3377991 .0010058 .0068528 .0078606 .0793626					
. regress tr_1	tr_2 tr_3 grow l	ggp ele ele1,r	obust							
	h robust standard			Number of obs F(7, 300) Prob > F R-squared Root MSE	= 77.98					
 tr	Rol Coef. Std.	oust Err. t	₽> t	[95% Conf. I	interval]					
tr_1 tr_2 tr_3 grow lggp ele ele1 _cons	2660834 .22 .1580741 .08 0556565 .02 .0008512 .0 .0137865 .00 .0075717 .0	550071.8370965-2.050.31690.27	0.245 0.069 0.041 0.788 0.004 0.152	0121509 1089799 005385	1.329175 .1831684 .3282991 0023332 .0070873 .0231202 .0179405 .070353					

. test ele=-ele1

(1) ele	e + el	el = 0					
F (300) = b > F =					
. regress	trtr_	1 tr_2 tr_3	grow lggp e	ele_1, rob	oust		
Regression	n with	robust sta	ndard errors	5		Number of ok F(6, 301 Prob > F R-squared Root MSE	(-) = 65.24 = 0.0000 = 0.8901
1	 tr +-	Coef.	Robust Std. Err.	t P	> t	[95% Conf.	Interval]
tı tı gı lo ele	r_1 r_2 r_3 row ggp e_1 ons	05568	.003206 .0039099	5.91 -1.35 2.15 -2.00 0.20 -0.76 0.58	0.844 0.448	.6679135 7374615 .0153281 1104586 0056773 0106675 0434643	1.335203 .1376628 .3476092 0008815 .0069406 .0047207 .0801762
. *FE . xtreg ti	r tr_1	tr_2 tr_3	grow lggp el	.e,fe			
Fixed-effe Group var:		within) reg (i): id	ression			of obs of groups	
	tween	= 0.4882 = 0.9475 = 0.5713			Obs per	group: min avg max	= 14.0
corr(u_i,	Xb)	= 0.6137			F(6,280 Prob >		= 44.51 = 0.0000
1	 tr	Coef.	Std. Err.	t P	 > t	[95% Conf.	Interval]
t: g: l <u>c</u>	row	2727789 1350257 0559339 0076158 .0051387	.0490768 .0384525 .0186706	-5.56 -3.51 -3.00 -0.76 1.59	0.000 0.001 0.003 0.450 0.112	2107184 0926865 0274277 0012036	1761727 059333 0191813
sigma	+- a_u a_e rho		(fraction	of varian	.ce due t	.o u_i)	
F test that	at all	u_i=0:	F(21, 280)	= 17.1	9	Prob >	F = 0.0000
. xtreg t	r tr_1	tr_2 tr_3	grow lggp pb	c,fe			
Fixed-effe Group var:		within) reg (i): id	ression			of obs of groups	
	tween	= 0.4836 = 0.9417 = 0.5554			Obs per	group: min avg max	= 14.0

corr(u_i, Xb)	= 0.6010			F(6,280) Prob > F		= =	43.70 0.0000
tr	Coef.	Std. Err.	t P:	> t	[95% Conf.	Int	erval]
tr_1 tr_2 tr_3 grow lggp pbc _cons	.5962759 2815121 129584 0580038 0078138 .0004041 .2387625	.0420166 .0489819 .0385897 .0188756 .0101177 .0019049 .0891719	14.19 -5.75 -3.36 -3.07 -0.77 0.21 2.68	0.000 0.000 0.001 0.002 0.441 0.832 0.008	.5135674 3779317 2055468 0951599 0277301 0033457 .0632301	-	.6789843 .1850926 .0536211 .0208476 .0121025 .0041539 .4142948
sigma_u sigma_e rho	.08059363 .02285287 .92557934	(fraction	of varian	ce due to	0 u_i)		
F test that al	_			1	Prob :	 > F	= 0.0000
. xtreg trtr_1			ele1,fe				
Fixed-effects Group variable		gression		Number c Number c	of obs of groups	=	308 22
	= 0.4938 h = 0.9606 L = 0.5816			Obs per	group: min avg max	=	14 14.0 14
corr(u_i, Xb)	= 0.6222			F(7,279) Prob > F		=	38.87 0.0000
tr	Coef.	Std. Err.	 t P:	 > t	[95% Conf.	Int	erval]
tr_1 tr_2 tr_3 grow lggp ele ele1 _cons	.5906884 2623382 1337519 0599213 0062672 .0070712 .0054775 .220364	.0417431 .0492571 .0383177 .0187403 .010057 .003394 .0031235 .088791	$14.15 \\ -5.33 \\ -3.49 \\ -3.20 \\ -0.62 \\ 2.08 \\ 1.75 \\ 2.48$	0.000 0.001 0.002 0.534 0.038 0.081 0.014	.508517 3593009 2091804 0968115 0260644 .0003902 0006712 .0455785	_	.6728599 .1653756 .0583234 -023031 .01353 .0137522 .0116262 .3951494
-	.07961596 .02266774 .92501649	(fraction	of varian	ce due to	0 u_i)		
F test that al	ll u_i=0:	F(21, 279)	= 17.1	8	Prob :	 > F	= 0.0000
	ele1 = 0 279) = cob > F =	0.0187	1, fe				
Fixed-effects Group variable		gression			of obs of groups		308 22
R-sq: within between					group: min	= =	14 14.0 14
corr(u_i, Xb)	= 0.6028			F(6,280) Prob > F		= =	43.87 0.0000

_____ it | Coef. Std. Err. t P>|t| [95% Conf. Interval] _____ tr_1 | .5911466 .0420922 14.04 0.000 .5082893 .6740038

 tr_2
 -.2812704
 .048933
 -5.75
 0.000
 -.3775937

 tr_3
 -.1250099
 .038729
 -3.23
 0.001
 -.2012468

 grow
 -.0579308
 .0186826
 -3.10
 0.002
 -.0947069

 -.1849472 -.048773 -.0211547
 -.0073739
 .0101109
 -0.73
 0.466
 -.0272769

 -.0024626
 .0032909
 -0.75
 0.455
 -.0089406

 .235504
 .0890983
 2.64
 0.009
 .0601165
 .0125291 lggp | ele_1 .0040154 .0601165 .4108916 _cons sigma_u | .08055516 sigma_e | .02283188 rho | .92564008 (fraction of variance due to u_i) _____ F test that all $u_i=0$: F(21, 280) = 17.50 Prob > F = 0.0000 . *GMM . xtabond it l(0).ele , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs = 308 Group variable (i): id Number of groups = 22 Wald chi2(7) = 268.76Time variable (t): y Obs per group: min = 14 avg = 14 max = 14 One-step results _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] it it .0506127 14.11 0.000 .6147942 .0483703 -6.19 0.000 -.3941812 .7139933 LD | .8131923 L2D -.2993771 -.204573 grow .0589354 -0.98 0.328 -.1731712 D1 | -.0576599 .0578514 .111362 .025856 4.31 0.000 .0606853 LD .1620388 lqqp -0.55 0.579 -.1452835 D1 | -.0320426 .0577771 .0811984 .0558419 -0.96 0.336 -.053781 LD -.163229 .0556671 ele D1 | .0095186 .003906 2.44 0.015 .001863 | .002413 .0005494 4.39 0.000 .0013363 .0171741 .0034898 cons _____ _____ Sargan test of over-identifying restrictions: chi2(365) = 270.19Prob > chi2 = 0.9999Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -8.33 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 1.25Pr > z = 0.2096. xtabond it l(0).pbc , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs 308 22 Number of groups = Group variable (i): id Wald chi2(7) = 261.15 Time variable (t): y Obs per group: min = 14 14 avg = max = 14

One-step results

Coef. Std. Err. z P>|z| [95% Conf. Interval] it _____ ----+-it .0508761 14.13 0.000 .6190594 .0481481 -6.53 0.000 -.4086036 LD .7187746 .8184898 L2D -.3142351 -.2198665 grow D1 -.0472061 .0590767 -0.80 0.424 -.1629943 LD .1147523 .0263393 4.36 0.000 .0631282 .0685821 .1663765 lggp -.0489422 .0579701 -0.84 0.399 -.1625614 .0646771 | 1ת LD -.0374842 .0559705 -0.67 0.503 -.1471844 .072216 pbc D1 0019902 .0023928 0.83 0.406 -.0026996 .0022855 .000549 4.16 0.000 .0012095 .0066801 .0033615 _cons _____ _____ Sargan test of over-identifying restrictions: chi2(365) = 273.64Prob > chi2 = 0.9999Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -8.24 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 0.98 Pr > z = 0.3289. xtabond it l(0).ele ele1, lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs = 308 Number of groups = 22 Group variable (i): id Wald chi2(8) 280.15 = Time variable (t): y Obs per group: min = 14 avg = 14 max = 14 One-step results _____ _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] it. it .0502729 13.95 0.000 .6026256 .0482156 -5.91 0.000 -.3796218 .6026256 LD | .7011586 L2D | -.2851209 .7996916 -.19062grow D1 | -.0580364 .0581288 -1.00 0.318 -.1719667 .0558939 LD | .1213578 .0259548 4.68 0.000 .0704874 .1722283 lqqp -.0375077 .0570538 -0.66 0.511 -.1493311 -.0497497 .0551136 -0.90 0.367 -.1577704 .0743158 D1 | ld | .058271 ele .0124942 .0041004 3.05 0.002 .0044575 D1 | .0205308 ele1 .0165238 D1 0084908 .0040986 2.07 0.038 .0004578 .0024929 .0005433 4.59 0.000 .001428 .001428 .0035578 cons _____ Sargan test of over-identifying restrictions: chi2(365) = 274.97Prob > chi2 = 0.9999Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -8.22 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 1.00 Pr > z = 0.3194. test D1.ele=-D1.ele1 (1) D.ele + D.ele1 = 0 chi2(1) = 9.76Prob > chi2 = 0.0018

. xtabond it l(0).ele_1 , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.))										
Arellano-Bond dynamic panel-data estimation Group variable (i): id						of obs = of groups =	500			
					Wald chi	2(7) =	263.49			
Time variable (t): y						group: min = avg = max =	14			
One-step results										
it		Coef.				[95% Conf.	Interval]			
it	+									
		.7136762								
grow	L2D	3121723	.0484659	-6.44	0.000	4071637	21/1808			
-	D1	043272	.0587091	-0.74	0.461	1583397	.0717957			
lqqp	LD	.1189453	.0257069	4.63	0.000	.0685607	.1693298			
1995	D1	057316	.0569039	-1.01	0.314	1688457	.0542137			
	LD	0301892	.0550328	-0.55	0.583	1380515	.0776732			
ele_1										
	D1					0100036				
_cons		.0022668	.0005479	4.14	0.000	.0011929	.0033408			
Sargan test of over-identifying restrictions: chi2(365) = 276.45 Prob > chi2 = 0.9998										

Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -8.13 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 0.88 Pr > z = 0.3768

. *OLS . regress fr fr_1 fr_2 fr_3 grow lggp ele, robust										
Regression with robust standard errors F(6, 301) Prob > F R-squared Root MSE										
	 	Robust								
fr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]				
	' +									
fr_1	1.004842	.1443267	6.96	0.000	.7208247	1.288859				
fr_2	2122897	.1985607	-1.07	0.286	6030325	.1784532				
fr_3	.1084967	.0781301	1.39	0.166	0452537	.2622471				
grow	0498083	.025191	-1.98	0.049	0993811	0002355				
lggp	0004904	.003127	-0.16	0.875	006644	.0056632				
ele	.0113934	.0039385	2.89	0.004	.0036429	.0191439				
_cons	.0182307	.0305493	0.60	0.551	0418866	.0783479				
. regress fr Regression wit		Number of obs F(6, 301) Prob > F R-squared Root MSE								
	 I	Debugt								
fr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Intervall				
					[95% CONT.					
fr_1	1.008407	.1462416	6.90	0.000	.7206219	1.296193				
 fr_2	2309958	.1985459	-1.16	0.246	6217095	.159718				
fr3	.1225613	.0766267	1.60	0.111	0282305	.2733532				
grow	0518731	.0256435	-2.02	0.044	1023363	0014098				
lggp	0006274	.0031662	-0.20	0.843	0068581	.0056033				
pbc	.0027726	.0025483	1.09	0.277	0022422	.0077874				
_cons	.0223104	.0311374	0.72	0.474	0389641	.0835849				
. regress fr fr_1 fr_2 fr_3 grow lggp ele ele1,robust Regression with robust standard errors Number of obs F(7, 300) Prob > F R-squared Root MSE										
						= .03042				
	 	Robust								
fr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]				
	, +									
fr_1	.9891585	.1484102	6.67	0.000	.6971016	1.281215				
fr_2	1942327	.2037218	-0.95	0.341	5951374	.2066719				
fr_3	.1068462	.0783029	1.36	0.173	0472463	.2609387				
grow	0543071	.0250902	-2.16	0.031	1036823	0049319				
lggp	0003557	.0031491	-0.11	0.910	0065528	.0058414				
ele	.0138578	.0042657	3.25	0.001	.0054633	.0222522				
ele1	.0071179	.0046235	1.54	0.125	0019807	.0162165				
_cons	.0144918	.0303717	0.48	0.634	0452767	.0742604				

TABLES 11 and 12 - Elections and Revenue from Federal Government

. test ele=-ele1

(1) ele + e	ele1 = O					
· · ·	300) = 8 rob > F = 6					
. regress fr	fr_1 fr_2 fr_	_3 grow lggp	ele_1, 1	robust		
Regression wit	th robust star	ndard errors			Number of obs F(6, 301) Prob > F R-squared Root MSE	= 117.48 = 0.0000 = 0.9029
fr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
fr_1 fr_2 fr_3 grow lggp ele_1 _cons	2296705 .1345786 054518 000635	.003203 .0037698	-1.15	0.085 0.035 0.843 0.310	0187618 1050541 0069381 011253	1.283832 .1640039 .287919 0039819 .0056681 .0035838 .0847544
. *FE . xtreg fr fi	r_1 fr_2 fr_3	grow lggp e	le,fe			
Fixed-effects Group variable	-	ression			of obs = of groups =	
-	2 (1) 10			NUMBEL	or groups	22
R-sq: within between					r group: min = avg = max =	14 14.0 14
R-sq: within between	= 0.4508 n = 0.8928 l = 0.6720				r group: min = avg = max = 0) =	14 14.0 14
R-sq: within between overal	= 0.4508 h = 0.8928 l = 0.6720 = 0.6993	Std. Err.	t	Obs per	r group: min = avg = max = 0) =	14 14.0 14 38.30 0.0000
R-sq: within between overall corr(u_i, Xb) fr fr_1 fr_2 fr_3 grow lqqp	= 0.4508 h = 0.8928 l = 0.6720 = 0.6993 Coef. .5847009 2077448 1474463 .0452483 0154633 .0052995	.0443512 .0521033 .039764 .0175997 .0096178	13.18 -3.99 -3.71 -2.57 -1.61 1.74	Obs per F(6,28(Prob > P> t 0.000 0.000 0.000 0.000 0.011 0.109 0.083	r group: min = avg = max = 0) = F = [95% Conf. .4973967 3103086 2257207 0798927 0343955 0006936	14 14.0 14 38.30 0.0000 Interval] .672005 105181 0691719 0106038 .003469
R-sq: within between overal: corr(u_i, Xb) fr frfrfr grow lggp ele sigma_u	= 0.4508 h = 0.8928 l = 0.6720 = 0.6993 Coef. .5847009 2077448 .1474463 .0452483 .0154633 .0052995 .2719578 .07463975 .02151267	.0443512 .0521033 .039764 .0175997 .0096178 .0030445	13.18 -3.99 -3.71 -2.57 -1.61 1.74 3.20	Obs per F(6,28(Prob > P> t 0.000 0.000 0.000 0.001 0.109 0.083 0.002	r group: min = avg = max = 0) = F = [95% Conf. .4973967 .3103086 .2257207 .0798927 .0343955 .0006936 .1046705	14 14.0 14 38.30 0.0000 Interval] .672005 105181 0691719 0106038 .003469 .0112925
R-sq: within between overal: corr(u_i, Xb) fr fr_1 fr_2 fr_3 grow lggp ele cons sigma_u sigma_e rho	= 0.4508 h = 0.8928 l = 0.6720 = 0.6993 Coef. .5847009 2077448 .1474463 .0452483 .0154633 .0052995 .2719578 .07463975 .02151267 .9233007	.0443512 .0521033 .039764 .0175997 .0096178 .0030445 .0849833	13.18 -3.99 -3.71 -2.57 -1.61 1.74 3.20	Obs per F(6,28(Prob > P> t 0.000 0.000 0.000 0.011 0.109 0.083 0.002 mce due t	r group: min = avg = max = 0) = F = [95% Conf. .4973967 .3103086 .2257207 .0798927 .0343955 .0006936 .1046705	14 14.0 14 38.30 0.0000 Interval] .672005 .105181 .0691719 .0106038 .003469 .0112925 .4392452
R-sq: within between overal: corr(u_i, Xb) fr fr_1 fr_2 fr_3 grow lggp ele cons sigma_u sigma_e rho	= 0.4508 h = 0.8928 l = 0.6720 = 0.6993 Coef. .5847009 2077448 .1474463 .0452483 .0154633 .0052995 .2719578 .07463975 .02151267 .9233007 ll u_i=0:	.0443512 .0521033 .039764 .0175997 .0096178 .0030445 .0849833 (fraction of F(21, 280) =	13.18 -3.99 -3.71 -2.57 -1.61 1.74 3.20 of variar = 15.5	Obs per F(6,28(Prob > P> t 0.000 0.000 0.000 0.011 0.109 0.083 0.002 mce due t	r group: min = avg = max = 0) = F = [95% Conf. .4973967 .3103086 .2257207 .0798927 .0343955 .0006936 .1046705	14 14.0 14 38.30 0.0000 Interval] .672005 .105181 .0691719 .0106038 .003469 .0112925 .4392452
<pre>R-sq: within between overal: corr(u_i, Xb) fr fr_1 fr_2 fr_3 grow lggp ele cons sigma_u sigma_e rho</pre>	<pre>= 0.4508 h = 0.8928 l = 0.6720 = 0.6993 Coef. .5847009 2077448 1474463 .0452483 0154633 .0052995 .2719578 .02151267 .9233007 ll u_i=0: r_1 fr_2 fr_3 (within) regular .03288 .0328 .0328</pre>	.0443512 .0521033 .039764 .0175997 .0096178 .0030445 .0849833 (fraction of F(21, 280) = grow lggp pl	13.18 -3.99 -3.71 -2.57 -1.61 1.74 3.20 of variar = 15.5	Obs per F(6,28(Prob > P> t 0.000 0.000 0.000 0.001 0.109 0.083 0.002 hce due to 51	r group: min = avg = max = 0) = F = [95% Conf. .4973967 .3103086 .2257207 .0798927 .0343955 .0006936 .1046705	14 14.0 14 38.30 0.0000 Interval] .672005 .105181 .0691719 .0106038 .003469 .0112925 .4392452 F = 0.0000

corr(u_i, Xb)	= 0.6870			F(6,280) Prob > F	=	37.41 0.0000
fr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
fr_1 fr_2 fr_3 grow lggp pbc _cons sigma_e	2158632 1418172 0472567 0158394 .0004165 .2777569 .0753887	.0448884 .0521866 .0399137 .0178163 .0096719 .0018057 .0854076	12.92 -4.14 -3.55 -2.65 -1.64 0.23 3.25	0.008	.4915736 3185911 2203862 0823276 0348782 003138 .1096343	.6682968 1131353 0632482 0121857 .0031995 .003971 .4458794
rho		(fraction o	of varian	ce due to	u_i)	
F test that a	_				Prob > 1	F = 0.0000
Fixed-effects Group variable	(within) reg			Number of Number of		308 22
	= 0.4579 n = 0.9099 L = 0.6823			Obs per g	roup: min = avg = max =	14 14.0 14
corr(u_i, Xb)	= 0.7090			F(7,279) Prob > F	=	
fr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
fr_1 fr_2 fr_3 grow lggp ele ele1 _cons	1935724 1474734 0495832 0140664 .0072865	.0445019 .0523787 .0395749 .017661 .0095996 .0032021 .0029569 .0849196	12.89 -3.70 -3.73 -2.81 -1.47 2.28 1.92 3.03	0.000 0.005 0.144 0.024	.486233 2966799 2253766 084349 0329633 .0009832 0001462 .0902138	.6614373 0904649 0695701 0148175 .0048305 .0135897 .0114953 .4245429
sigma_e	.07433849 .02141034 .9234031					
F test that a		F(21, 279) :		5		F = 0.0000
	ele1 = 0 279) = cob > F =	0.0102	e_1, fe			
Fixed-effects Group variable	-	ression			obs = groups =	
	= 0.4474 n = 0.8895 L = 0.6592			Obs per g	roup: min = avg = max =	14.0
corr(u_i, Xb)	= 0.6903			F(6,280) Prob > F		37.79 0.0000

