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Abstract. In this paper we develop a theoretical model ofbglolanguage complexity, based on a
constrained optimization approach. We assume #émafuiage is a system that chooses different levels o
complexity for its different domains (i.e., phongyo morphology, syntax, vocabulary) in order to imin
mize a global complexity function subject to an regsivity constraint (which also depends on non-
linguistic variables related to geographic, phylugfee and demographic factors). The model is itaisd
with the aid of a dataset based on a short temslated into 50 languages, for which global comipjeis
measured using a version of Kolmogorov complexityat dataset is used to run simultaneous-equation
regressions, which represent different relatiorsbgtween language complexity measures.

Keywords: language complexity, optimization, Kolmogorov etexity, simultaneous-equation
regression.

1. Introduction

The literature about global language complexitseiatively vast and diverse. On one hand, there
is a considerable amount of theoretical literathia has dealt with topics such as the definition
of language complexity (e.g., Kusters 2003, Miesta?®08, Culicover 2013) and its deter-
minants (e.g., McWhorther 2001, BalasubrahmanyaNag&anan 2002, Hawkins 2004, Trudgill
2009). On the other hand, there is a good deahydirecal work that has either analyzed the
relationship between complexity measures (e.gtl&N&995, Fenk-Oczlon & Fenk 2005, Shosted
2006, Sinneméaki 2008) or the relationship betwdersé measures and other (non-linguistic)
variables (e.g., Hay & Bauer 2007, Atkinson 2011).

The theoretical literature has also developed itsocalesuming that language is a system,
and that its behavior is guided by a hidden prowedssh tries to achieve some desired objective.
Among the main contributions to that literature @@ mention Beckner et al. (2009), which
states that language is a complex adaptive systhosevstructures emerge from interrelated
patterns of experience, social interactions anchitvg@ mechanisms. Another group of studies in
a similar line are the ones related to the conoépsynergetic linguistics” (e.g., Kéhler 2005),
for which language is a self-organizing and seffutating system whose properties come from
the interaction of several constitutive, forminglaontrol requirements.

Part of that theoretical literature has explotesl possibility of explaining the behavior of
the language system through an optimization moelg.,(Ke, Ogura & Wang 2003, Ferrer-i-
Cancho 2014, Futrell, Mahowald & Gibson 2015). Heare we have not found any example
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from that literature in which the model used isedily related to complexity minimization, and

this is probably the main contribution of the cuatrarticle. The model that we develop here is,
nevertheless, well known in other social scienceh s economics (e.g., Chiang & Wainwright
2005), where cost minimization is a standard apgroa

The main challenge for using a model like thipisbably the fact that global language
complexity is a rather indefinable concept, andsittherefore very hard to measure. The
theoretical literature that has sought to find hsstelated to its determinants (e.g., Hawkins
2004, Culicover 2013) has in general ended up thighconclusion that language complexity had
better be studied using concepts that are appéctblspecific situations (e.g., markedness,
economy, efficiency). In the empirical literatutegwever, there is a measure derived from in-
formation theory that could represent the globamplexity of a text. That measure is
Kolmogorov complexity (Kolmogorov 1963), and it hasen used by some authors in different
linguistic settings (e.g., Juola 2008, Ehret & Seosényi 2015).

Kolmogorov complexity can be defined as the lergjtthe smallest algorithm required to
generate a certain string of characters (Li & Wiab997). Although in general it is formally
incomputable, it can be approximated by the sizexa @ompressed text file that comes from
another (original) file. The ratio between the sioé the two files, therefore, can be seen as an
empirical measure of the global complexity of te&ttto which those files refer to, since the
possibility of compressing the original file intosmaller one is directly linked to a series of
characteristics (e.g., letter inventory, letter et#pon, morpheme repetition, word repetition,
clause length) that signal the complexity of the.te

In the following pages we will develop a modeMhich we assume that global language
complexity is measurable (for example, by computimg Kolmogorov complexity of a repre-
sentative text) and that it depends on severalgbarbmplexity variables (which can also be
measured). We will also assume that those padmlptexity variables are somehow “chosen” by
the language under analysis in order to minimizsbagl complexity, but that they are also in-
fluenced by non-linguistic variables related to lgiggnetic, geographic and demographic factors.
Those factors can also be important to determinguage “expressivity”, i.e., the capacity of a
language to discriminate between possible altareatferents for a certain expression (Kirby et
al. 2015). That expressivity will also depend oa thfferent language domains involved in the
production, transmission and decoding of linguistiessages (e.g., phonology, morphology, syn-
tax and vocabulary).