_____ fr | Coef. Std. Err. t P>|t| [95% Conf. Interval] _____ fr_1.5722638.044670512.810.000.4843313.6601964fr_2-.215896.0520624-4.150.000-.3183795-.1134126fr_3-.1346562.0401207-3.360.001-.2136326-.0556798 grow | -.0471067 .0176013 -2.68 0.008 -.0817543 -.012459
 -.0152872
 .0096545
 -1.58
 0.114
 -.0342919

 -.0035662
 .0031072
 -1.15
 0.252
 -.0096826

 .273778
 .0852407
 3.21
 0.001
 .105984
 .0037174 -.0152872 lggp | .0025502 ele_1 | -.0035662 .441572 _cons .105984 sigma_u | .07535224 sigma_e | .02157805 rho | .92421147 ((fraction of variance due to u_i) _____ _ _ _ _ _ _ _ _ _ _ _ _ _ F test that all $u_i=0$: F(21, 280) = 15.93 Prob > F = 0.0000 . *GMM . xtabond fr l(0).ele , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs = 308 Group variable (i): id Number of groups = 22 Wald chi2(7) = 267.16Obs per group: min = avg = Time variable (t): y 14 14 max = 14 One-step results _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] fr fr LD | .7235389 .052213 13.86 0.000 .6212032 .8258746 L2D | -.2624027 .0488318 -5.37 0.000 -.3581113 -.1666942 grow .0539575 -1.17 0.241 -.1689701 .0425394 .0236323 3.61 0.000 .0389594 .1315965 D1 | -.0632153 .085278 LD lqqp D1 | -.0199589 .0528216 -0.38 0.706 -.1234874 .0835696 -.0494736 .0511049 -0.97 0.333 -.1496373 LD | .0506901 ele D1 | .0097197 .0035651 2.73 0.006 .0027323 .0017769 .0005019 3.54 0.000 .0007931 .0167071 .0027607 cons _____ _____ Sargan test of over-identifying restrictions: Prob > chi2 = 1.0000chi2(365) = 254.86Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -9.18 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 1.49Pr > z = 0.1355. xtabond fr l(0).pbc , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs 308 22 Number of groups = Group variable (i): id Wald chi2(7) = 257.36 Time variable (t): y Obs per group: min = 14 14 avg = max = 14

One-step results

Coef. Std. Err. z P>|z| [95% Conf. Interval] fr ----+--_____ fr .7270714 LD | .0526907 13.80 0.000 .6237995 .8303434 L2D -.2765132 .0488825 -5.66 0.000 -.3723211 -.1807053 grow D1-.0532748.0542056-0.980.326-.1595159LD.0879425.02410983.650.000.0406882 .0529662 .1351968 lggp -.0355654 .0531379 -0.67 0.503 -.1397138 | 1ת .0685829 .0513627 -0.67 0.502 LD -.0345157 -.1351847 .0661534 pbc .0066297 D1 | .0023271 | .001648 .0021952 1.06 0.289 -.0019755 .0005025 3.28 0.001 .0006631 .0026329 _cons _____ _____ Sargan test of over-identifying restrictions: chi2(365) = 258.41Prob > chi2 = 1.0000Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -9.14 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 1.25 Pr > z = 0.2115. xtabond fr l(0).ele ele1, lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs 308 = Number of groups = Group variable (i): id 22 Wald chi2(8) 278.28 = Time variable (t): y Obs per group: min = 14 avg = 14 max = 14 One-step results _____ _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] fr --+-----------fr LD | .70871 .0519173 13.65 0.000 L2D | -.2466791 .0487802 -5.06 0.000 .6069539 .8104661 -.3422866 -.1510716 grow D1 | -.0631314 .0532212 -1.19 0.236 -.167443 .0411801 LD | .0944206 .0237134 3.98 0.000 .0479431 .1408981 lqqp -.0255887 .052176 -0.49 0.624 -.1278518 .0504519 -0.89 0.371 -.1439988 .0766744 D1 | LD -.0451149 .0537689 ele .0124454 .0037407 3.33 0.001 .0051138 D1 | .0197769 ele1 .0152195
 1
 .007851
 .0037595
 2.09
 0.037
 .0004826

 .0018506
 .0004965
 3.73
 0.000
 .0008775
 D1 | .0008775 .0028237 cons _____ Sargan test of over-identifying restrictions: chi2(365) = 258.52Prob > chi2 = 1.0000Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -9.13 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 1.30 Pr > z = 0.1944. test D1.ele=-D1.ele1 (1) D.ele + D.ele1 = 0 chi2(1) = 10.92Prob > chi2 = 0.0010

. xtabond fr l(0).ele_1 , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.))
Arellano-Bond dynamic panel-data estimation
Group variable (i): id

Vumber of groups = 308
Number of groups = 22
Wald chi2(7) = 260.19
Time variable (t): y

Obs per group: min = 14
avg = 14
max = 14
One-step results

_____ _____ fr Coef. Std. Err. z P>|z| [95% Conf. Interval] fr LD | .7153949 .0530404 13.49 0.000 .6114376 .8193522 L2D | -.2702834 .0490696 -5.51 0.000 -.3664579 -.1741088 grow D1 -.0482444 .0537563 -0.90 0.369 -.1536049 LD .0922413 .0235113 3.92 0.000 .04616 .0571161 .04616 .1383226 lggp D1 -.044831 .0520502 -0.86 0.389 -.1468474 .0571855 LD -.0255652 .0504065 -0.51 0.612 -.1243602 .0732298 D1 | ele_1 D1 | -.0033428 .0038497 -0.87 0.385 -.0108879 .0042024 _cons | .0016022 .0005006 3.20 0.001 .000621 .0025833 _cons Sargan test of over-identifying restrictions:

chi2(365) = 260.82 Prob > chi2 = 1.0000

Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -9.00 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 1.16 Pr > z = 0.2458

TABLES 13 and 14 - Elections and Revenue from Provincial Taxes

. *OLS . regress ptr ptr_1 ptr_2 ptr_3 grow lggp ele, robust Number of obs = 308 F(6, 301) = 132.20 Prob > F = 0.0000 R-squared = 0.8422 Regression with robust standard errors = .00561 Root MSE _____ Robust Coef. Std. Err. P>|t| [95% Conf. Interval] ptr | t ptr_1 | .942762 .144488 6.52 0.000 .6584275 1.227096 _____ . regress ptr ptr_1 ptr_2 ptr_3 grow lggp pbc, robust Regression with robust standard errors Number of obs = 308 F(6, 301) = 128.07 Prob > F = 0.0000 R-squared = 0.8424 = .00561 Root MSE _____ _____ Robust Coef. Std. Err. ptr | t P>|t| [95% Conf. Interval] _____+

 ptr_1
 .9453385
 .144014
 6.56
 0.000
 .6619368
 1.22874

 ptr_2
 -.3809934
 .1547589
 -2.46
 0.014
 -.6855398
 -.076447

 ptr_3
 .2592307
 .0804054
 3.22
 0.001
 .1010028
 .4174587

 grow
 -.003823
 .0047544
 -0.80
 0.422
 -.0131792
 .0055331

 lggp
 .0026665
 .0009774
 2.73
 0.007
 .000743
 .0045899

 pbc
 -.0002816
 .0005121
 -0.55
 0.583
 -.0012894
 .0007261

 _cons | -.0177999 .007467 -2.38 0.018 -.0324942 -.0031057 _____ . regress ptr ptr_1 ptr_2 ptr_3 grow lggp ele ele1, robust Number of obs = Regression with robust standard errors 308 F(7, 300) = 114.91 Prob > F = 0.0000 R-squared = 0.8430 Root MSE = .0056 _____ _____ Robust t P>|t| ptr | Coef. Std. Err. [95% Conf. Interval] ptr_1 | .9415359 .1426356 6.60 0.000 .6608429 1.222229 ptr_2 | -.3741504 .1539818 -2.43 0.016 -.6771716 -.0711292 .2574332 .0800395 3.22 0.001 .0999233 .4149431 ptr_3 grow-.0039038.0047272-0.830.410-.0132066.0053989lggp.0026621.00096742.750.006.0007583.0045659ele.0004969.00075760.660.512-.0009939.0019878ele1.0009575.00086711.100.270-.0007489.0026639_cons-.0181551.0074988-2.420.016-.032912-.0033983 _____

. test ele=-ele1

(1) ele + e	ele1 = 0					
· · ·	300) = 1 rob > F = 0					
. regress ptr	ptr_1 ptr_2	ptr_3 grow 3	lggp ele_	_1, robus	st	
Regression wit	h robust star	ndard errors			Number of obs F(6, 301) Prob > F R-squared Root MSE	= 125.68 = 0.0000 = 0.8435
 ptr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
ptr_1 ptr_2 ptr_3 grow lggp ele_1 _cons	0037868 .0026233 .001259	.1469553 .1534544 .0776832 .0048006 .0009849 .0007054 .0074827	-0.79 2.66 1.78	0.000 0.013 0.001 0.431 0.008 0.075 0.018	0132338 .0006851	.4058037 .0056603 .0045615 .0026471
. *FE . xtreg ptr p	ptr_1 ptr_2 pt	cr_3 grow lgg	gp ele,fe	2		
Fixed-effects Group variable	-	ression			of obs = of groups =	
	. (1), 10			Number	or groups -	22
					r group: min = avg = max =	14 14.0
between	= 0.5246 n = 0.9070 . = 0.7956				r group: min = avg = max =	14 14.0 14 51.50
between overall	= 0.5246 h = 0.9070 = 0.7956 = 0.5065	Std. Err.	t	Obs per F(6,280	r group: min = avg = max =	14 14.0 14 51.50 0.0000
between overall corr(u_i, Xb) ptr ptr_1 ptr_2 ptr_3 grow lqqp	= 0.5246 = 0.9070 = 0.7956 = 0.5065 	.0479806 .0562935 .0482906 .0044446 .0023265	15.87 -6.75 2.09 -1.35 3.31 0.22	Obs per F(6,280 Prob > P> t 0.000 0.000 0.037 0.178 0.001 0.823	r group: min = avg = max =)) = F = [95% Conf. .667127 490758 .0060776 0147491 .0031205 0012853	14 14.0 14 51.50 0.0000 Interval] .8560239 2691335 .1961949 .0027491 .0122796 .0016161
between overall corr(u_i, Xb) ptr ptr_1 ptr_2 ptr_3 grow lggp ele cons	= 0.5246 = 0.9070 = 0.7956 = 0.5065 	.0479806 .0562935 .0482906 .0044446 .0023265 .000737	15.87 -6.75 2.09 -1.35 3.31 0.22 -2.61	Obs per F(6,280 Prob > P> t 0.000 0.000 0.037 0.178 0.001 0.823 0.009	r group: min = avg = max =)) = F = [95% Conf. .667127 490758 .0060776 0147491 .0031205 0012853 0903826	14 14.0 14 51.50 0.0000 Interval] .8560239 2691335 .1961949 .0027491 .0122796 .0016161
between overall corr(u_i, Xb) ptr ptr_1 ptr_2 ptr_3 grow lggp ele cons tsigma_u sigma_e	= 0.5246 = 0.9070 = 0.7956 = 0.5065 Coef. .7615754 .3799457 .1011362 .006 .0077 .0001654 .0515511 .00462312 .00520647 .44086209	.0479806 .0562935 .0482906 .0044446 .0023265 .000737 .0197267	15.87 -6.75 2.09 -1.35 3.31 0.22 -2.61	Obs per F(6,280 Prob > P> t 0.000 0.000 0.037 0.178 0.001 0.823 0.009 mce due t	r group: min = avg = max =)) = F = [95% Conf. .667127 490758 .0060776 0147491 .0031205 0012853 0903826	14 14.0 14 51.50 0.0000 Interval] .8560239 .2691335 .1961949 .0027491 .0122796 .0016161 0127196
between overall corr(u_i, Xb) ptr ptr_1 ptr_2 ptr_3 grow lggp ele cons sigma_u sigma_e rho	= 0.5246 = 0.9070 = 0.7956 = 0.5065 	.0479806 .0562935 .0482906 .0044446 .0023265 .000737 .0197267 (fraction of F(21, 280) =	15.87 -6.75 2.09 -1.35 3.31 0.22 -2.61	Obs per F(6,280 Prob > P> t 0.000 0.000 0.037 0.178 0.001 0.823 0.009 mce due t	<pre>c group: min =</pre>	14 14.0 14 51.50 0.0000 Interval] .8560239 .2691335 .1961949 .0027491 .0122796 .0016161 0127196
between overall corr(u_i, Xb) ptr ptr_1 ptr_2 ptr_3 grow lggp ele cons tsigma_e rho F test that al	<pre>= 0.5246 = 0.9070 = 0.7956 = 0.5065 </pre>	.0479806 .0562935 .0482906 .0044446 .0023265 .000737 .0197267 (fraction of F(21, 280) =	15.87 -6.75 2.09 -1.35 3.31 0.22 -2.61	Obs per F(6,280 Prob > P> t 0.000 0.000 0.037 0.178 0.001 0.823 0.009 	<pre>c group: min =</pre>	14 14.0 14 51.50 0.0000 Interval] .8560239 2691335 .1961949 .0027491 .0122796 .0016161 0127196 F = 0.0000

corr(u_i, Xb)	= 0.5007			F(6,280) Prob > F	=	
ptr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ptr_1 ptr_2 ptr_3 grow lggp pbc _cons sigma_u	.763964 3867665 .1059282 006467 .0077662 0002204 052095	.0478951 .0560174 .0484006 .0044717 .002328 .0004341 .0197446	15.95 -6.90 2.19 -1.45 3.34 -0.51 -2.64	0.029 0.149 0.001 0.612	.6696838 -4970352 .010653 -0152695 .0031836 -0010749 -0909617	.8582441 2764978 .2012035 .0023355 .0123488 .0006342 0132284
sigma_e rho	.00520454	(fraction o	f varian	ice due to i	ı_i)	
F test that al	ll u_i=0:	F(21, 280) =	3.3	0	Prob > 1	F = 0.0000
. xtreg ptr p	ptr_1 ptr_2 p	tr_3 grow lgg	p ele el	el,fe		
Fixed-effects Group variable		ression		Number of Number of		308 22
	= 0.5268 n = 0.9050 L = 0.7955			Obs per gi	roup: min = avg = max =	14 14.0 14
corr(u_i, Xb)	= 0.4922			F(7,279) Prob > F	= =	
ptr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ptr_1 ptr_2 ptr_3 grow lggp ele ele1 _cons	.7613549 3811856 .1051559 006579 .0078497 .0004351 .0007915 0531774	.0479597 .0562794 .0484029 .0044727 .0023293 .0007752 .0007082 .0197716	15.87 -6.77 2.17 -1.47 3.37 0.56 1.12 -2.69	0.031 0.142 - 0.001 0.575 - 0.265 -	.6669461 4919719 .0098746 0153837 .0032645 0010908 0006026 0920978	.8557636 2703994 .2004372 .0022256 .0124349 .001961 .0021857 014257
-	.00459919 .00520415 .4385246	(fraction o	of varian	ice due to i	ı i)	
F test that al					Prob > 1	F = 0.0000
	ele1 = 0 279) = cob > F =	0.3083	o ele_1,	fe		
Fixed-effects Group variable	-	ression			obs = groups =	
	= 0.5281 h = 0.9093 L = 0.7978			Obs per gi	roup: min = avg = max =	14.0
corr(u_i, Xb)	= 0.5150			F(6,280) Prob > F		52.21 0.0000

_____ ptr | Coef. Std. Err. t P>|t| [95% Conf. Interval] _____ _____

 ptr_1
 .7724179
 .0481472
 16.04
 0.000
 .6776415

 ptr_2
 -.3878745
 .0552707
 -7.02
 0.000
 -.4966733

 ptr_3
 .1005916
 .047777
 2.11
 0.036
 .0065439

 grow
 -.0064194
 .004407
 -1.46
 0.146
 -.0150944

 lggp
 .0075677
 .0023198
 3.26
 0.001
 .0030012

 .8671943 -.2790756 .1946393 .0022556
 .0075677
 .0023198
 3.26
 0.001
 .0030012
 .0121342

 .0010658
 .0007395
 1.44
 0.151
 -.0003899
 .0025215

 -.050653
 .0196658
 -2.58
 0.011
 -.0893645
 -.0119414
 .0075677 lggp ele_1 _cons sigma_u .00461188 sigma_e | .00518773 rho | .44143963 (fraction of variance due to u_i) F test that all $u_i=0$: F(21, 280) = 3.28 Prob > F = 0.0000 . *GMM . xtabond ptr l(0).ele , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs = 308 Group variable (i): id Number of groups = 22 Wald chi2(7) = 235.51 Time variable (t): y Obs per group: min = 14 avg = 14 max = 14 One-step results _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] ptr ptr LD .6402529 .0477316 13.41 0.000 .5467006 L2D -.3534784 .04877 -7.25 0.000 -.4490658 .7338051 -.257891 grow D1 | .008156 .0106523 0.77 0.444 -.012722 LD | .0218891 .0045774 4.78 0.000 .0129175 .0290341 .0129175 .0308607 lqqp -.0114323 .0105563 -1.08 0.279 -.0321221 -.0002762 .0102463 -0.03 0.978 -.0203585 D1 | .0092576 -.0203585 LD .0198062 ele D1 | .0001608 .0007098 0.23 0.821 -.0012303 | .0006998 .0001023 6.84 0.000 .0004992 .0015519 .0009003 cons _____ ------Sargan test of over-identifying restrictions: Prob > chi2 = 0.8362chi2(365) = 338.55Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -7.33 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 0.26Pr > z = 0.7969. xtabond ptr l(0).pbc , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs 308 Number of groups = Group variable (i): id 22 Wald chi2(7) = 238.17 Time variable (t): y Obs per group: min = 14 14 avg = max = 14

One-step results

Coef. Std. Err. z P>|z| [95% Conf. Interval] ptr -----+ _ _ _ _ _ ptr .6448356 .0472877 13.64 0.000 LD | .5521535 .7375177 L2D -.3611368 .0481671 -7.50 0.000 -.4555426 -.2667311 grow .0091225 .0105771 0.86 0.388 -.0116082 .0226823 .0046351 4.89 0.000 .0135977 D1 | .0298532 LD | .0317668 lggp D1 | -.0133987 -1.28 0.202 -.0339607 .010491 .0071634 .0016247 .0101629 0.16 0.873 -.0182943 LD | .0215438 pbc 1 -.0003034 .0004311 -0.70 0.482 -.0011484 .0006944 .0001015 6.84 0.000 .0004955 .0005416 D1 | -.0003034 .0008932 _cons _____ _____ Sargan test of over-identifying restrictions: chi2(365) = 340.42Prob > chi2 = 0.8176Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -7.15 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.09 Pr > z = 0.9280. xtabond ptr l(0).ele ele1, lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) Arellano-Bond dynamic panel-data estimation Number of obs = 308 Number of groups = Group variable (i): id 22 Wald chi2(8) = 241.45 Time variable (t): y Obs per group: min = 14 avg = 14 max = 14 One-step results _____ _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] ptr ----ptr LD | .6365623 .0473277 13.45 0.000 L2D | -.3548191 .0483149 -7.34 0.000 .5438018 .7293229 -.4495146 -.2601236 grow 0.78 0.435 -.0124479 D1 | .00824 .0105553 .028928 LD .0234205 .0046409 5.05 0.000 .0143244 .0325165 lqqp .0081047 D1 -.0124237 .0104739 -1.19 0.236 -.0329521 LD .0005377 .0101594 0.05 0.958 -.0193743 .0204497 ele .000493 .0007432 0.66 0.507 -.0009636 D1 | .0019497 ele1 D1 .0011093 .0007332 1.51 0.130 -.0003277 .0025463 .0007102 .0001016 6.99 0.000 .000511 .0009094 cons _____ Sargan test of over-identifying restrictions: chi2(365) = 344.69Prob > chi2 = 0.7708Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -7.17 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.13 Pr > z = 0.8958. test D1.ele=-D1.ele1 (1) D.ele + D.ele1 = 0 chi2(1) = 1.78Prob > chi2 = 0.1823

. xtabond ptr l(0).ele_1 , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.))

Arellano-Bond dynamic panel-data estimation Group variable (i): id	Number of obs Number of groups	=	308 22
	Wald chi2(7)	=	240.63
Time variable (t): y		in = vg = ax =	14 14 14

_____ ptr | Coef. Std. Err. z P>|z| [95% Conf. Interval] ptr LD | .654307 .0476871 13.72 0.000 .560842 .747772 L2D | -.3644378 .0477916 -7.63 0.000 -.4581075 -.2707681 grow .0084525 .0105253 0.80 0.422 -.0121766 .0222522 .0045305 4.91 0.000 .0133725 D1 | .0290816 LD .0133725 .0311319 lggp D1-.012632.0102835-1.230.219-.0327874.0075234LD.000438.00995950.040.965-.0190822.0199582 ele_1 D1 .00121 .0007525 1.61 0.108 -.0002649 .002685 .0007078 .0001015 6.97 0.000 .0005087 .0009068 _cons _____ Sargan test of over-identifying restrictions:

chi2(365) = 338.54 Prob > chi2 = 0.8363

One-step results

Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -7.03 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.18 Pr > z = 0.8538

TABLE 15 - Elections and Fiscal Balance conditional on alignment of provincial and federal government

. *OLS . regress def	f def_1 def_2	def_3 grow	lggp ele <u></u>	_nal ele	_al, robust	
Regression wit	th robust star	ndard errors			Number of obs F(7, 300) Prob > F R-squared Root MSE	$= 18.62 \\ = 0.0000 \\ = 0.3681$
def	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
F(1,	.1342168 .0958032 .0009753 0105915 0003116 0193228 L=ele_al	.0023021 .0054873 .003355 .0199505	7.26 0.38 2.03 4.70 0.42 -1.93 -0.09 -0.97		.326564 1121194 .0042876 .0556848 0035551 02139 0069139 0585834	.5695235 .16522 .2641459 .1359216 .0055057 .000207 .0062907 .0199377
		5.0005				
. regress de			lggp pbc_	_nal pbc	_al, robust	
	f def_1 def_2	def_3 grow	lggp pbc_	_nal pbc	_al, robust Number of obs F(7, 300) Prob > F R-squared Root MSE	= 21.55
. regress det	E def_1 def_2 th robust star	def_3 grow	lggp pbc_ 		Number of obs F(7, 300) Prob > F R-squared	= 21.55 = 0.0000 = 0.3830 = .02435
. regress def Regression wit	E def_1 def_2 th robust star Coef.	def_3 grow ndard errors Robust			Number of obs F(7, 300) Prob > F R-squared Root MSE	= 21.55 = 0.0000 = 0.3830 = .02435
. regress def Regression wit def def_1 def_2 def_3 grow lggp pbc_nal pbc_al	E def_1 def_2 ch robust star Coef. .4627852 .038323 .1185021 .0884154 .008753 .0085363 .0052224 .0192706	def_3 grow ndard errors Robust Std. Err. .0584999 .0692571 .0654454 .0201296 .0022786 .0036535 .0022566	t 7.91 0.55 1.81 4.39 0.38 -2.34 -2.31	<pre>P> t 0.000 0.580 0.071 0.000 0.701 0.020 0.021</pre>	Number of obs F(7, 300) Prob > F R-squared Root MSE 	= 21.55 = 0.0000 = 0.3830 = .02435 .02435 .02435 .02435 .1746235 .2472924 .1280285 .0053594 0013465 0007817
regress def Regression wit def def_1 def_2 def_3 grow lggp pbc_nal pbc_al cons . test pbc_al=	<pre>E def_1 def_2 ch robust star</pre>	def_3 grow ndard errors Robust Std. Err. .0584999 .0692571 .0654454 .0201296 .0022786 .0036535 .0022566 .0197101	t 7.91 0.55 1.81 4.39 0.38 -2.34 -2.31	<pre>P> t 0.000 0.580 0.071 0.000 0.701 0.020 0.021</pre>	Number of obs F(7, 300) Prob > F R-squared Root MSE 	= 21.55 = 0.0000 = 0.3830 = .02435 .02435 .02435 .02435 .1746235 .2472924 .1280285 .0053594 0013465 0007817

F(1, 300) = 0.61Prob > F = 0.4344

•

. regress def def_1 def_2 def_3 grow lggp ele_nal ele_al ele1_nal ele1_al,robust

Regression wit	:h robust sta	ndard errors			Number of obs F(9, 298) Prob > F R-squared Root MSE	= 18.31 = 0.0000 = 0.4024
def	Coef.	Robust Std. Err.		P> t	[95% Conf.	Interval]
	.0441476 .0758215 .0810632 .0011404 0050489 .0053321 .0126689 .0149723	.0669999 .0661612 .0194898 .0022679 .0054465 .0035467	0.66 1.15 4.16 0.50 -0.93 1.50 2.33 3.85	0.510 0.253 0.000 0.615 0.355 0.134 0.020 0.000	0877053 0543809 .0427081 0033228 0157674 0016477	.6056326 .1760005 .2060238 .1194183 .0056036 .0056695 .0123118 .0233601 .0226245 .0135883
• • • *FE • xtreg def o	lef_1 def_2 d	ef_3 grow lgg	p ele_na	al ele_a	l,fe	
Fixed-effects Group variable	-	ression			of obs = of groups =	
	= 0.2217 n = 0.1807 L = 0.1970			Obs pe	r group: min = avg = max =	14 14.0 14
corr(u_i, Xb)	= -0.2134				9) = F =	11.35 0.0000
def	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lggp ele_nal _cons 	0525461 .0233805 .081999 .0241361 0091026 0001709 2259702 .01618276 .02380216	.0574846 .0198999 .0111286 .0056708 .0040272 .0964533	-0.86 0.41 4.12 2.17 -1.61 -0.04 -2.34	0.390 0.685 0.000 0.031 0.110 0.966 0.020	1725962 0897782 .042826 .0022293 0202657 0080984 4158388	.0020604 .0077566 0361017
F(1,	ll u_i=0: l=ele_al l - ele_al = 279) =	0				r = 0.0056
. test ele_nal (1) ele_nal F(1,	ll u_i=0: L=ele_al L - ele_al = 279) = cob > F =	F(21, 279) = 0 1.75 0.1872	2.0	3	Prob > F	r = 0.0056

Obs per group: min = avg = R-sq: within = 0.241914 between = 0.177614.0 overall = 0.2087max = 14 F(7,279) = 12.72 Prob > F $corr(u_i, Xb) = -0.2181$ 0.0000 = _____ def | Coef. Std. Err. t P>|t| [95% Conf. Interval] _____+ def_1.3298263.05621285.870.000.2191713.4404813def_2-.0418431.0603655-0.690.489-.1606727.0769866 def_3.0096215.05642320.170.865-.1014477.1206908grow.0744957.01986543.750.000.0353906.1136008lggp.0244439.01099022.220.027.0028096.0460782pbc_nal-.0079502.0031667-2.510.013-.014184-.0017165 pbc_nd1 | -.0047893 .0024372 -1.97 0.050 -.0095868 8.28e-06 _cons | -.2292877 .0952479 -2.41 0.017 -.4167835 -.0417919 _____ sigma_u | .01627861 sigma_e | .02349101 rho | .32442006 (fraction of variance due to u_i) _____ F test that all $u_{i=0}$: F(21, 279) = 2.07Prob > F = 0.0046. test pbc_nal=pbc_al (1) pbc_nal - pbc_al = 0 F(1, 279) = 0.63Prob > F = 0.4279 . xtreg def def_1 def_2 def_3 grow lggp ele_nal ele_al ele1_nal ele1_al,fe 308 Fixed-effects (within) regression Number of obs = Number of groups = Group variable (i): id 22 R-sq: within = 0.2661 Obs per group: min = 14 between = 0.1835avg = 14.0 overall = 0.2266max = 14 F(9,277) = 11.16 $corr(u_i, Xb) = -0.2185$ Prob > F 0.0000 _____ def | Coef. Std. Err. t P>|t| [95% Conf. Interval] def_1.359114.0573826.260.000.2461538.4720742def_2-.0344669.0596956-0.580.564-.1519815.0830478 .0814008 def_3 | -.0320873 .0576502 -0.56 0.578 -.1455755 grow.0667094.01979353.370.001.0277446lggp.0249521.01085432.300.022.0035848ele_nal-.0041232.0057258-0.720.472-.0153948 .1056743 .0463194 .0071483 .0135811 .0054027 .0041545 1.30 0.195 -.0027756 ele al le1_nal.0123814.0046992.630.009.0031312ele1_al.0142442.00395733.600.000.0064539_cons-.2373958.0941035-2.520.012-.4226447 ele1_nal | .0216316 .0220345 ele1_al | -.0521468 sigma_u | .01625373 sigma_e | .02319634 rho | .32930193 (fraction of variance due to u_i) _____ F test that all $u_i=0$: F(21, 277) = 2.06 Prob > F = 0.0048

. *GMM

113

<pre>. xtabond def l(0).ele_nal ele_al , lags(2) lag(1,.))</pre>	<pre>pre(grow, lag(1,.)) pre(lggp,</pre>
Arellano-Bond dynamic panel-data estimation Group variable (i): id	Number of obs = 308 Number of groups = 22
	Wald chi2(8) = 84.54
Time variable (t): y	Obs per group: min = 14 avg = 14 max = 14
One-step results	

def		Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
def							
	LD	.3408507	.0564977	6.03	0.000	.2301172	.4515842
	L2D	0186403	.0556472	-0.33	0.738	1277068	.0904262
grow							
	D1	.0517557	.046549	1.11	0.266	0394787	.14299
	LD	.01787	.0204059	0.88	0.381	0221249	.0578649
lggp							
	D1	.0419703	.0457179	0.92	0.359	0476351	.1315756
	LD	0411702	.0442312	-0.93	0.352	1278618	.0455215
ele_nal							
	D1	0083771	.0046536	-1.80	0.072	017498	.0007439
ele_al							
	D1	.0003532	.0037823	0.09	0.926	00706	.0077664
_cons		.0006791	.0004395	1.55	0.122	0001823	.0015405

Sargan test of over-identifying restrictions:

chi2(365) = 283.40 Prob > chi2 = 0.9994

Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -12.70 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.19 Pr > z = 0.8472

. test D1.ele_nal=D1.ele_al

(1) D.ele_nal - D.ele_al = 0 chi2(1) = 2.37 Prob > chi2 = 0.1238

. xtabond def l(0).pbc_nal pbc_al , lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.))

Arellano-Bond dynamic panel-data estimation	Number of obs	=	308
Group variable (i): id	Number of groups	=	22
	Wald chi2(8)	=	97.05
Time variable (t): y	Obs per group: min	1 =	14
	ave	g =	14
	maz	< =	14

One-step results

def		Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
def	İ						
	LD	.3503589	.0551863	6.35	0.000	.2421957	.4585221
	L2D	007449	.0545239	-0.14	0.891	1143138	.0994158
grow							
	D1	.0608424	.0457483	1.33	0.184	0288226	.1505074

LD .0291702 .0203258 1.44 0.151 -.0106677 .0690081 lggp .0237321 .0449345 0.53 0.597 -.064338 -.0261715 .0433608 -0.60 0.546 -.1111572 D1 | .1118021 -.0261715 .0588142 LD pbc_nal D1 | -.0090788 .0028501 -3.19 0.001 -.0146649 -.0034926 pbc al D1 -.0042633 .0023424 -1.82 0.069 -.0088544 .0007186 .0004287 1.68 0.094 -.0001216 .0003277 .0015588 cons _____ Sargan test of over-identifying restrictions: chi2(365) = 284.92Prob > chi2 = 0.9993Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -11.96 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 0.10 Pr > z = 0.9165. test D1.pbc_nal=D1.pbc_al (1) D.pbc_nal - D.pbc_al = 0 chi2(1) =1.79 Prob > chi2 = 0.1810 . xtabond def l(0).ele_nal ele_al ele1_nal ele1_al, lags(2) pre(grow, lag(1,.)) pre(lggp, lag(1,.)) 308 Arellano-Bond dynamic panel-data estimation Number of obs = Group variable (i): id Number of groups = = 106.17 Wald chi2(10) Time variable (t): y Obs per group: min = 14 avg = 14 max = 14 One-step results _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] def def .3792731 .0566973 .2681484 .4903977 6.69 0.000 LD L2D | -.0182932 .0549103 -0.33 0.739 -.1259153 .0893289 grow D1 | .0516656 .0459368 1.12 0.261 -.0383688 LD | .0337473 .0204248 1.65 0.098 -.0062846 .1417 .0737793 lqqp .0305162 .045106 D1 | 0.68 0.499 -.0578899 .1189223 LD -.0331017 .0435865 -0.76 0.448 -.1185297 .0523264 ele nal D1 | -.0034857 .0047616 -0.73 0.464 -.0128184 .0058469 ele_al 1.25 0.210 D1 | .0048919 .003899 -.00275 .0125339 ele1_nal 3.18 0.001 D1 | .0047189 .0242428 .0149939 .0057451 ele1_al .0135665 .0039398 3.44 0.001 .0058446 .0007661 .0004355 1.76 0.079 -.0000874 .0212884 D1 .0016196 cons _____ Sargan test of over-identifying restrictions:

chi2(365) = 276.69 Prob > chi2 = 0.9998

Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -12.24 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 1.08 Pr > z = 0.2792

TABLE 16 - Elections and Total Expenditure conditional on alignment ofprovincial and federal government.