Our model will be illustrated with an example bdh®m data from a short text for which
we have translations to 50 different languages.hWifitose translations we compute several
complexity measures (including Kolmogorov complgxiand build a dataset in which those
measures are seen as the variables of the empieicsabn of our model. As the languages belong
to different families and regions, and are spokerdifferent numbers of people, we can make
use of that diversity to build three additionaltégorical) variables. With all that we proceed to
estimate the parameters implicit in our theoretioaddel, using a statistical procedure of
simultaneous-equation regressions known as “thiagedeast squares” (Zellner & Theil 1962).

2. Theoretical model

Let us assume that we can measure the global crityptef a language by a numerical con-
tinuous variable “g”. Let us suppose, moreovert tha value of that variable is an increasing
function “C” of several partial complexity variaBleelated to different language domains (e.qg.,
phonology, morphology, syntax, vocabulary). Letnasv assume that those partial complexity
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variables are themselves numerical and continuen$ can be associated to “g” in the following
way:
g=C(p, m, s, V) (1)

where “p”, “m”, “s” and “v’ may represent, for exae, the phonological, morphological,
syntactic and lexical complexity of language.

In a context like this, global complexity can bees as a measure of the effort that
speakers have to exert in order to use the languader analysis. Therefore, the smaller the
value of “g”, the less costly a language is to keduby its speakers. But as language has to
express meanings associated to its different coemen(i.e., to its words, clauses, texts, etc.),
then its partial complexity levels can also be fposly associated to its expressivity (through a
function “E”, which will be increasing in “p”, “m”s” and “v”).

Following the ideas that appear in the literatab®ut language as a complex adaptive
system, we can think of the process of languagdéuBen and transmission as an attempt to
choose optimal levels for “p”, “m”, “s” and “v”, wbh simultaneously minimize “C” and
maximize “E”. But this trade-off between opposingjextives can be influenced by other vari-
ables, such as phylogenetic, geographic and demloigrdactors (“pg”, “gg”, “dg”). One
possible way to introduce those factors is to ssppihat they operate as a determinant of the
level of expressivity that a language must possissugh a restriction “R” (which integrates
them into a single function). If that is the case, can think of an “expressivity constraint” that
can be written in the following way:

R(pg, 99, dg) = E(p, m, s, V) ).

If “R” is a constraint for the level of “E”, andsi determinants are exogenous to the
language system, then our problem of choosing pignal levels of “p”, “m”, “s” and “v” is
somehow simplified, since it can be converted iom@ where we minimize “g” subject to the
constraint stated in (2). If “C” and “E” are botbrdinuous and differentiable in “p”, “m”, “s” and
“v”, that problem can be solved using a standartihapation technique known as the “Lagrange

method”. This method implies writing a Lagrangeandtion “L”, which is defined as follows:

L =C(p, m, s, v) #:[R(pg, 99, dg) — E(p, m, s, V)] )

and then finding the values of “p”, “m”, “s” and ™vfor which the corresponding partial
derivatives of “L” are equal to zero. These eqieditare the “first-order conditions” of the
problem, and can be written as:

OL_C _HfE - 4 =10¢/%p) @)
p op ~ op (0E/ap)
oL _oC_,HE_, - ) = 9C/om) (5)
om om = om (0E/0m)
oL_oC_,9E_, — /1=(6C/as) (6)
ds  0s 0s (0E/0s)
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In both the Lagrangean function and in its firsler conditions there is an additional “artificial
variable” (), which is known as the “Lagrange multiplier” dfet problem’s constraint. This
variable plays the role of converting the unitsmhnich the constraint is expressed (which in our
case would be “expressivity units”) into the unitiswhich the objective function is expressed
(i.e., complexity units). Due to that conversiohg tfirst-order conditions can be stated as
equations that relate infinitesimal changes in dexify with infinitesimal changes in expres-
sivity, and establish optimal ratios between thadsanges.