. *OLS . regress te	te_1 te_2 te_	_3 grow lggp	ele_nal	ele_al,	robust
Regression wit	th robust star	ndard errors			Number of obs = 308 F(7, 300) = 111.40 Prob > F = 0.0000 R-squared = 0.8978 Root MSE = .03557
	f	Robust			
te ++	Coef.	Std. Err.	t 	P> t	[95% Conf. Interval]
te_1	.8539374	.1215124	7.03	0.000	.6148128 1.093062
te_2	119193	.1445241	-0.82	0.410	4036024 .1652165
te_3	.1676242 144725	.0684653 .0272205	2.45 -5.32	0.015 0.000	.0328912 .3023573 19829230911577
grow lggp	.0016833	.0037043	0.45	0.650	0056065 .008973
ele_nal	.006153	.0088279	0.45	0.486	0112195 .0235254
ele_al	.0140205	.0045969	3.05	0.002	.0049742 .0230668
_cons	.0068581	.0346684	0.20	0.843	0613659 .0750822
. regress te Regression wit	te_1 te_2 te_ Ch robust star		pbc_nal	pbc_al,	robust Number of obs = 308 F(7, 300) = 101.40 Prob > F = 0.0000 R-squared = 0.8985 Root MSE = .03545
		Robust			
te	Coef.	Std. Err.	t	₽> t	[95% Conf. Interval]
+		Std. Err.			
te te_1 te_2			t 7.25 -0.89	P> t 0.000 0.376	[95% Conf. Interval] .639364 1.115654 4038924 .1529901
te_1	.877509	Std. Err. .1210146	7.25	0.000	.639364 1.115654
te_1 te_2 te_3 grow	.877509 1254512 .1502828 1405096	Std. Err. .1210146 .1414914	7.25 -0.89 2.32 -5.15	0.000 0.376	.639364 1.115654 4038924 .1529901 .0227026 .2778631 19419940868198
te_1 te_2 te_3 grow lggp	.877509 1254512 .1502828 1405096 .0014054	Std. Err. .1210146 .1414914 .0648306 .0272827 .0037177	7.25 -0.89 2.32 -5.15 0.38	0.000 0.376 0.021 0.000 0.706	.639364 1.115654 4038924 .1529901 .0227026 .2778631 19419940868198 0059106 .0087214
te_1 te_2 te_3 grow lggp pbc_nal	.877509 1254512 .1502828 1405096 .0014054 .0107453	Std. Err. .1210146 .1414914 .0648306 .0272827 .0037177 .0051104	7.25 -0.89 2.32 -5.15 0.38 2.10	0.000 0.376 0.021 0.000 0.706 0.036	.639364 1.115654 4038924 .1529901 .0227026 .2778631 19419940868198 0059106 .0087214 .0006886 .020802
te_1 te_2 te_3 grow lggp pbc_na1 pbc_a1	.877509 1254512 .1502828 1405096 .0014054 .0107453 .0067668	Std. Err. .1210146 .1414914 .0648306 .0272827 .0037177 .0051104 .0029336	7.25 -0.89 2.32 -5.15 0.38 2.10 2.31	0.000 0.376 0.021 0.000 0.706 0.036 0.022	.639364 1.115654 4038924 .1529901 .0227026 .2778631 19419940868198 0059106 .0087214 .0006886 .020802 .0009938 .0125398
te_1 te_2 te_3 grow lggp pbc_nal	.877509 1254512 .1502828 1405096 .0014054 .0107453 .0067668	Std. Err. .1210146 .1414914 .0648306 .0272827 .0037177 .0051104	7.25 -0.89 2.32 -5.15 0.38 2.10 2.31	0.000 0.376 0.021 0.000 0.706 0.036	.639364 1.115654 4038924 .1529901 .0227026 .2778631 19419940868198 0059106 .0087214 .0006886 .020802
te_1 te_2 te_3 grow lggp pbc_na1 pbc_a1 _cons	.877509 1254512 .1502828 1405096 .0014054 .0107453 .0067668 .0122931	Std. Err. .1210146 .1414914 .0648306 .0272827 .0037177 .0051104 .0029336 .034825	7.25 -0.89 2.32 -5.15 0.38 2.10 2.31 0.35	0.000 0.376 0.021 0.000 0.706 0.036 0.022 0.724	.639364 1.115654 4038924 .1529901 .0227026 .2778631 19419940868198 0059106 .0087214 .0006886 .020802 .0009938 .0125398
te_1 te_2 te_3 grow lggp pbc_na1 pbc_a1 _cons	.877509 1254512 .1502828 1405096 .0014054 .0107453 .0067668 .0122931	Std. Err. .1210146 .1414914 .0648306 .0272827 .0037177 .0051104 .0029336 .034825	7.25 -0.89 2.32 -5.15 0.38 2.10 2.31 0.35	0.000 0.376 0.021 0.000 0.706 0.036 0.022 0.724	.639364 1.115654 4038924 .1529901 .0227026 .2778631 19419940868198 0059106 .0087214 .0006886 .020802 .0009938 .0125398 0562391 .0808253
te_1 te_2 te_3 grow lggp pbc_nal _cons . regress te	.877509 1254512 .1502828 1405096 .0014054 .0107453 .0067668 .0122931	Std. Err. .1210146 .1414914 .0648306 .0272827 .0037177 .0051104 .0029336 .034825	7.25 -0.89 2.32 -5.15 0.38 2.10 2.31 0.35	0.000 0.376 0.021 0.000 0.706 0.036 0.022 0.724	.639364 1.115654 4038924 .1529901 .0227026 .2778631 19419940868198 0059106 .0087214 .0006886 .020802 .0009938 .0125398 0562391 .0808253 elel_nal ele1_al,robust Number of obs = 308 F(9, 298) = 96.27 Prob > F = 0.0000
te_1 te_2 te_3 grow lggp pbc_nal _cons . regress te	.877509 1254512 .1502828 1405096 .0014054 .0107453 .0067668 .0122931	Std. Err. .1210146 .1414914 .0648306 .0272827 .0037177 .0051104 .0029336 .034825 	7.25 -0.89 2.32 -5.15 0.38 2.10 2.31 0.35 ele_nal	0.000 0.376 0.021 0.000 0.706 0.036 0.022 0.724 ele_al	.639364 1.115654 4038924 .1529901 .0227026 .2778631 19419940868198 0059106 .0087214 .0006886 .020802 .0009938 .0125398 0562391 .0808253 elel_nal ele1_al,robust Number of obs = 308 F(9, 298) = 96.27 Prob > F = 0.0000
te_1 te_2 te_3 grow lggp pbc_na1 pbc_a1 cons . regress te Regression wit	.877509 1254512 .1502828 1405096 .0014054 .0107453 .0067668 .0122931 te_1 te_2 te_ th robust star	Std. Err. .1210146 .1414914 .0648306 .0272827 .0037177 .0051104 .0029336 .034825 	7.25 -0.89 2.32 -5.15 0.38 2.10 2.31 0.35 ele_nal	0.000 0.376 0.021 0.000 0.706 0.036 0.022 0.724 ele_al	.639364 1.115654 4038924 .1529901 .0227026 .2778631 19419940868198 0059106 .0087214 .0006886 .020802 .0009938 .0125398 0562391 .0808253 ele1_nal ele1_al,robust Number of obs = 308 F(9, 298) = 96.27 Prob > F = 0.0000 R-squared = 0.8995 Root MSE = .0354 [95% Conf. Interval]
te_1 te_2 te_3 grow lggp pbc_na1 pbc_a1 _cons . regress te Regression wit	.877509 1254512 .1502828 1405096 .0014054 .0107453 .0067668 .0122931 te_1 te_2 te_ th robust star	Std. Err. .1210146 .1414914 .0648306 .0272827 .0037177 .0051104 .0029336 .034825 	7.25 -0.89 2.32 -5.15 0.38 2.10 2.31 0.35 ele_nal	0.000 0.376 0.021 0.000 0.706 0.036 0.022 0.724 ele_al	.639364 1.115654 4038924 .1529901 .0227026 .2778631 19419940868198 0059106 .0087214 .0006886 .020802 .0009938 .0125398 0562391 .0808253 ele1_nal ele1_al,robust Number of obs = 308 F(9, 298) = 96.27 Prob > F = 0.0000 R-squared = 0.8995 Root MSE = .0354 [95% Conf. Interval] .623808 1.137065
te_1 te_2 te_3 grow lggp pbc_na1 pbc_a1 _cons . regress te Regression wit	.877509 1254512 .1502828 1405096 .0014054 .0107453 .0067668 .0122931 te_1 te_2 te_ th robust star Coef. .8804366 1261447	Std. Err. .1210146 .1414914 .0648306 .0272827 .0037177 .0051104 .0029336 .034825 	7.25 -0.89 2.32 -5.15 0.38 2.10 2.31 0.35 ele_nal	<pre>0.000 0.376 0.021 0.000 0.706 0.036 0.022 0.724 ele_al P> t 0.000 0.392 0.020</pre>	.639364 1.115654 4038924 .1529901 .0227026 .2778631 19419940868198 0059106 .0087214 .0006886 .020802 .0009938 .0125398 0562391 .0808253 ele1_nal ele1_al,robust Number of obs = 308 F(9, 298) = 96.27 Prob > F = 0.0000 R-squared = 0.8995 Root MSE = .0354 [95% Conf. Interval] .623808 1.137065 4157952 .1635058 .0238007 .2796956
te_1 te_2 te_3 grow lggp pbc_na1 pbc_a1 _cons . regress te Regression wit	.877509 1254512 .1502828 1405096 .0014054 .0107453 .0067668 .0122931 te_1 te_2 te_ th robust star Coef. .8804366 1261447 .1517482	Std. Err. .1210146 .1414914 .0648306 .0272827 .0037177 .0051104 .0029336 .034825 	7.25 -0.89 2.32 -5.15 0.38 2.10 2.31 0.35 ele_nal	<pre>0.000 0.376 0.021 0.000 0.706 0.036 0.022 0.724 ele_al P> t 0.000 0.392 0.020</pre>	.639364 1.115654 4038924 .1529901 .0227026 .2778631 19419940868198 0059106 .0087214 .0006886 .020802 .0009938 .0125398 0562391 .0808253 ele1_nal ele1_al,robust Number of obs = 308 F(9, 298) = 96.27 Prob > F = 0.0000 R-squared = 0.8995 Root MSE = .0354 [95% Conf. Interval] .623808 1.137065 4157952 .1635058 .0238007 .2796956

ele_nal ele_al ele1_nal ele1_al cons	.0033287 .0111605 0153207 0027616 .0097218	.0052609 .0079202 .0056323 .0340566	0.36 2.12 -1.93 -0.49 0.29	0.775	0150957 .0008072 0309073 0138456 0573001	.021753 .0215138 .0002659 .0083225 .0767437
. xtreg te te			le_nal el		c 1	200
Fixed-effects Group variable		ression		Number o Number o	of obs = of groups =	
	= 0.3833 $= 0.7705$ $= 0.6013$			Obs per	group: min = avg = max =	14.0
corr(u_i, Xb)	= 0.6281			F(7,279) Prob > F		24.77 0.0000
te	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
te_1 te_2 te_3 grow lggp ele_nal ele_al _cons	.4770493 1393148 1056939 1187113 0279396 .0004721 .0082504 .4199735	.0472696 .0525461 .041856 .022547 .0127324 .0064768 .0045688 .1145877	10.09 -2.65 -2.53 -5.27 -2.19 0.07 1.81 3.67	0.000 0.008 0.012 0.000 0.029 0.942 0.072 0.000	.3839988 2427519 1880876 1630951 0530034 0122776 0007434 .1944072	.5700997 0358777 0233002 0743274 0028758 .0132218 .0172442 .6455398
sigma_u sigma_e	.08465536					
rho	.02712268 .90690664	(fraction	of varia	nce due to	o u_i)	
-	.90690664					F = 0.0000
rho	.90690664 l u_i=0:	F(21, 279)	= 11.2	29		F = 0.0000
F test that al	.90690664 .1 u_i=0: e_1 te_2 te_3 (within) regr	F(21, 279)	= 11.2	29 cc_al,fe Number c		308
rho F test that al . xtreg te te Fixed-effects Group variable R-sq: within between	.90690664 .1 u_i=0: e_1 te_2 te_3 (within) regr e (i): id	F(21, 279)	= 11.2	29 DC_al,fe Number c Number c Obs per	Prob > of obs = of groups = group: min = avg = max =	308 22 14 14.0 14
rho F test that al . xtreg te te Fixed-effects Group variable R-sq: within between	.90690664 .1 u_i=0: e_1 te_2 te_3 (within) regr e (i): id = 0.3908 a = 0.7483 = 0.5904	F(21, 279)	= 11.2	29 DC_al,fe Number c Number c	Prob > of obs = of groups = group: min = avg = max =	308 22 14 14.0
rho F test that al . xtreg te te Fixed-effects Group variable R-sq: within between overall	.90690664 .1 u_i=0: 2.1 te_2 te_3 (within) regr 4 (i): id = 0.3908 4 = 0.7483 5 = 0.5904 = 0.6123	F(21, 279) grow lggp pl ression Std. Err.	= 11.2	29 Doc_al,fe Number c Number c Obs per F(7,279) Prob > F	Prob > of obs = of groups = group: min = avg = max =	308 22 14 14.0 14 25.57 0.0000

rho | .90804906 (fraction of variance due to u_i) _____ _____ F test that all $u_i=0$: F(21, 279) = 11.42 Prob > F = 0.0000. xtreg te te_1 te_2 te_3 grow lggp ele_nal ele1_nal ele1_al,fe Number of obs = 308 Fixed-effects (within) regression Group variable (i): id Number of groups = 22 R-sq: within = 0.4004Obs per group: min = 14 avg = between = 0.716314.0 overall = 0.5684 14 max = F(9,277) 20.56 = $corr(u_i, Xb) = 0.5865$ Prob > F 0.0000 = _____ Coef. Std. Err. t P>|t| [95% Conf. Interval] te | -+----_____ te_1 | .5054411 .0479296 10.55 0.000 .4110887 .5997936 te_2 | -.1485521 .0521958 -2.85 0.005 -.251303 -.0458013 -.1251661 .0420609 -2.98 0.003 -.2079658 -.0423665 te 3 | grow | -.1158163 .0225742 -5.13 0.000 -.160255 -.0713775 .0126577 -.0063804 -.031298 -2.47 0.014 -0.60 0.552 lggp -.031298 .0126577 -.0039277 .0065996 .0055675 .0047452 -.015121 .0054274 0.014 -.0562155 .0090641 -.0169194 ele_nal 1.17 0.242 ele_al | -.0037738 .0149087 -2.79 0.006 ele1_nal -.0258051 -.0044369 ele1_al | -.0044441 .0045695 -0.97 0.332 -.0134395 .0045513 .2277219 3.97 0.000 .6766149 _cons .4521684 .1140153 ----+----sigma_u | .08531184 sigma_e | .02683879 rho | .90994223 (fraction of variance due to u_i) -----------F test that all $u_i=0$: F(21, 277) = 11.50 Prob > F = 0.0000 . *GMM . xtabond te l(0).ele_nal ele_al , lags(1) pre(grow, lag(2,.)) pre(lggp, lag(2,.))286 Arellano-Bond dynamic panel-data estimation Number of obs = Group variable (i): id Number of groups = 22 Wald chi2(9) = 218.00 Obs per group: min = Time variable (t): y 13 avg = 13 max = 13 One-step results _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] te _____ te .3542436 .0342517 10.34 0.000 .4213757 LD | .2871114 grow D1 -.0610862 .0510332 -1.20 0.231 -.1611095 .0389371 LD -.0134358 .0516954 -0.26 0.795 -.114757 .0878853 .0458159 .0205939 .0054526 L2D 2.22 0.026 .0861792 lggp -.0744527 .0501499 .0327572 .052699 -1.48 0.138 D1 | -.1727447 .0238394 0.62 0.534 .052699 -.070531 LD | .1360454 .04678 -0.94 0.348 -.1355646 L2D | -.0438775 .0478095 ele_nal D1 .0015802 .005632 0.28 0.779 -.0094584 .0126187

ele al D1 .0101126 .0039015 2.59 0.010 .0024657 .0177595 .0032027 .000501 6.39 0.000 .0022207 .0041847 cons _____ Sargan test of over-identifying restrictions: chi2(357) = 354.41Prob > chi2 = 0.5287Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -5.76 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.61 Pr > z = 0.5406. xtabond te l(0).pbc_nal pbc_al , lags(1) pre(grow, lag(2,.)) pre(lggp, lag(2,.))Number of obs = 286 Number of groups = 22 Arellano-Bond dynamic panel-data estimation 22 Group variable (i): id Number of groups = Wald chi2(9) = 213.11 Time variable (t): y Obs per group: min = 13 avg = 13 max = 13 One-step results _____ te Coef. Std. Err. z P>|z| [95% Conf. Interval] ___+ te 10.31 0.000 LD | .3574712 .0346565 .2895457 .4253966 grow D1 | -.058509 .0506359 -1.16 0.248 -.1577536 .0407356 LD -.0090566 .0515688 -0.18 0.861 -.1101296 .0920164 .0042805 L2D .0446451 .0205946 2.17 0.030 .0850097 lqqp D1-.0730087.0496266-1.470.141-.1702751.0242577LD.023525.05323920.440.659-.080822.1278719L2D-.0334326.0467877-0.710.475-.1251348.0582695 pbc_nal D1 | .003445 .0032815 1.05 0.294 -.0029866 .0098765 pbc_al D1 0045548 .0024308 1.87 0.061 0031332 .0005037 6.22 0.000 D1 | -.0002094 .009319 .002146 .0041205 cons _____ _____ Sargan test of over-identifying restrictions: chi2(357) = 350.88 Prob > chi2 = 0.5813 Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -5.66 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.59 Pr > z = 0.5567. xtabond te l(0).ele_nal ele_al ele1_nal ele1_al, lags(1) pre(grow, lag(2,.)) pre(lggp, lag(2,.)) 286 Arellano-Bond dynamic panel-data estimation Number of obs = Number of groups = Group variable (i): id 22 Wald chi2(11) = 219.12 Time variable (t): v Obs per group: min = 13 13 avg = 13 max = One-step results _____

te	ļ	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
te							
	LD	.3642079	.0349848	10.41	0.000	.2956389	.4327769
grow							
	D1	0624094	.0513818	-1.21	0.225	1631159	.0382971
	LD	007328	.0521566	-0.14	0.888	109553	.094897
1	L2D	.0470332	.0206934	2.27	0.023	.0064748	.0875916
lggp							
	D1	0741531	.0503219	-1.47	0.141	1727822	.0244761
	LD	.0255778	.0534345	0.48	0.632	0791519	.1303074
1	L2D	034831	.0478941	-0.73	0.467	1287016	.0590397
ele_nal							
	D1	0000804	.0058109	-0.01	0.989	0114695	.0113087
ele_al							
	D1	.010124	.0040844	2.48	0.013	.0021187	.0181294
ele1_nal							
	D1	006566	.0048799	-1.35	0.178	0161304	.0029984
ele1_al							
	D1	.0014815	.0039938	0.37	0.711	0063462	.0093092
_cons		.0031005	.0005069	6.12	0.000	.002107	.0040941

Sargan test of over-identifying restrictions: chi2(357) = 352.06 Prob > chi2 = 0.5639

•

Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -5.70 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.70 Pr > z = 0.4836

TABLE 17 - Elections and Composition Effect conditional on alignment ofprovincial and federal government

. *OLS . regress ce	ce_1 ce_2 ce_	_3 grow lggp	ele_nal	ele_al,	robust	
Regression wit	th robust star	ndard errors			Number of obs = 303 F(7, 300) = 61.31 Prob > F = 0.0001 R-squared = 0.6031 Root MSE = $.04831$	6 0 1
						-
7 0	Coef.	Robust	÷		[95% Conf. Interval	1
ce	COEL.	Std. Err.	t 	P> t	[95% CONT. INCEIVAL	-
ce_1	.5995961	.061782	9.71	0.000	.478015 .721177	1
ce_2	0213828	.0680687	-0.31	0.754	1553353 .1125698	
ce_3	.1608774	.0507902	3.17	0.002	.0609272 .260827	
grow	.0693663	.0414834	1.67	0.096	012269 .151001	
lggp ele_nal	0080006 .0190341	.0052204 .0103003	-1.53 1.85	0.126 0.066	0182739 .002272' 0012359 .0393043	
ele_nal	0092474	.0079625	-1.16	0.088	0249168 .006422	
_cons	.2947636	.0573407	5.14	0.000	.1819227 .407604	
						-
. regress ce	ce_1 ce_2 ce_	_3 grow lggp	pbc_nal	pbc_al,	robust	
Regression wit	-h robust star	dard errorg			Number of obs = 30	g
Regression wit	tii iobust stai	idara criors			F(7, 300) = 59.98	
					Prob > F = 0.000	
					R-squared = 0.5989	9
					Root MSE = $.0480$	6
						_
		Robust				-
ce	Coef.	Robust Std. Err.		P> t	[95% Conf. Interval]
	Coef.				[95% Conf. Interval .4747134 .720585'	-
ce ce_1 ce_2	' +	Std. Err.	9.57	P> t 0.000 0.847		- 7
ce_1	.5976495	Std. Err. .0624706		0.000	.4747134 .720585	- 7 1
ce_1 ce_2 ce_3 grow	.5976495 0133118 .1532459 .0601375	Std. Err. .0624706 .0690227 .0522022 .0420054	9.57 -0.19 2.94 1.43	0.000 0.847 0.004 0.153	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .142	- 7 1 7 8
ce_1 ce_2 ce_3 grow lggp	.5976495 0133118 .1532459 .0601375 0077647	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582	9.57 -0.19 2.94 1.43 -1.48	0.000 0.847 0.004 0.153 0.141	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1423 0181124 .00258	- 7 1 7 8 3
ce_1 ce_2 ce_3 grow lggp pbc_nal	.5976495 0133118 .1532459 .0601375 0077647 .001249	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511	9.57 -0.19 2.94 1.43 -1.48 0.20	0.000 0.847 0.004 0.153 0.141 0.842	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1423 0181124 .00258 0110525 .013550	- 7 7 8 3 6
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al	.5976495 0133118 .1532459 .0601375 0077647 .001249 0068275	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365	9.57 -0.19 2.94 1.43 -1.48 0.20 -1.41	0.000 0.847 0.004 0.153 0.141 0.842 0.159	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1423 0181124 .00258 0110525 .0135500 0163452 .002690	- 7 1 7 8 3 6 3
ce_1 ce_2 ce_3 grow lggp pbc_nal	.5976495 0133118 .1532459 .0601375 0077647 .001249	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511	9.57 -0.19 2.94 1.43 -1.48 0.20	0.000 0.847 0.004 0.153 0.141 0.842	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1423 0181124 .00258 0110525 .013550	- 7 1 7 8 3 6 3
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al _cons	.5976495 0133118 .1532459 .0601375 0077647 .001249 0068275 .2940792	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365 .0581322	$9.57 \\ -0.19 \\ 2.94 \\ 1.43 \\ -1.48 \\ 0.20 \\ -1.41 \\ 5.06$	0.000 0.847 0.004 0.153 0.141 0.842 0.159 0.000	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1423 0181124 .00258 0110525 .0135500 0163452 .002690	- 7 1 7 8 3 6 3 7 -
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al _cons . regress ce	<pre>.5976495 .0133118 .1532459 .0601375 .0077647 .001249 .0068275 .2940792 .2940792</pre>	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365 .0581322	$9.57 \\ -0.19 \\ 2.94 \\ 1.43 \\ -1.48 \\ 0.20 \\ -1.41 \\ 5.06$	0.000 0.847 0.004 0.153 0.141 0.842 0.159 0.000	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1422 0181124 .00258 0110525 .013550 0163452 .002690 .1796808 .408477	-71783637- t
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al _cons	<pre>.5976495 .0133118 .1532459 .0601375 .0077647 .001249 .0068275 .2940792 .2940792</pre>	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365 .0581322	$9.57 \\ -0.19 \\ 2.94 \\ 1.43 \\ -1.48 \\ 0.20 \\ -1.41 \\ 5.06$	0.000 0.847 0.004 0.153 0.141 0.842 0.159 0.000	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1428 0181124 .00258 0110525 .0135500 0163452 .002690 .1796808 .408477 elel_nal elel_al, robust	-71783637- t8
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al _cons . regress ce	<pre>.5976495 .0133118 .1532459 .0601375 .0077647 .001249 .0068275 .2940792 .2940792</pre>	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365 .0581322	9.57 -0.19 2.94 1.43 -1.48 0.20 -1.41 5.06	0.000 0.847 0.004 0.153 0.141 0.842 0.159 0.000	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1423 0181124 .00258 0110525 .0135500 0163452 .002690 .1796808 .408477 ele1_nal ele1_al, robust Number of obs = 306 F(9, 298) = 46.8 Prob > F = 0.0000	-71783637- t850
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al _cons . regress ce	<pre>.5976495 .0133118 .1532459 .0601375 .0077647 .001249 .0068275 .2940792 .2940792</pre>	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365 .0581322	9.57 -0.19 2.94 1.43 -1.48 0.20 -1.41 5.06	0.000 0.847 0.004 0.153 0.141 0.842 0.159 0.000	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1426 0181124 .00258 0110525 .0135506 0163452 .002690 .1796808 .408477 ele1_nal ele1_al, robust Number of obs = 306 F(9, 298) = 46.85	-71783637- t850
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al _cons . regress ce	<pre>.5976495 .0133118 .1532459 .0601375 .0077647 .001249 .0068275 .2940792 .2940792</pre>	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365 .0581322	9.57 -0.19 2.94 1.43 -1.48 0.20 -1.41 5.06	0.000 0.847 0.004 0.153 0.141 0.842 0.159 0.000	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1423 0181124 .00258 0110525 .0135500 0163452 .002690 .1796808 .408477 ele1_nal ele1_al, robust Number of obs = 306 F(9, 298) = 46.8 Prob > F = 0.0000	-71783637- t8508
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al _cons . regress ce	<pre>.5976495 .0133118 .1532459 .0601375 .0077647 .001249 .0068275 .2940792 .2940792</pre>	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365 .0581322	9.57 -0.19 2.94 1.43 -1.48 0.20 -1.41 5.06	0.000 0.847 0.004 0.153 0.141 0.842 0.159 0.000	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1424 0181124 .00258 0110525 .0135506 0163452 .002690 .1796808 .408477 ele1_nal ele1_al, robust Number of obs = 304 F(9, 298) = 46.85 Prob > F = 0.0006 R-squared = 0.6064	-71783637- t8508
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al _cons . regress ce	<pre>.5976495013311815324590601375007764700124900682752940792</pre>	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365 .0581322 	9.57 -0.19 2.94 1.43 -1.48 0.20 -1.41 5.06 ele_nal	0.000 0.847 0.004 0.153 0.141 0.842 0.159 0.000 ele_al	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1423 0181124 .00258 0110525 .0135506 0163452 .002690 .1796808 .408477 elel_nal elel_al, robust Number of obs = 306 F(9, 298) = 46.89 Prob > F = 0.0006 R-squared = 0.6066 Root MSE = .04829	-71783637- t 85089 -
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al _cons . regress ce	<pre>.5976495 .0133118 .1532459 .0601375 .0077647 .001249 .0068275 .2940792 .2940792</pre>	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365 .0581322 	9.57 -0.19 2.94 1.43 -1.48 0.20 -1.41 5.06 ele_nal	0.000 0.847 0.004 0.153 0.141 0.842 0.159 0.000	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1423 0181124 .00258 0110525 .0135506 0163452 .002690 .1796808 .408477 elel_nal elel_al, robust Number of obs = 306 F(9, 298) = 46.89 Prob > F = 0.0006 R-squared = 0.6066 Root MSE = .04829	-71783637- t 85089 -
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al _cons . regress ce Regression wit	.5976495 .0133118 .1532459 .0601375 .0077647 .001249 .0068275 .2940792 ce_1 ce_2 ce_ th robust star	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365 .0581322 	9.57 -0.19 2.94 1.43 -1.48 0.20 -1.41 5.06 ele_nal	0.000 0.847 0.004 0.153 0.141 0.842 0.159 0.000 ele_al	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1423 0181124 .00258 0110525 .0135506 0163452 .002690 .1796808 .408477 ele1_nal ele1_al, robust Number of obs = 303 F(9, 298) = 46.83 Prob > F = 0.0006 R-squared = 0.6063 Root MSE = .04823 [95% Conf. Interval	-71783637- t 85089 -]-
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al _cons . regress ce Regression wit	.5976495 .0133118 .1532459 .0601375 .0077647 .001249 .0068275 .2940792 ce_1 ce_2 ce_ th robust star	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365 .0581322 	9.57 -0.19 2.94 1.43 -1.48 0.20 -1.41 5.06 ele_nal	0.000 0.847 0.004 0.153 0.141 0.842 0.159 0.000 ele_al	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1423 0181124 .00258 0110525 .0135506 0163452 .002690 .1796808 .408477 ele1_nal ele1_al, robust Number of obs = 306 F(9, 298) = 46.85 Prob > F = 0.0006 R-squared = 0.6066 Root MSE = .04825 [95% Conf. Interval .4852768 .7373233	-71783637- t 85089 -]-2
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al _cons . regress ce Regression wit	<pre>.59764950133118 .1532459 .0601375 .0012490012490068275 .2940792 ce_1 ce_2 ce_ th robust star</pre>	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365 .0581322 	9.57 -0.19 2.94 1.43 -1.48 0.20 -1.41 5.06 ele_nal	0.000 0.847 0.004 0.153 0.141 0.842 0.159 0.000 ele_al P> t	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1423 0181124 .00258 0110525 .0135506 0163452 .002690 .1796808 .408477 elel_nal ele1_al, robust Number of obs = 308 F(9, 298) = 46.88 Prob > F = 0.0006 R-squared = 0.6068 Root MSE = .04828 [95% Conf. Interval .4852768 .7373233	-71783637- t 85089 -]-25
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al _cons . regress ce Regression wit	<pre>.59764950133118 .1532459 .0601375 .0012490012490068275 .2940792</pre>	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365 .0581322 	9.57 -0.19 2.94 1.43 -1.48 0.20 -1.41 5.06 ele_nal	0.000 0.847 0.004 0.153 0.141 0.842 0.159 0.000 ele_al P> t 0.000 0.864	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1423 0181124 .00258 0110525 .0135500 0163452 .002690 .1796808 .408477 ele1_nal ele1_al, robust Number of obs = 306 F(9, 298) = 46.89 Prob > F = 0.0000 R-squared = 0.6066 Root MSE = .04829 [95% Conf. Interval .4852768 .7373233 1463477 .122938	-71783637- t 85089 -]-251
ce_1 ce_2 ce_3 grow lggp pbc_nal pbc_al _cons . regress ce Regression wit	<pre>.59764950133118 .1532459 .0601375 .0012490012490068275 .2940792</pre>	Std. Err. .0624706 .0690227 .0522022 .0420054 .0052582 .0062511 .0048365 .0581322 	9.57 -0.19 2.94 1.43 -1.48 0.20 -1.41 5.06 ele_nal t 9.55 -0.17 2.74	0.000 0.847 0.004 0.153 0.141 0.842 0.159 0.000 ele_al P> t 0.000 0.864 0.006	.4747134 .720585 1491417 .122518 .0505171 .255974 0225249 .1423 0181124 .00258 0110525 .0135506 0163452 .002690 .1796808 .408477 elel_nal ele1_al, robust Number of obs = 308 F(9, 298) = 46.88 Prob > F = 0.0006 R-squared = 0.6068 Root MSE = .04828 [95% Conf. Interval .4852768 .737323 1463477 .122938 .0403439 .245630	-71783637- t 85089 -]-25197

ele_al ele1_nal ele1_al _cons	0054081 .0138903 .0087037 .285859	.0084171 .008527 .0078404 .0582352	-0.64 1.63 1.11 4.91	0.521 0.104 0.268 0.000	0219725 0028904 006726 .1712548	.0111564 .0306711 .0241333 .4004633
. regress ce	ce_1 ce_2 ce_	_3 grow lggp	ele_1_na	al ele_1_	_al, robust	
Regression wit	h robust star	dard errors			Number of obs F(7, 299) Prob > F R-squared Root MSE	= 63.23 = 0.0000 = 0.6059
ce	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
ce_1 ce_2 ce_3 grow lggp ele_1_nal ele_1_al _cons	.6061938 0017324 .1347668 .0683599 0073873 0220308 017825 .2932242	.0635952 .0705638 .052169 .0405587 .0050994 .0109319 .007972 .0562071	9.53 -0.02 2.58 1.69 -1.45 -2.02 -2.24 5.22	0.000 0.980 0.010 0.093 0.148 0.045 0.026 0.000	.4810429 140597 .0321018 0114568 0174227 043544 0335135 .1826126	.7313447 .1371323 .2374317 .1481766 .002648 0005175 0021366 .4038359
• • • *FE • xtreg ce ce Fixed-effects	(within) regr		le_nal el	Number	of obs =	
Group variable R-sq: within between overall	= 0.3783 = 0.9245				of groups = c group: min =	22
	= 0.5972				avg = max =	
corr(u_i, Xb)				F(7,279 Prob >	max =	14.0 14
corr(u_i, Xb) ce	= 0.5238 Coef.	Std. Err.		Prob > P> t	max = 9) = F = [95% Conf.	14.0 14 24.25 0.0000 Interval]
ce_1 ce_2 ce_2 ce_3 grow lggp ele_nal ele_al _cons	= 0.5238 Coef. .5030042 0473224 .1199319 .0812057 0143168 .0195942 0072665 .4806433	.0552797 .0636497 .0527954 .0384184 .0223597	9.10 -0.74 2.27 2.11 -0.64	<pre>Prob > P> t 0.000 0.458 0.024 0.035 0.523</pre>	max = 9) = F = [95% Conf. .3941859 172617	14.0 14 24.25 0.0000 Interval] .6118225 .0779723 .2238597 .1568324 .0296984
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele_al _cons sigma_u sigma_e rho	= 0.5238 Coef. .5030042 0473224 .1199319 .0812057 0143168 .0195942 0072665 .4806433 .02246686 .04652605 .1890887	.0552797 .0636497 .0527954 .0384184 .0223597 .0111393 .0078704 .179468	9.10 -0.74 2.27 2.11 -0.64 1.76 -0.92 2.68	<pre>Prob > P> t 0.000 0.458 0.024 0.035 0.523 0.080 0.357 0.008 </pre>	<pre>max = max = F = [95% Conf. [95% Conf. .3941859 172617 .016004 .005579 058332 0023335 0227595 .1273599 </pre>	14.0 14 24.25 0.0000 Interval] .6118225 .0779723 .2238597 .1568324 .0296984
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele_al _cons sigma_u sigma_e rho	= 0.5238 Coef. .5030042 0473224 .1199319 .0812057 0143168 .0195942 0072665 .4806433 .02246686 .04652605 .1890887	.0552797 .0636497 .0527954 .0384184 .0223597 .0111393 .0078704 .179468	9.10 -0.74 2.27 2.11 -0.64 1.76 -0.92 2.68	<pre>Prob > P> t 0.000 0.458 0.024 0.035 0.523 0.080 0.357 0.008 nce due t</pre>	<pre>max = max = F = [95% Conf. [95% Conf. .3941859 172617 .016004 .005579 058332 0023335 0227595 .1273599 </pre>	14.0 14 24.25 0.0000 Interval] .6118225 .0779723 .2238597 .1568324 .0296984 .041522 .0082264 .8339267
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele_al _cons sigma_u sigma_e rho	<pre>= 0.5238 Coef50300420473224 .1199319 .08120570143168 .01959420072665 .4806433 .02246686 .04652605 .1890887 l u_i=0:</pre>	.0552797 .0636497 .0527954 .0384184 .0223597 .0111393 .0078704 .179468 (fraction of F(21, 279) =	9.10 -0.74 2.27 2.11 -0.64 1.76 -0.92 2.68	<pre>Prob > P> t 0.000 0.458 0.024 0.035 0.523 0.080 0.357 0.008 nce due t 14</pre>	<pre>max = max =</pre>	14.0 14 24.25 0.0000 Interval] .6118225 .0779723 .2238597 .1568324 .0296984 .041522 .0082264 .8339267

Fixed-effects (within)	regression	Number	οİ	obs	=	308
Group variable (i): id	l	Number	of	groups	=	22