Another role that the Lagrange multiplier playgasinclude the fulfillment of the con-
straint as an additional first-order condition lo¢ problem. This is due to the fact that, in otder
minimize “C” subject to “R = E”, we also need that:

oL
3, = R(P9.9g.po)~ E(pmsy)=0 —  R(pg,99.dg) = E(p.m,s,v) (8)

and this last equation is included, together withations (4) to (7), in a system whose solution is
the one that determines the optimal values of “p”, “s” and “v” (and “1”).*

One relatively straightforward way to solve thystem of equations is to use (4), (5), (6)
and (7) to find the optimal relationships betweawshepair of partial complexity variables. By
doing that, it is possible to express any compyexariable as a function of any other complexity
variable (e.g., “m = m(p)”, “s = s(p)”, “s = s(m)&tc.). Making use of that possibility, we can
replace those functions into (8), and write sonmgthike the following:

R(pg,99.po) = E(p.m(p),s(p),v(p))
R(pg.9g.po) = E(p(m),m,s(m),v(m))

R(pg,99,po) = E(p(s),.m(s),s,V(S))
R(pg,99,p0) = E(p(v),m(v),s(v),v)

p=p(pg, 99, dg)  (9)
m = m(pg, gg, dg) (10)
s=s(pg, g9, dg)  (11)
v=v(pg, gg,dg) (12).

Vbl

What equations (9) to (12) give us is actually sledution to our optimization problem. Each
partial complexity variable is expressed as a fioncof the different phylogenetic, geographic
and demographic factors that influence the langsygéem under analysis, and can be inserted
into equation (1) in order to get the minimum lewélglobal complexity which is compatible
with the fulfillment of the constraint stated in uzgion (2). By doing that, we obtain the
following:

g = C(p(pg,99,dg), m(pg,9d,dg), s(pg,99.dg), \iogig)) (13)

which is an expression in which “g” is equated ttuaction that will ultimately depend on the
actual levels of the non-linguistic variables. Tlhole process implied by this optimization
model can therefore be represented by a grapthé&ene that appears in Figure 1.

As we can see, the idea behind this model istti@mnon-linguistic factors (i.e., phylo-
genetic, geographic and demographic), which infbeethe environment where language systems

! For a more complete explanation of this procedsee,Sundaram (1996), chapter 5.
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operate, have an effect on the way in which thgstems choose the characteristics of their
different domains (i.e., phonology, morphology, tsynand vocabulary). But as those charact-
eristics are determined simultaneously, then tingolied levels of partial complexity are related
to each other, and they all have an impact on liblgagjcomplexity of the system.

Phylogenetic Phonological
Factors Complexity
Morphological
Complexity
Geographic Language / \ Global
Factors > System - Complexity
\ Syntactic P
Complexity
Demographic
Factors Lexical
Complexity

Figure 1. Language complexity model

3. Description of the data

In order to apply the theoretical model describvethe previous section to an empirical example,
we will use the same dataset that was previouslgl@yad in Coloma (2015, 2016), whose
source is a series of articles published in IPA9@9%and in theJournal of the International
Phonetic Associatiant consists of a sample of 50 languages for winvehhave a version of the
same text (the fable known as “The North Wind amel $un”), on which we define different
phonological, morphological, syntactic and lexigaasures of complexifyThose measures are
the following:

Phonological inventorylflV): It is an index that consists of the sum of thenhar of
consonant and vowel phonemes in each language fietbthy the number of distinctive tones
that such language possesses, and by the possiblenee of distinctive levels of stress. This
index is defined as:

INV = Consonants + Vowels*(Tones+Stress) ;

whereConsonantsVowelsandTonesare numerical variables, afdresss a binary variable that
takes a value equal to one when stress is distengtia certain language (and zero otherwise).

Phoneme/word ratioPWR: It is defined as the ratio between the total nembf
phonemes of “The North Wind and the Sun” text iohelanguage, and the corresponding total
number of words in that text.

Word/clause ratioWCR): It is defined as the ratio between the total nemdf words of
“The North Wind and the Sun” text in each languaged the corresponding total number of
clauses in that text.

%2 The list of languages and their complexity le\ais reported in the appendix.
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Type/token ratioTTR): It is defined as the ratio between the numbedifiérent words
(types) of “The North Wind and the Sun” text in rdanguage, and the total number of words
(tokens) in that text.

To measure the global complexity of the texts wratelysis we will use Kolmogorov
complexity KC). This will be defined as the ratio between thee 9f a compressed file (which
contains the “The North Wind and the Sun” in a @erianguage) and the size of the original
version of that file, both of them measured in byt€ompression was made using the program
“7zip”, version 4.32.

Another set of variables that we need for our eitgli exercise is the one related to non-
linguistic factors. This consists of one geograplaciable, one phylogenetic variable and one
demographic variable, all of which are categoriddie values of the geographic variable re-
present 10 different regions of the world, and eaththem encompasses between 4 and 6
languages from our sample. The regions are Nortlerfoa, South America, Northern Europe,
Southern Europe, Northern Africa, Southern Afridéest Asia, Central Asia, East Asia and the
Pacific.