between	= 0.3728 n = 0.9206 L = 0.5932			Obs per	group: min = avg = max =	14.0
corr(u_i, Xb)	= 0.5188			F(7,279) Prob > F		23.69 0.0000
ce	Coef.	Std. Err.	 t	P> t	[95% Conf.	Interval]
ce_1	.4976502	.0549923	9.05	0.000	.3893977	.6059026
ce_1 ce_2				0.533		.0861366
ce_3			2.19	0.029	.0120933	.2225743
grow		.0390114	1.84	0.066	0048246	.1487634
lggp		.022424	-0.64	0.521	0585619	.0297217
	.0031389		0.49			.0156353
pbc_al					0154103	.0037697
cons		.0048717 .1801676	2.68	0.008	.1279922	.8373132
	+					
sigma_u sigma_e						
rho		(fraction o	of variar	nce due to	u_i)	
F test that a	ll u_1=0:	F(21, 2/9) =	= 2.1	L /	Prob >	F = 0.0026
. xtreg ce ce	e_1 ce_2 ce_3	grow lggp e	le_nal el	le_al ele1	_nal ele1_al	,fe
Dired offerty				Mumbers	fabr	200
Fixed-effects Group variable	-	ression			f obs = f groups =	
R-sq: within	= 0.3827			Obs per	group: min =	14
betweer	n = 0.9392			-	avg =	
	L = 0.6028				max =	
						10 00
(I					=	
corr(u_i, Xb)	= 0.5487			F(9,277) Prob > F		0.0000
corr(u_i, Xb)	= 0.5487					
corr(u_i, Xb) ce		Std. Err.	t	Prob > F		0.0000
ce	Coef.			Prob > F P> t	= [95% Conf.	0.0000 Interval]
ce ce_1	Coef.	.0558756	9.20	Prob > F P> t 0.000	= [95% Conf. .4039319	0.0000 Interval] .6239214
ce 	Coef. .5139267 .0404036	.0558756 .0639201	9.20 -0.63	Prob > F P> t 0.000 0.528	= [95% Conf. .4039319 1662344	0.0000 Interval] .6239214 .0854273
ce 	Coef. .5139267 0404036 .1033572	.0558756 .0639201 .0541931	9.20 -0.63 1.91	Prob > F P> t 0.000 0.528 0.058	= [95% Conf. .4039319 1662344 0033254	0.0000 Interval] .6239214 .0854273 .2100397
ce ce_1 ce_2 ce_3 grow	Coef. .5139267 0404036 .1033572 .0736409	.0558756 .0639201 .0541931 .039063	9.20 -0.63 1.91 1.89	Prob > F P> t 0.000 0.528 0.058 0.060	= [95% Conf. .4039319 1662344 0033254 003257	0.0000 Interval] .6239214 .0854273 .2100397 .1505389
ce ce_1 ce_2 ce_3 grow lggp	Coef. .5139267 0404036 .1033572 .0736409 0115245	.0558756 .0639201 .0541931 .039063 .0224492	9.20 -0.63 1.91 1.89 -0.51	Prob > F P> t 0.000 0.528 0.058 0.058 0.060 0.608	= [95% Conf. .4039319 1662344 0033254 003257 0557172	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele_al	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51	Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612	= [95% Conf. .4039319 1662344 0033254 003257 0557172 .0006748 0204127	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele_al	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51	Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612	= [95% Conf. .4039319 1662344 0033254 003257 0557172 .0006748 0204127	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele_al	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51	Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612	= [95% Conf. .4039319 1662344 0033254 003257 0557172 .0006748 0204127	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele_al ele1_nal ele1_al cons	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182 .0107419 .007824 .4522695	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449 .0091966 .0079533 .180622	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51 1.17 0.98 2.50	Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612 0.244 0.326 0.013	= [95% Conf. .4039319 1662344 0033254 003257 0557172 .0006748 0204127 0073623 0078327 .0967033	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487 .028846 .0234806 .8078357
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele_al ele1_nal ele1_al _cons	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182 .0107419 .007824 .4522695	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449 .0091966 .0079533 .180622	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51 1.17 0.98 2.50	Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612 0.244 0.326 0.013	= [95% Conf. .4039319 1662344 0033254 003257 0557172 .0006748 0204127 0073623 0078327 .0967033	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487 .028846 .0234806 .8078357
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele_al ele1_nal ele1_a1 _cons sigma_u	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182 .0107419 .007824 .4522695 .02229704	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449 .0091966 .0079533 .180622	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51 1.17 0.98 2.50	Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612 0.244 0.326 0.013	= [95% Conf. .4039319 1662344 0033254 003257 0557172 .0006748 0204127 0073623 0078327 .0967033	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487 .028846 .0234806 .8078357
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele1_nal ele1_nal ele1_a1 _cons sigma_u sigma_e	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182 .0107419 .007824 .4522695 .02229704 .04652836	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449 .0091966 .0079533 .180622	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51 1.17 0.98 2.50	Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612 0.244 0.326 0.013	= [95% Conf. .4039319 1662344 0033254 003257 0557172 .0006748 0204127 0073623 0078327 .0967033	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487 .028846 .0234806 .8078357
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele_al ele1_nal ele1_al _cons sigma_u sigma_e rho	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182 .0107419 .007824 .4522695 .02229704	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449 .0091966 .0079533 .180622	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51 1.17 0.98 2.50	Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612 0.244 0.326 0.013 	= [95% Conf. .4039319 1662344 0033254 003257 0557172 .0006748 0204127 0073623 0078327 .0967033	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487 .028846 .0234806 .8078357
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele_al ele1_nal ele1_al _cons sigma_u sigma_e rho	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182 .0107419 .007824 .4522695 .02229704 .04652836 .1867579	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449 .0091966 .0079533 .180622	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51 1.17 0.98 2.50	Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612 0.244 0.326 0.013 	= [95% Conf. .4039319 1662344 0033254 003257 0557172 .0006748 0204127 0073623 0078327 .0967033	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487 .028846 .0234806 .8078357
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele_al ele1_nal ele1_al _cons sigma_u sigma_e rho	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182 .0107419 .007824 .4522695 .02229704 .04652836 .1867579 Ll u_i=0:	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449 .0091966 .0079533 .180622 (fraction of F(21, 277) =	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51 1.17 0.98 2.50 	Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612 0.244 0.326 0.013 	= [95% Conf. .4039319 1662344 003257 0557172 .0006748 0204127 0073623 0078327 .0967033 	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487 .028846 .0234806 .8078357
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele1_nal ele1_nal ele1_aal _cons sigma_u sigma_e rho F test that ad . xtreg ce ce	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182 .0107419 .007824 .4522695 .02229704 .04652836 .1867579 Ll u_i=0:	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449 .0091966 .0079533 .180622 (fraction of F(21, 277) =	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51 1.17 0.98 2.50 	<pre>Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612 0.244 0.326 0.013 nce due to 09 ele_1_al,</pre>	= [95% Conf4039319166234400332540032570557172 .0006748020412700736230078327 .0967033 .096703 .09670 .096 .096 .096 .096 .096 .096 .096 .09	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487 .028846 .0234806 .8078357 F = 0.0040
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele1_nal ele1_nal ele1_aal cons 	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182 .0107419 .007824 .4522695 .02229704 .04652836 .1867579 Ll u_i=0: e_1 ce_2 ce_3 (within) reg:	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449 .0091966 .0079533 .180622 (fraction of F(21, 277) =	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51 1.17 0.98 2.50 	Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612 0.244 0.326 0.013 periode to 	= [95% Conf. .4039319 1662344 003257 0557172 .0006748 0204127 0073623 0078327 .0967033 	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487 .028846 .0234806 .8078357 F = 0.0040
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele1_nal ele1_nal ele1_aal _cons sigma_u sigma_e rho F test that ad . xtreg ce ce	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182 .0107419 .007824 .4522695 .02229704 .04652836 .1867579 Ll u_i=0: e_1 ce_2 ce_3 (within) reg:	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449 .0091966 .0079533 .180622 (fraction of F(21, 277) =	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51 1.17 0.98 2.50 	Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612 0.244 0.326 0.013 periode to 	= [95% Conf4039319166234400332540032570557172 .0006748020412700736230078327 .0967033 .096703 .09670 .096 .096 .096 .096 .096 .096 .096 .09	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487 .028846 .0234806 .8078357 F = 0.0040
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele1_nal ele1_nal ele1_aal cons 	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182 .0107419 .007824 .4522695 .02229704 .04652836 .1867579 Ll u_i=0: e_1 ce_2 ce_3 (within) reg: e (i): id	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449 .0091966 .0079533 .180622 (fraction of F(21, 277) =	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51 1.17 0.98 2.50 	<pre>Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612 0.244 0.326 0.013 0.013 0.001 ele_1_al, Number o Number o</pre>	= [95% Conf. .4039319 1662344 003257 0557172 .0006748 0204127 0073623 0078327 .0967033 	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487 .028846 .0234806 .8078357 F = 0.0040 307 22
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele1_nal ele1_al _cons sigma_u sigma_e rho F test that a xtreg ce ce Fixed-effects Group variable R-sq: within	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182 .0107419 .007824 .4522695 .02229704 .04652836 .1867579 Ll u_i=0: e_1 ce_2 ce_3 (within) reg: e (i): id	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449 .0091966 .0079533 .180622 (fraction of F(21, 277) =	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51 1.17 0.98 2.50 	<pre>Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612 0.244 0.326 0.013 0.013 0.001 ele_1_al, Number o Number o</pre>	= [95% Conf. .4039319 .1662344 .003257 .0557172 .0006748 .0204127 .0073623 .0078327 .0967033 .096703	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487 .028846 .0234806 .8078357 F = 0.0040 307 22
ce ce_1 ce_2 ce_3 grow lggp ele_nal ele1_nal ele1_nal ele1_aal cons sigma_u sigma_e rho F test that ad . xtreg ce ce Fixed-effects Group variable R-sq: within between	Coef. .5139267 0404036 .1033572 .0736409 0115245 .0232328 004182 .0107419 .007824 .4522695 .02229704 .04652836 .1867579 .11 u_i=0: e_1 ce_2 ce_3 (within) reg: e (i): id = 0.3874	.0558756 .0639201 .0541931 .039063 .0224492 .0114591 .0082449 .0091966 .0079533 .180622 (fraction of F(21, 277) =	9.20 -0.63 1.91 1.89 -0.51 2.03 -0.51 1.17 0.98 2.50 	<pre>Prob > F P> t 0.000 0.528 0.058 0.060 0.608 0.044 0.612 0.244 0.326 0.013 0.013 0.001 ele_1_al, Number o Number o</pre>	= [95% Conf. .4039319 .1662344 .003257 .0557172 .0006748 .0204127 .0073623 .0078327 .0967033 .096703	0.0000 Interval] .6239214 .0854273 .2100397 .1505389 .0326683 .0457908 .0120487 .028846 .0234806 .8078357 F = 0.0040 307 22 13 14.0

corr(u_i,	Xb)	=	0.5479	

ce Coef. Std. Err. t P> t [95% Conf. Interval] ce_1 .5036629 .0545102 9.24 0.000 .3963578 .610968 ce_3 .0568443 .0536343 1.81 0.072 0087365 .2024252 grow .0764725 .0380743 2.01 0.046 .001522 .151423 lggp 00253947 .0111714 -2.27 0.0244 047386 0030468 ele_l_al 0151406 .0078785 .192 .056 0306498 .0003866 _cons .4433675 .1794741 2.47 0.014 .0900666 .7966684 _cons .04624685 . .04624685 . .04624685 rho .9442504 (fraction of variance due to u_i) . .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
c=2 0270155 .0667164 -0.43 0.667 1504749 .0964439 grow .0764725 .0380743 2.01 0.046 .001522 .151423 lggp 003318 .022347 -0.42 0.677 053026 .0346789 ele_1_al 0151406 .0078785 -1.92 0.56 0306498 .0003666 cons .443675 .1794741 2.47 0.014 .0900666 .7966684 cons .443675 .1794741 2.47 0.014 .0900666 .7966684 cons .443675 .1794741 2.47 0.014 .0900666 .7966684 cons 02271984
c_3 .0968443 .0553433 1.81 0.072 0037365 .2224252 grow .0764725 .0380743 2.01 0.046 .001522 .151423 lggp 0253947 .0111714 -2.27 0.224 047386 0034034 ele_lal 0151406 .0078785 02204 0036498 .0003686 _cons .4433675 .1794741 2.47 0.014 .0900666 .7966684
grow .0764725 .0380743 2.01 0.464 .001522 .151423 lggp 0033118 .022347 -0.42 0.677 0533026 .0346789 ele_l_al 0151406 .0078785 -1.92 0.056 03706498 .0003686 cons .443675 .1794741 2.47 0.014 .0900666 .7966684 sigma_e .04624685 rho .19442504 (fraction of variance due to u_i) F test that all u_i=0: F(21, 278) = 2.22 Prob > F = 0.0019 . .xtabond ce l(0).ele_nal ele_al , lags(1) pre(grow, lag(2,.)) pre(lggp, lag(2,.)) pre(lggp, lag(2,.)) Arellano-Bond dynamic panel-data estimation Number of groups = 22 Wald chi2(9) = 116.02 Time variable (t): y Obs per group: min = 13 one-step results
Iggp 0093118 .022347 -0.42 0.677 053026 .0346789 ele_l_al 0151406 .0078785 -1.92 0.056 0306498 .0003666 cons .4433675 .1794741 2.47 0.014 .0900666 .7966684 sigma_u .02271984 .04624685 rho .19442504 (fraction of variance due to u_i) - .
ele_l_nal 0253947 .011714 -2.27 0.024 047386 0034034 ele_l_al 0151406 .0078785 -1.92 0.056 0306498 .0003686 coms .4433675 .1794741 2.47 0.014 .0900666 .7966684 sigma_u .02271984
ele_1_al 0151406 .0078785 -1.92 0.056 0306498 .0003666 cons .4433675 .1794741 2.47 0.014 .0900666 .7966684 sigma_u .02271984 .19442504 (fraction of variance due to u_i)
cons .4433675 .1794741 2.47 0.014 .0900666 .7966684 sigma_u .02271984
<pre>sigma_e .04624685 rho .19442504 (fraction of variance due to u_i) F test that all u_i=0: F(21, 278) = 2.22 Prob > F = 0.0019 *GMM . xtabond ce l(0).ele_nal ele_al , lags(1) pre(grow, lag(2,.)) pre(lggp, lag(2,.)) Arellano-Bond dynamic panel-data estimation Number of obs = 286 Group variable (i): id Number of groups = 222 Wald chi2(9) = 116.02 Time variable (t): y Obs per group: min = 13 avg = 13 max = 13 One-step results ce Coef. Std. Err. z P> z [95% Conf. Interval] ce Coef. Std. Err. z P> z [95% Conf. Interval] ce .4244163 .0481967 8.81 0.000 .3299525 .5188802 grow 01 .0437274 .0978521 0.45 0.6551480591 .2355139 LD .0437274 .0978521 0.45 0.6551480591 .2355139 LD .0248147 .093933 -0.25 0.803219622 .1699925 L2D0248147 .093933 -0.25 0.8011639907 .2123675 LD .0241884 .0960115 0.25 0.8011639907 .2123675 LD .0017364 .0398229 -0.02 0.985177786 .1743132 ele_nal 01 ele_nal 0198176 .010916 1.82 0.0690015773 .0412126 ele_al 01 0084013 .0074824 -1.12 0.2620230664 .0062639 _cons .0035316 .0010719 3.29 0.001 .0014307 .0056326</pre>
. *GMM . xtabond ce 1(0).ele_nal ele_al , lags(1) pre(grow, lag(2,.)) pre(lggp, lag(2,.)) Arellano-Bond dynamic panel-data estimation Group variable (i): id Mumber of groups = 22 Wald chi2(9) = 116.02 Time variable (t): y Obs per group: min = 13 avg = 13 max = 13 One-step results <u>ce</u> <u>Coef. Std. Err. z P> z [95% Conf. Interval]</u> <u>ce</u> <u>Coef. Std. Err. z P> z [95% Conf. Interval]</u> <u>ce</u> <u>LD</u> .4244163 .0481967 8.81 0.000 .3299525 .5188802 grow <u>D1</u> .0437274 .0978521 0.45 0.6551480591 .2355139 <u>LD</u> 0248147 .0993933 -0.25 0.803216622 .1699925 L2D1247953 .0389633 -3.20 0.00120116190484286 lggp <u>D1</u> .0241884 .0960115 0.25 0.8011639907 .2123675 <u>LD</u> 0579368 .1011588 -0.57 0.5672562044 .1403308 L2D0017364 .0898229 -0.02 0.985177786 .1743132 ele_nal <u>D1</u> .0198176 .010916 1.82 0.0690015773 .0412126 ele_a1 <u>D1</u> 0084013 .0074824 -1.12 0.2620230664 .0062639 _cons .0035316 .0010719 3.29 0.001 .0014307 .0056326
. *GMM . xtabond ce 1(0).ele_nal ele_al , lags(1) pre(grow, lag(2,.)) pre(lggp, lag(2,.)) Arellano-Bond dynamic panel-data estimation Group variable (i): id Mumber of groups = 22 Wald chi2(9) = 116.02 Time variable (t): y Obs per group: min = 13 avg = 13 max = 13 One-step results <u>ce</u> <u>Coef. Std. Err. z P> z [95% Conf. Interval]</u> <u>ce</u> <u>Coef. Std. Err. z P> z [95% Conf. Interval]</u> <u>ce</u> <u>LD</u> .4244163 .0481967 8.81 0.000 .3299525 .5188802 grow <u>D1</u> .0437274 .0978521 0.45 0.6551480591 .2355139 <u>LD</u> 0248147 .0993933 -0.25 0.803216622 .1699925 L2D1247953 .0389633 -3.20 0.00120116190484286 lggp <u>D1</u> .0241884 .0960115 0.25 0.8011639907 .2123675 <u>LD</u> 0579368 .1011588 -0.57 0.5672562044 .1403308 L2D0017364 .0898229 -0.02 0.985177786 .1743132 ele_nal <u>D1</u> .0198176 .010916 1.82 0.0690015773 .0412126 ele_a1 <u>D1</u> 0084013 .0074824 -1.12 0.2620230664 .0062639 _cons .0035316 .0010719 3.29 0.001 .0014307 .0056326
<pre>. xtabond ce l(0).ele_nal ele_al , lags(1) pre(grow, lag(2,.)) pre(lggp, lag(2,.)) Arellano-Bond dynamic panel-data estimation Group variable (i): id Number of obs = 286 Number of groups = 22 Wald chi2(9) = 116.02 Time variable (t): y Obs per group: min = 13 avg = 13 max = 13 One-step results </pre>
Wald chi2(9) = 116.02 Time variable (t): y Obs per group: min = 13 avg = 13 max = 13 13 One-step results
Time variable (t): y Obs per group: min = 13 avg = 13 max = 13 One-step results Ce Coef. Std. Err. z $P> z $ [95% Conf. Interval] Ce LD .4244163 .0481967 8.81 0.000 .3299525 .5188802 grow D1 .0437274 .0978521 0.45 0.6551480591 .2355139 LD0248147 .0993933 -0.25 0.803219622 .1699925 L2D1247953 .0389633 -3.20 0.00120116190484286 lggp D1 .0241884 .0960115 0.25 0.8011639907 .2123675 LD0579368 .1011588 -0.57 0.5672562044 .1403308 L2D0017364 .0898229 -0.02 0.985177786 .1743132 ele_nal D1 .0198176 .010916 1.82 0.0690015773 .0412126 ele_al D10084013 .0074824 -1.12 0.2620230664 .0062639 _cons0035316 .0010719 3.29 0.001 .0014307 .0056326
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
ce Coef. Std. Err. z P> z [95% Conf. Interval] ce LD .4244163 .0481967 8.81 0.000 .3299525 .5188802 grow D1 .0437274 .0978521 0.45 0.655 1480591 .2355139 LD 0248147 .0993933 -0.25 0.803 219622 .1699925 L2D 1247953 .0389633 -3.20 0.001 2011619 0484286 lggp D1 .0241884 .0960115 0.25 0.801 1639907 .2123675 LD 0579368 .1011588 -0.57 0.567 2562044 .1403308 L2D 0017364 .0898229 -0.02 0.985 177786 .1743132 ele_nal D1 .0198176 .010916 1.82 0.069 0015773 .0412126 ele_al D1 0084013 .0074824 -1.12 0.262 0230664 .0062639 _cons .0035316 .0010719 3.29 0.001 .0014307 .0056326 </td
ce LD .4244163 .0481967 8.81 0.000 .3299525 .5188802 grow D1 .0437274 .0978521 0.45 0.6551480591 .2355139 LD0248147 .0993933 -0.25 0.803219622 .1699925 L2D1247953 .0389633 -3.20 0.00120116190484286 lggp D1 .0241884 .0960115 0.25 0.8011639907 .2123675 LD0579368 .1011588 -0.57 0.5672562044 .1403308 L2D0017364 .0898229 -0.02 0.985177786 .1743132 ele_nal D1 .0198176 .010916 1.82 0.0690015773 .0412126 ele_al D10084013 .0074824 -1.12 0.2620230664 .0062639 _cons .0035316 .0010719 3.29 0.001 .0014307 .0056326
LD .4244163 .0481967 8.81 0.000 .3299525 .5188802 grow D1 .0437274 .0978521 0.45 0.6551480591 .2355139 LD0248147 .0993933 -0.25 0.803219622 .1699925 L2D1247953 .0389633 -3.20 0.00120116190484286 lggp D1 .0241884 .0960115 0.25 0.8011639907 .2123675 LD0579368 .1011588 -0.57 0.5672562044 .1403308 L2D0017364 .0898229 -0.02 0.985177786 .1743132 ele_nal D1 .0198176 .010916 1.82 0.0690015773 .0412126 ele_al D10084013 .0074824 -1.12 0.2620230664 .0062639 .cons .0035316 .0010719 3.29 0.001 .0014307 .0056326
LD .4244163 .0481967 8.81 0.000 .3299525 .5188802 grow D1 .0437274 .0978521 0.45 0.6551480591 .2355139 LD0248147 .0993933 -0.25 0.803219622 .1699925 L2D1247953 .0389633 -3.20 0.00120116190484286 lggp D1 .0241884 .0960115 0.25 0.8011639907 .2123675 LD0579368 .1011588 -0.57 0.5672562044 .1403308 L2D0017364 .0898229 -0.02 0.985177786 .1743132 ele_nal D1 .0198176 .010916 1.82 0.0690015773 .0412126 ele_al D10084013 .0074824 -1.12 0.2620230664 .0062639 .cons .0035316 .0010719 3.29 0.001 .0014307 .0056326
grow D1 .0437274 .0978521 0.45 0.6551480591 .2355139 LD0248147 .0993933 -0.25 0.803219622 .1699925 L2D1247953 .0389633 -3.20 0.00120116190484286 lggp D1 .0241884 .0960115 0.25 0.8011639907 .2123675 LD0579368 .1011588 -0.57 0.5672562044 .1403308 L2D0017364 .0898229 -0.02 0.985177786 .1743132 ele_nal ele_nal D1 .0198176 .010916 1.82 0.0690015773 .0412126 ele_al D10084013 .0074824 -1.12 0.2620230664 .0062639 .cons .0035316 .0010719 3.29 0.001 .0014307 .0056326
D1 .0437274 .0978521 0.45 0.655 1480591 .2355139 LD 0248147 .0993933 -0.25 0.803 219622 .1699925 L2D 1247953 .0389633 -3.20 0.001 2011619 0484286 lggp D1 .0241884 .0960115 0.25 0.801 1639907 .2123675 LD 0579368 .1011588 -0.57 0.567 2562044 .1403308 L2D 0017364 .0898229 -0.02 0.985 177786 .1743132 ele_nal
LD0248147 .0993933 -0.25 0.803219622 .1699925 L2D1247953 .0389633 -3.20 0.00120116190484286 lggp D1 .0241884 .0960115 0.25 0.8011639907 .2123675 LD0579368 .1011588 -0.57 0.5672562044 .1403308 L2D0017364 .0898229 -0.02 0.985177786 .1743132 ele_nal D1 .0198176 .010916 1.82 0.0690015773 .0412126 ele_al D10084013 .0074824 -1.12 0.2620230664 .0062639 _cons .0035316 .0010719 3.29 0.001 .0014307 .0056326
L2D1247953 .0389633 -3.20 0.00120116190484286 lggp D1 .0241884 .0960115 0.25 0.8011639907 .2123675 LD0579368 .1011588 -0.57 0.5672562044 .1403308 L2D0017364 .0898229 -0.02 0.985177786 .1743132 ele_nal D1 .0198176 .010916 1.82 0.0690015773 .0412126 ele_al D10084013 .0074824 -1.12 0.2620230664 .0062639 _cons .0035316 .0010719 3.29 0.001 .0014307 .0056326
lggp D1 .0241884 .0960115 0.25 0.8011639907 .2123675 LD0579368 .1011588 -0.57 0.5672562044 .1403308 L2D0017364 .0898229 -0.02 0.985177786 .1743132 ele_nal D1 .0198176 .010916 1.82 0.0690015773 .0412126 ele_al D10084013 .0074824 -1.12 0.2620230664 .0062639 _cons .0035316 .0010719 3.29 0.001 .0014307 .0056326
D1 .0241884 .0960115 0.25 0.801 1639907 .2123675 LD 0579368 .1011588 -0.57 0.567 2562044 .1403308 L2D 0017364 .0898229 -0.02 0.985 177786 .1743132 ele_nal
LD 0579368 .1011588 -0.57 0.5672562044 .1403308 L2D 0017364 .0898229 -0.02 0.985177786 .1743132 ele_nal D1 .0198176 .010916 1.82 0.0690015773 .0412126 ele_al D1 0084013 .0074824 -1.12 0.2620230664 .0062639 _cons .0035316 .0010719 3.29 0.001 .0014307 .0056326
L2D 0017364 .0898229 -0.02 0.985177786 .1743132 ele_nal D1 .0198176 .010916 1.82 0.0690015773 .0412126 ele_al D1 0084013 .0074824 -1.12 0.2620230664 .0062639 _cons .0035316 .0010719 3.29 0.001 .0014307 .0056326
ele_nal D1 0198176 .010916 1.82 0.0690015773 .0412126 ele_al D10084013 .0074824 -1.12 0.2620230664 .0062639 _cons 0035316 .0010719 3.29 0.001 .0014307 .0056326
D1 .0198176 .010916 1.82 0.0690015773 .0412126 ele_al D1 0084013 .0074824 -1.12 0.2620230664 .0062639 _cons .0035316 .0010719 3.29 0.001 .0014307 .0056326
D1 0084013 .0074824 -1.12 0.2620230664 .0062639 _cons .0035316 .0010719 3.29 0.001 .0014307 .0056326
_cons .0035316 .0010719 3.29 0.001 .0014307 .0056326
Sargan test of over-identifying restrictions: chi2(357) = 235.44 Prob > chi2 = 1.0000
Arellano-Bond test that average autocovariance in residuals of order 1 is 0:
H0: no autocorrelation $z = -8.11$ Pr > $z = 0.0000$
Arellano-Bond test that average autocovariance in residuals of order 2 is 0:
H0: no autocorrelation $z = -0.09$ Pr > $z = 0.9250$
H0: no autocorrelation $z = -0.09$ Pr > $z = 0.9250$

Arellano-Bond dynamic panel-data estimation Group variable (i): id	Number of obs Number of groups	= =	286 22
	Wald chi2(9)	=	112.68
Time variable (t): y		.n = 7g = ax =	13 13 13

One-step results

ce	l	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ce	۰ ا						
	LD	.41893	.0483384	8.67	0.000	.3241886	.5136715
grow	ĺ						
	D1	.0658286	.0973504	0.68	0.499	1249746	.2566318
	LD	0115323	.0994981	-0.12	0.908	206545	.1834804
	L2D	1214897	.0391498	-3.10	0.002	1982219	0447574
lggp							
	D1	0120289	.0951552	-0.13	0.899	1985297	.1744719
	LD	0310876	.1026825	-0.30	0.762	2323417	.1701664
	L2D	.0020614	.0902111	0.02	0.982	1747491	.1788719
pbc_nal							
	D1	.0012497	.0062639	0.20	0.842	0110272	.0135267
pbc_al							
	D1	0073465	.0046828	-1.57	0.117	0165246	.0018316
_cons		.0036662	.0010789	3.40	0.001	.0015517	.0057808

Sargan test of over-identifying restrictions: chi2(357) = 230.71 Prob > chi2 = 1.0000

Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -8.15 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = 0.01 Pr > z = 0.9897

. xtabond ce l(0).ele_1_nal ele_1_al , lags(1) pre(grow, lag(2,.)) pre(lggp, lag(2,.))

Arellano-Bond dynamic panel-data estimation Group variable (i): id	Number of obs = Number of groups =	285 22
	Wald chi2(9) =	114.89
Time variable (t): y	Obs per group: min = avg = max =	12 12.95455 13

One-step results

се	Coef.	Std. Err.	Z	P> z	[95% Conf.	[Interval]
ce						
LD	.428159	.0488848	8.76	0.000	.3323466	.5239713
grow						
D1	.0587193	.096841	0.61	0.544	1310856	.2485241
LD	0271393	.0998154	-0.27	0.786	2227739	.1684954
L2D	1077007	.0399224	-2.70	0.007	1859472	0294542
lggp						
D1	.0098829	.0941948	0.10	0.916	1747356	.1945015
LD	0340245	.1004902	-0.34	0.735	2309816	.1629326
L2D	0076788	.0901485	-0.09	0.932	1843667	.169009
ele_1_nal						
D1	0214231	.0109311	-1.96	0.050	0428476	1.45e-06
ele_1_al						

	D1	0089575	.0077136	-1.16	0.246	0240759	.0061609
_cons		.0034386	.0010808	3.18	0.001	.0013202	.005557
Sargan		over-identif					
	chi2(357) = 233.	23 Prob	> chi2 =	= 1.0000		
	- 1						
Arellan			-			uals of order	l 1s 0:
	H0: n	o autocorrela	tion z =	-8.04	Pr > z =	0.0000	
Arellan	o-Bond	test that ave	rage autoco	variance	in resid	uals of order	2 is 0:
	H0: n	o autocorrela	tion z =	-0.01	Pr > z =	0.9901	

. .

TABLE 18 - Elections and Total Revenue conditional on alignment of provincial and federal government

.

. *OLS . regress tr	tr_1 tr_2 tr_	_3 grow lggp	ele_nal	ele_al,	robust	
Regression wit	th robust star	ndard errors			Number of obs F(7, 300) Prob > F R-squared Root MSE	
tr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
tr_1 tr_2 tr_3 grow lggp ele_nal ele_al _cons	2862726	.1677577 .2245212 .0863944 .0272518 .0030511 .0063636 .0048283 .0301458	6.02 -1.28 1.89 -1.91 0.29 0.08 3.37 0.41	0.000 0.203 0.060 0.058 0.768 0.940 0.001 0.684	.6793225 7281084 0068305 1055491 0051053 0120449 .0067587 0470598	1.339584 .1555632 .332011 .0017087 .0069032 .0130011 .0257621 .0715883
. regress tr	tr_1 tr_2 tr_	_3 grow lggp	pbc_nal	pbc_al,	robust	
Regression wit	th robust star	ndard errors			Number of obs F(7, 300) Prob > F R-squared Root MSE	
tr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
tr_1 tr_2		.1688137	C0_0		(002500	1 244000
tr_3 grow lggp pbc_nal pbc_al _cons	0000464 .0039302	.2220007 .0845343 .0278074 .0031627 .0047776 .0033777 .0311409	6.00 -1.37 2.06 -1.89 0.21 -0.01 1.16 0.56	0.000 0.173 0.040 0.060 0.836 0.992 0.246 0.574	.6803589 7404138 .0079302 1071745 00557 0094483 0027167 043753	1.344777 .1333379 .3406408 .0022701 .0068779 .0093554 .0105772 .0788114
grow lggp pbc_nal pbc_al _cons	.1742855 0524522 .0006539 0000464 .0039302 .0175292	.0845343 .0278074 .0031627 .0047776 .0033777 .0311409	-1.37 2.06 -1.89 0.21 -0.01 1.16 0.56	0.173 0.040 0.060 0.836 0.992 0.246 0.574	7404138 .0079302 1071745 00557 0094483 0027167	.1333379 .3406408 .0022701 .0068779 .0093554 .0105772 .0788114
grow lggp pbc_nal pbc_al _cons	.1742855 0524522 .0006539 0000464 .0039302 .0175292	.0845343 .0278074 .0031627 .0047776 .0033777 .0311409	-1.37 2.06 -1.89 0.21 -0.01 1.16 0.56	0.173 0.040 0.060 0.836 0.992 0.246 0.574	7404138 .0079302 1071745 00557 0094483 0027167 043753	.1333379 .3406408 .0022701 .0068779 .0093554 .0105772 .0788114
grow lggp pbc_nal pbc_al _cons . regress tr	.1742855 0524522 .0006539 0000464 .0039302 .0175292 	.0845343 .0278074 .0031627 .0047776 .0033777 .0311409	-1.37 2.06 -1.89 0.21 -0.01 1.16 0.56 	0.173 0.040 0.060 0.836 0.992 0.246 0.574 ele_al	7404138 .0079302 1071745 00557 0094483 0027167 043753 	.1333379 .3406408 .0022701 .0068779 .0093554 .0105772 .0788114

ele_nal ele_al ele1_nal ele1_al _cons		.0068274 .0052129 .0078429 .0058747 .0300726	0.46 3.64 0.49 1.75 0.26	0.645 0.000 0.625 0.082 0.793	0102913 .0087075 0115927 0012999 0512923	.0165809 .0292249 .0192765 .0218224 .067071
. *FE . xtreg tr t:	r_1 tr_2 tr_3	grow lggp ei	le_nal el	le_al,fe		
Fixed-effects Group variable		ression		Number (Number (of obs = of groups =	308 22
between	= 0.5016 n = 0.9384 L = 0.5627			Obs per	group: min = avg = max =	14 14.0 14
corr(u_i, Xb)	= 0.6027			F(7,279 Prob > 1		
tr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
tr_1 tr_2 tr_3 grow lggp ele_nal ele_al _cons sigma_u sigma_e rho	2775477 1328645 0574305 0069166 0067297 .0108026 .2286671 08015312 .02249053	.0411699 .0485447 .0380194 .0184644 .0099524 .0053694 .0037947 .0877537	14.61 -5.72 -3.49 -3.11 -0.69 -1.25 2.85 2.61	0.000 0.000 0.001 0.002 0.488 0.211 0.005 0.010	.5203418 3731081 2077059 0937778 0265079 0172995 .0033327 .0559237	.6824281 1819873 0580231 0210832 .0126748 .00384 .0182725 .4014106
F test that a: . xtreg tr th					Prob > 1	F = 0.0000
Fixed-effects Group variable		ression	_		of obs = of groups =	308 22
	= 0.4847 n = 0.9476 l = 0.5585			Obs per	group: min = avg = max =	14.0
corr(u_i, Xb)	= 0.6039			F(7,279 Prob > 1) = F =	
tr	Coef.	Std. Err.	 t	P> t	[95% Conf.	Interval]
	2845449 1274304 0575113 0072853 0014398 .0014785	.0387248 .0189014 .0101497 .0030999	$ \begin{array}{r} 14.20 \\ -5.79 \\ -3.29 \\ -3.04 \\ -0.72 \\ -0.46 \\ 0.62 \\ 2.62 \\ \end{array} $	0.001 0.003 0.473 0.643	0032059	0512004 0203038 .0126944 .0046623
sigma_u sigma_e						

F test that al	ll u_i=0:	F(21, 279) :	= 17.3	36	Prob > 1	F = 0.0000
. regress tr	tr_1 tr_2 tr_	_3 grow lggp	ele_nal	ele_al	ele1_nal ele1_a	al,robust
Regression wit	ch robust sta	ndard errors			R-squared	
	 	Robust				
tr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>tr_1 tr_2 tr_3 grow lggp ele_nal ele1_nal ele1_alcons *GMM . xtabond tr 1 lag(2,.))</pre>	.9943475 2661339 .1605942 0585203 .0010462 .0031448 .0189662 .0038419 .0102612 .0078894	.1721787 .2315013 .0873215 .0272922 .0030872 .0068274 .0052129 .0078429 .0058747 .0300726	5.78 -1.15 1.84 -2.14 0.34 0.46 3.64 0.49 1.75 0.26	0.000 0.251 0.067 0.033 0.735 0.645 0.000 0.625 0.082 0.793	.6555074 7217184 0112508 11223 0050293 0102913 .0087075 0115927 0012999 0512923	1.333188 .1894505 .3324392 0048105 .0071216 .0165809 .0292249 .0192765 .0218224 .067071
Arellano-Bond Group variable		l-data estima	ation		of obs = of groups =	286 22
				Wald c	hi2(9) =	183.08
Time variable One-step resul	-			Obs pe	r group: min = avg = max =	13 13 13
tr	Coef.			P> z	[95% Conf.	Interval]
	+ 					
LD	.3500565	.0315188	11.11	0.000	.2882808	.4118322
grow Dl	.0255954	.0458895	0.56	0.577	0643463	.1155372
LD	.0594925	.0465128	1.28		0316708	.1506559
L2D	.0162432	.0187645	0.87	0.387	0205345	.0530209
lggp D1	056169	.0450179	-1.25	0.212	1444025	.0320646
LD	0451783	.0473647	-0.95		1380113	.0476548
L2D	.0365996	.0421273	0.87	0.385	0459684	.1191676
ele_nal	0.0	0.054.044		0 000		
D1 ele_al	0061026	.0051061	-1.20	0.232	0161104	.0039052
eie_ai D1	.0090788	.0035288	2.57	0.010	.0021624	.0159951
_cons	.0033951	.000453	7.49	0.000	.0025072	.004283
Component of	idonti					
Sargan test of	(357) = 364			= 0 3863		

Arellano-Bond test that average autocovariance in residuals of order 1 is $\ensuremath{\mathsf{0}}$: H0: no autocorrelation z = -4.47 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is $\ensuremath{\mathsf{0}}$:

	н0: г	no autocorrela	tion z =	-0.75	Pr > z =	0.4523	
. xtabon lag(2,.)		l(0).pbc_nal p	bc_al , lags	s(1) pre	e(grow, l	ag(2,.)) pre(lggp,
		dynamic panel e (i): id	-data estima	ation		of obs = of groups =	
					Wald ch	i2(9) =	179.14
Time var	iable	(t): y			Obs per		13 13 13
One-step	resul	lts 					
tr 		Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
tr	LD	.3357761	.0313136	10.72	0.000	.2744025	.3971497
grow	Dl			0.72	0.468		
	LD L2D	.0583417 .012797	.0461052 .0186396	1.27 0.69	0.206 0.492	0320229 023736	.1487062 .04933
lggp	D 1			1 50	0 1 0 0	1 5 2 7 1 0 4	0104660
	D1 LD	0295629	.0441787 .0476002	-1.52 -0.62	0.129 0.535	1537104 1228577	.0194668 .0637318
pbc_nal	L2D	.0305214	.0419206	0.73	0.467	0516415	.1126843
pbc_al	Dl	0057203	.002923	-1.96	0.050	0114493	8.76e-06
_cons	Dl	0003357 .0034825	.0021771 .0004526	-0.15 7.69		0046029 .0025953	.0039314 .0043696
Sargan t		f over-identif (357) = 373.			• 0.2693		
Arelland	-Bond	test that ave	rage autocom	variance	in resid	uals of order	1 is 0:
	H0: 1 -Bond	no autocorrela test that ave	tion z = erage autocov	-4.21 Variance	Pr > z = in resid	0.0000 uals of order	
	Н0: т	10 autocorrela	tion z =	-1.09	Pr > z =	0.2770	
		l(0). ele_nal (lggp, lag(2,.		_nal ele1	_al, lag	s(1) pre(gro	W,
		dynamic panel e (i): id	-data estima	ation		of obs = of groups =	286 22
					Wald ch	.i2(11) =	212.53
Time var	iable	(t): y			Obs per	group: min = avg =	13
One-step	resu	lts				max =	13
 tr						[95% Conf.	Interval]
 tr		+ 					
arou	LD	.3475647	.0306374	11.34	0.000	.2875165	.4076128
grow	Dl	.009285	.0446843	0.21	0.835	0782947	
	LD L2D	.0445231	.0453884 .0182512	0.98 0.67	0.327 0.503	0444364 0235482	.1334827 .0479954
lggp							
	D1 LD	0521419	.0436858 .0464785	-1.19 -0.45	0.233 0.655	1377644 1118467	.0334807 .0703457

	L2D	.0066651	.0417441	0.16	0.873	0751518	.088482
ele_nal		ĺ					
	D1	0024982	.0050867	-0.49	0.623	0124679	.0074715
ele_al	- 1	01050		2 50		0065006	0005054
- 1 - 1 1	D1	.01353	.0035753	3.78	0.000	.0065226	.0205374
ele1_nal	D1	 .0089831	.0041688	0 1 5	0.031	.0008125	.0171537
ele1 al	DI	.0089831	.0041688	2.15	0.031	.0008125	.01/153/
0101_41	D1	.013825	.0034746	3.98	0.000	.007015	.020635
_cons		.0034533	.0004423	7.81	0.000	.0025864	.0043202

Sargan test of over-identifying restrictions:

•

chi2(357) = 369.15 Prob > chi2 = 0.3175

Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -4.46 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.58 Pr > z = 0.5640

TABLE 19 - Elections and Revenue from Federal Government conditional on alignment of provincial and federal government

. regress fr	fr_1 fr_2 fr_	_3 grow lggp	ele_nal	ele_al,	robust	
Regression wit	th robust star	ndard errors			Number of obs F(7, 300) Prob > F R-squared Root MSE	
		Robust				
fr	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
fr_1 fr_2 fr_3 grow lggp ele_nal ele_al _cons	1.00824 2187173 .1128744 0507363 0002838 .0006585 .0165713 .016237	.1446013 .1986039 .0775378 .0249693 .0030505 .0058137 .0045323 .0300383	6.97 -1.10 1.46 -2.03 -0.09 0.11 3.66 0.54	0.000 0.272 0.147 0.043 0.926 0.910 0.000 0.589	.7236783 6095505 0397124 0998733 0062868 0107823 .0076522 0428754	1.292801 .172116 .2654612 0015992 .0057192 .0120993 .0254904 .0753494
. regress fr	fr_1 fr_2 fr_	3 arow laap	pbc nal	pbc al.	robust	
Regression wit					Number of obs F(7, 300) Prob > F	
fr	 Coef.	Robust Std. Err.	 t	 P> t	[95% Conf.	Interval]
			C	F> C		-
fr_1 fr_2 fr_3 grow lggp pbc_nal pbc_al _cons	2361745 .1252573 0509198 0005945 .0003441 .0042087	.1464464 .1991115 .0767807 .025696 .0031477 .0041343 .0032478 .0309912	6.90 -1.19 1.63 -1.98 -0.19 0.08 1.30 0.71	0.000 0.237 0.104 0.048 0.850 0.934 0.196	.722146 6280066 0258397 101487 0067889 0077919 0021827 0389573	1.298531 .1556575 .2763543 0003526 .0055998 .00848 .0106002 .083018
fr_2 fr_3 grow lggp pbc_nal pbc_al _cons	2361745 .1252573 0509198 0005945 .0003441 .0042087 .0220303	.1991115 .0767807 .025696 .0031477 .0041343 .0032478 .0309912	6.90 -1.19 1.63 -1.98 -0.19 0.08 1.30 0.71	0.000 0.237 0.104 0.048 0.850 0.934 0.196 0.478	.722146 6280066 0258397 101487 0067889 0077919 0021827	1.298531 .1556575 .2763543 0003526 .0055998 .00848 .0106002 .083018
fr_2 fr_3 grow lggp pbc_nal pbc_al _cons	2361745 .1252573 0509198 0005945 .0003441 .0042087 .0220303	.1991115 .0767807 .025696 .0031477 .0041343 .0032478 .0309912	6.90 -1.19 1.63 -1.98 -0.19 0.08 1.30 0.71	0.000 0.237 0.104 0.048 0.850 0.934 0.196 0.478	.722146 6280066 0258397 101487 0067889 0077919 0021827 0389573	1.298531 .1556575 .2763543 0003526 .0055998 .00848 .0106002 .083018
fr_2 fr_3 grow lggp pbc_nal pbc_al _cons . regress fr	2361745 .1252573 0509198 0005945 .0003441 .0042087 .0220303	.1991115 .0767807 .025696 .0031477 .0041343 .0032478 .0309912	6.90 -1.19 1.63 -1.98 -0.19 0.08 1.30 0.71	0.000 0.237 0.104 0.048 0.850 0.934 0.196 0.478 ele_al	.722146 6280066 0258397 101487 0067889 0077919 0021827 0389573 ele1_nal ele1_a Number of obs F(9, 298) Prob > F R-squared Root MSE	1.298531 .1556575 .2763543 0003526 .0055998 .00848 .0106002 .083018 al,robust = 308 = 99.72 = 0.0000 = 0.9074 = .03027

ele_al ele1_nal ele1_al _cons		.0048024 .0066132 .00539 .0300007	3.97 0.48 1.84 0.40	0.629 0.067	.0096253 0098146 0006863 0471411	.028527 .0162145 .0205283 .0709391
. *FE . xtreg fr fi	r_1 fr_2 fr_3	grow lggp e	le_nal el	le_al,fe		
Fixed-effects Group variable		ression			of obs = of groups =	
	= 0.4671 n = 0.8886 L = 0.6649			Obs per	group: min = avg = max =	14.0
corr(u_i, Xb)	= 0.6902			F(7,279 Prob > 1		34.93 0.0000
fr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	213446 1464361 0468293 0148224 0065903	.0173763 .0094936	13.46 -4.15 -3.73 -2.70 -1.56 -1.30 3.07 3.18	0.000 0.000 0.007 0.120 0.194 0.002 0.002	.5030687 3147332 2236835 0810345 0335106 0165518 .0039571 .1013932	
sigma_u sigma_e rho	.02122926	(fraction o	of variar	nce due to	o u_i)	
F test that a	ll u_i=0:	F(21, 279) :	= 15.9	94	Prob > 1	F = 0.0000
. xtreg fr fr			oc_nal ph			
Fixed-effects Group variable		ression		Number (Number (of obs = of groups =	
R-sq: within	0 4462					
	= 0.4463 n = 0.8889 L = 0.6600			Obs per	group: min = avg = max =	14 14.0
	n = 0.8889 L = 0.6600			Obs per F(7,279 Prob > 1	avg = max =) =	14 14.0 14
overal	n = 0.8889 L = 0.6600 = 0.6910	Std. Err.	t	F(7,279 Prob > 1	avg = max =) =	14 14.0 14 32.12 0.0000
overal: corr(u_i, Xb) fr fr_1 fr_2 fr_3 grow	<pre>h = 0.8889 L = 0.6600 = 0.6910 Coef. .5818032 2199583 1392907 0467731 015308 001471 .0015274 .2730504</pre>	.0449729 .0524566 .0400564 .0178366 .0096994 .0029299	12.94 -4.19 -3.48 -2.62 -1.58 -0.50	F(7,279 Prob > 1 P> t 0.000 0.000 0.001 0.009 0.116	avg = max = F = [95% Conf. .4932739 3232193 2181419 0818846 0344012	14 14.0 14 32.12 0.0000 Interval]

_____ F test that all $u_i=0$: F(21, 279) = 15.72 Prob > F = 0.0000. xtreg tr tr_1 tr_2 tr_3 grow lggp ele_nal ele_al ele1_nal ele1_al,fe 308 Fixed-effects (within) regression Number of obs = Number of groups = Group variable (i): id 22 14 R-sq: within = 0.5132Obs per group: min = 14.0 between = 0.9240avg = overall = 0.5583 max = 14 = 32.45 = 0.0000 F(9,277) $corr(u_i, Xb) = 0.5952$ Prob > F _____ tr | Coef. Std. Err. t P>|t| [95% Conf. Interval] ______ .5905748 .0411159 14.36 0.000 .5096354 .6715142 -.2586676 .0487209 -5.31 0.000 -.3545778 -.1627575 tr_1 tr_2 | tr_3 | -.1376176 .0378614 -3.63 0.000 -.2121502 -.063085 grow -.0641876 .0185117 -3.47 0.001 -.1006291 -.0277461 .0127871 lggp | -.0067447 .0099218 -0.68 0.497 -.0262765 ele_nal-.0058484.0054614-1.070.285-.0165995ele_al.0133248.00393123.390.001.005586ele1_nal-.0001588.0043569-0.040.971-.0087357 .0049027 .0210636 .008418 .0169255 ele1_nal |
 ele1_al
 .0095074
 .0037683
 2.52
 0.012
 .0020894
 .0169255

 _cons
 .2246446
 .0875908
 2.56
 0.011
 .0522164
 .3970729
 ele1_al _____ sigma_u .08014266 sigma_e | .02230825 rho | .92808936 (fraction of variance due to u_i) _____ F test that all u_i=0: F(21, 277) = 17.83 Prob > F = 0.0000 . *GMM . xtabond fr l(0).ele_nal ele_al, lags(1) pre(grow, lag(2,.)) pre(lggp, lag(2,.)) Arellano-Bond dynamic panel-data estimation Number of obs 286 = Number of groups = Group variable (i): id 22 Wald chi2(9) = 185.37 13 Time variable (t): y Obs per group: min = 13 avg = 13 max = One-step results _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] fr _____ fr LD .3738862 .0329054 11.36 0.000 .3093929 .4383795 arow .0229733 .0429132 0.54 0.592 -.061135 .0590242 .0435073 1.36 0.175 -.0262485 .0055715 .0174559 0.32 0.750 -.0286414 .1070815 D1 | LD .144297 .⊥44∠97 .0397844 T-2D lggp D1 | -.0627462 .0421046 -1.49 0.136 -.1452697 .0197773 .0443214 -0.84 0.401 -.1240821 .0394034 1.17 0.240 -.0309605 .0496545 LD | -.0372138 L2D .0462688 .123498 ele_nal D1 -.0064311 .0047781 -1.35 0.178 -.015796 .0029338 ele_al D1 .0082487 .0033091 2.49 0.013 .001763 .0147344

.002559 .0004199 6.09 0.000 .001736 .0033819 cons _____ _ _ _ _ _ _ _ _ _ _ Sargan test of over-identifying restrictions: chi2(357) = 346.63 Prob > chi2 = 0.6431 Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -5.19 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.36 Pr > z = 0.7156. xtabond fr l(0).pbc_nal pbc_al, lags(1) pre(grow, lag(2,.)) pre(lggp, lag(2,.)) Arellano-Bond dynamic panel-data estimation Number of obs = 286 Number of groups = Group variable (i): id 22 Wald chi2(9) = 179.93 Time variable (t): y Obs per group: min = 13 avg = 13 max = 13 One-step results _____ _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] fr -+-----. _ _ _ _ _ _ _ _ _ fr LD .3576535 .0327499 10.92 0.000 .2934649 .4218421 grow .0281981 .0423676 .0574934 .0432459 D1 | 0.67 0.506 -.0548409 .1112371 .0423676 0.87 0.506 -.0548409.0432459 1.33 0.184 -.0272671ן מיז .1422538 L2D .0023443 .0173902 0.13 0.893 -.0317399 .0364285 lqqp -.0715109 .0414332 -1.73 0.084 -.1527186 -.0241315 .0446573 -0.54 0.589 -.1116582 .0403942 .0393127 1.03 0.304 -.0366572 .0096967 D1 | LD | .0633951 L2D .1174456 pbc_nal D1 | -.0051577 .0027407 -1.88 0.060 -.0105293 .0002139 pbc_al .0035881 D1 | -.0004197 .0020449 | .0026318 .0004205 -0.21 0.837 -.0044275 6.26 0.000 .0018076 D1 | .003456 cons .0018076 _____ Sargan test of over-identifying restrictions: chi2(357) = 353.74 Prob > chi2 = 0.5387 Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -5.04 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.58 Pr > z = 0.5629. xtabond fr l(0).ele_nal ele_al ele1_nal ele1_al , lags(1) pre(grow, lag(2,.)) pre(lggp, lag(2,.)) 286 Arellano-Bond dynamic panel-data estimation Number of obs = Number of groups = Group variable (i): id 22 Wald chi2(11) = 211.37 Obs per group: min = Time variable (t): y 13 13 avg = 13 max = One-step results Coef. Std. Err. z P>|z| [95% Conf. Interval] fr

	+					
fr						
LD	.3721047	.0321465	11.58	0.000	.3090987	.4351108
grow						
D1	.0082227	.0420188	0.20	0.845	0741327	.090578
LD	.0460954	.042689	1.08	0.280	0375735	.1297644
L2D	.0019717	.0170738	0.12	0.908	0314923	.0354358
lggp						
D1	0592305	.0410833	-1.44	0.149	1397522	.0212912
LD	0157837	.0437323	-0.36	0.718	1014974	.0699301
L2D	.0202422	.039256	0.52	0.606	0566981	.0971825
ele_nal						
D1	0033791	.0047862	-0.71	0.480	0127598	.0060017
ele_al						
D1	.0122515	.0033712	3.63	0.000	.0056441	.0188589
ele1_nal						
D1	.007472	.0039281	1.90	0.057	0002269	.015171
ele1_al						
D1	.0126459	.0032706	3.87	0.000	.0062357	.0190561
_cons	.0025978	.0004122	6.30	0.000	.00179	.0034056

Sargan test of over-identifying restrictions:

chi2(357) = 347.76 Prob > chi2 = 0.6270

Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -5.30 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.04 Pr > z = 0.9697 TABLE 20 - Elections and Revenue from Provincial Taxes conditional on alignment of provincial and federal government

. *OLS . regress ptr ptr_1 ptr_2 ptr_3 grow lggp ele_nal ele_al, robust Number of obs = Regression with robust standard errors 308 F(7, 300) = 112.99Prob > F = 0.0000 R-squared = 0.8422 Root MSE = .00562 -----Robust [95% Conf. Interval] Coef. Std. Err. t P>|t| ptr ptr_1.9428694.14474136.510.000.65803261.227706ptr_2-.3730106.157066-2.370.018-.6821013-.06392ptr_3.2532924.07959033.180.002.0966665.4099184 grow-.0033364.0048706-0.690.494-.0129213.0062485lggp.002668.00097542.740.007.0007486.0045874le_nal.0002664.00093240.290.775-.0015684.0021012ele_al.0001219.00086050.140.887-.0015715.0018152_cons-.0178357.0074739-2.390.018-.0325436-.0031278 ele_nal ele_al | _____ . regress ptr ptr_1 ptr_2 ptr_3 grow lggp pbc_nal pbc_al, robust Regression with robust standard errors Number of obs = 308 F(7, 300) = 113.08Prob > F = 0.0000R-squared = 0.8425 Root MSE = .00561 ------Robust Coef. Std. Err. t P>|t| [95% Conf. Interval] ptr _____ ptr_1.9464471.14438516.560.000.66231131.230583ptr_2-.3815714.1550447-2.460.014-.6866842-.0764585ptr_3.258749.08039343.220.001.1005425.4169555 grow-.0039578.0048465-0.820.415-.0134952.0055795lggp.0026596.00097872.720.007.0007337.0045855pbc_nal-1.40e-06.0010759-0.000.999-.0021186.0021158pbc_al-.0004472.0004581-0.980.330-.0013488.0004544_cons-.0177302.0074854-2.370.018-.0324607-.0029997 _____ . *FE . xtreg ptr ptr_1 ptr_2 ptr_3 grow lggp ele_nal ele_al,fe Fixed-effects (within) regression Number of obs = 308 Number of groups = Group variable (i): id 2.2 R-sq: within = 0.5246Obs per group: min = 14 between = 0.907014.0 avg = overall = 0.7956max = 14 F(7,279) 43.99 = $corr(u_i, Xb) = 0.5065$ Prob > F = 0.0000 _____ ptr | Coef. Std. Err. t P>|t| [95% Conf. Interval] _____

----+----+-----

ptr_1 ptr_2 ptr_3 grow lggp ele_nal ele_al _cons	.7615601 3799494 .1011669 006 .0077006 .0001572 .0001693 0515562	.0481035 .0563961 .0485239 .0044526 .0023316 .0012493 .0008805 .0197718	15.83 -6.74 2.08 -1.35 3.30 0.13 0.19 -2.61	0.000 0.000 0.038 0.179 0.001 0.900 0.848 0.010	.6668682 4909653 .0056476 0147649 .0031108 002302 001564 090477	.8562519 2689334 .1966863 .002765 .0122904 .0026164 .0019026 0126353
sigma_u sigma_e rho	.0046232 .00521579 .43998939	(fraction o	of varian	ice due t	o u_i)	
F test that al	ll u_i=0:	F(21, 279) =	= 3.2	29	Prob > 1	F = 0.0000
. xtreg ptr p	ptr_1 ptr_2 pt	tr_3 grow lg	gp pbc_na	l pbc_al	,fe	
Fixed-effects Group variable		ression		Number Number	of obs = of groups =	308 22
	= 0.5253 n = 0.9071 L = 0.7959			Obs per	group: min = avg = max =	14 14.0 14
corr(u_i, Xb)	= 0.5064			F(7,279 Prob >		
ptr	Coef.	Std. Err.	 t	P> t	[95% Conf.	Interval]
ptr_1 ptr_2 ptr_3 grow lggp pbc_nal pbc_al _cons sigma_u sigma_e rho F test that al . *GMM . xtabond ptr lag(1,.))	l(0).ele_nal	ele_al , lag	= 3.2 gs(2) pr	e(grow,	Prob > 1	
Arellano-Bond Group variable		l-data estima	ation		of obs = of groups =	
				Wald ch	i2(8) =	235.98
Time variable One-step resul	-			Obs per	group: min = avg = max =	14
ptr					[95% Conf.	
ptr	.6402771	.0477628	13.41	0.000	.5466637 4499151	.7338905

	D1	.0076223	.0106768	0.71	0.475	0133037	.0285484
	LD	1	.0045843	4.74	0.000	.0127449	.0307151
lggp		.021/3	.0013013	1.71	0.000	.012/119	.030/131
1995	D1	0107819	01059	-1.02	0.309	0315378	.0099741
				-1.02			
	LD	0010354	.0102877	-0.10	0.920	021199	.0191281
ele_nal							
	D1	.0008757	.0010659	0.82	0.411	0012133	.0029648
ele_al							
	D1	0002924	.0008692	-0.34	0.737	0019959	.0014111
cons		.0007099	.0001029	6.90	0.000	.0005083	.0009115
Cargan t	oat of	E over-identif	wing reatri	ationai			
Saryan t					0 0485		
	ch12	(365) = 337.	35 Prob	> chi2 =	= 0.8475		
Arellano	-Bond	test that ave	rage autoco	variance	in resid	uals of order	1 is 0:
	н0: 1	no autocorrela	tion z =	-7.37	Pr > z =	0.0000	
Arellano						uals of order	2 ig 0:
ni ci i ano		no autocorrela					2 10 00
	HU. I	io autocorreia	z =	0.33	Pr > z =	0.7379	
	_					_	_
		l(0).pbc_nal	pbc_al , la	gs(2) pı	re(grow,	<pre>lag(1,.)) pre</pre>	(lggp,
lag(1,.))						
Arellano	-Bond	dynamic panel	-data estim	ation	Number	of obs =	308
		e (i): id	. data cotin	ación		~	
Group va	riabie	= (I)· IQ			nulliper	of groups =	22
					Wald ch	.i2(8) =	237.61
Time var	iable	(t): y			Obs per	group: min =	14
					1	avg =	14
							14
						IIIax -	14
One-step	resu.						
			·				
ptr					P> z	[95% Conf.	Interval]
		+					
ptr							
-	T'D	.6454538	.0474125	13.61	0.000	.552527	.7383806
	L2D		.0482875	-7.49			
			.0402075	-7.49	0.000	1001/00	20/1090
grow							
	D1	1			0.432		.0292311
	LD	.0224597	.0046561	4.82	0.000	.0133338	.0315856
lggp							
551	D1	0128237	.0105429	-1.22	0.224	0334874	.00784
	LD	.0010048	.0102152	0.10		0190166	.0210261
	Шυ	.0010048	.0102152	0.10	0.922	0190100	.0210201
pbc_nal							
	D1	.0000999	.0006629	0.15	0.880	0011993	.0013992
pbc_al							
	D1	0005707	.0005444	-1.05	0.295	0016377	.0004963
_cons			.0001017			.0004963	.0008948
_00118			.000101/	0.01	0.000	.0001000	.00000740
sargan t		E over-identif					
	chi2	(365) = 338.	36 Prob	> chi2 =	= 0.8380		
	01111			-			
	01111			-			

Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -7.19 Pr > z = 0.0000Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.02 Pr > z = 0.9852

.