Additionally, the 50 languages in the sample bglém 24 different families, some of
which are represented by more than one languageselfamilies are Indo-European (IE, 13
languages), Afro-Asiatic (AA, 5 languages), Nigaesrgo (NC, 4 languages), Sino-Tibetan (ST,
3 languages), Altaic (Alt, 3 languages), AustroarsjAus, 2 languages), Nilo-Saharan (NS, 2
languages), Oto-Manguean (OM, 2 languages), plus lammguages that can generically be
referred to as “Amazonian” (Amaz). The remaining lhfhguages are grouped into another
category named “Other families”.

The demographic variable, finally, divides langesgnto three categories: “large lan-
guages”, “medium languages” and “small languagastdrding to the number of speakers that
the different languages possess). The group oé lemgguages is constituted by the following 12
cases: Mandarin, English, Spanish, Hindi, Arabiortiyuese, Russian, Japanese, Bengali,
German, French and Malay. Correspondingly, the dhat belong to the category of “small
languages” (less than 1 million speakers) are thkowing: Apache, Arrernte, Basque,
Chickasaw, Dinka, Irish, Mapudungun, Nara, Saha@endawe, Seri, Shiwilu, Tausug, Trique
and Yine. The remaining 23 languages in the sarmgleonsidered to be “medium-sized”.

The main descriptive statistics of this databasesammarized in Table 1, in which we
find the average values tflV, PWR WCR TTRandKC for each group of languages. In that
table we can see, for example, that East Asian @t@Manguean languages tend to be
phonologically more complex, and that Amazoniargleages tend to have higher phoneme/word
ratios. The higher word/clause ratios, conversabpear in Indo-European languages (especially
in the Northern European ones), while the highgst/token ratios seem to occur in West Asia
and in Sino-Tibetan languages. Finally, Kolmogoommplexity is higher in Southern Europe
and East Asia, and in Sino-Tibetan and Altaic |aggs.

Another set of descriptive statistics that coulel Useful to analyze our complexity
measures is the one formed by the correlation iwoefts between the different variables. Those
coefficients are reported in Table 2, in which vee shat there are several partial complexity
measures that display relatively significant negatiorrelation coefficients between themselves.
The most important one is the coefficient betwB&MRandWCR(r = -0.7265), followed by the
one betweeWCRandTTR (r = -0.5046), and by the one betwddlyY andPWR((r = -0.3720).
Conversely, Kolmogorov complexity exhibits relativdarge positive correlation coefficients

% To see which language belongs to each familyfteeéable included in the appendix.
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with TTRandINV (“r = 0.3639” and “r = 0.2543"), and small negaticorrelation coefficients
with PWRandWCR(“r = -0.1395” and “r = -0.1108").

Table 1
Descriptive statistics for complexity variables
Category / Variable INV PWR WCR TTR KC
Northern Europe 4420  3.964 12.53 0.6336] 0.7203
Southern Europe 33.60 4.086 11.93 0.6105 0.7490
Northern Africa 42.75 4.787 11.04| 0.6417| 0.6978
Southern Africa 49.00 4.469 10.98 0.6296| 0.7002
North America 49.83 5.115 9.22 0.5938| 0.6851
South America 25.00 7.076 7.58 0.6541| 0.6357
West Asia 33.5( 5.854 9.18 0.7634| 0.7417
Central Asia 36.00 5.060 11.33] 0.7067| 0.6573
East Asia 68.50 4.709 10.32| 0.6865| 0.7911
Pacific 26.25 5.530 8.80 0.5838| 0.6450
Indo-European 38.38 4.259 12.28| 0.6555| 0.7134
Afro-Asiatic 39.20 5.277 10.40| 0.7164| 0.6956
Niger-Congo 43.0( 4.298 11.15| 0.6231] 0.7231
Sino-Tibetan 66.00 5.128 8.23 0.7469| 0.8291
Altaic 31.00 6.009 8.52 0.7132| 0.8103
Austronesian 22.00 5.592 9.63 0.5489| 0.6252
Nilo-Saharan 46.50 4.157 11.76] 0.5469| 0.6792
Oto-Manguean 68.00 3.557 10.18 0.6173 0.7749
Amazonian 23.00 8.457 6.91 0.6904| 0.5874
Other families 45.50 5.361 9.44 0.6302| 0.6787
Large languages 37.67 4.439 11.15 0.6507 0.7153
Medium languages 44.48 5.048 10.30| 0.6873| 0.7315
Small languages 42.60 5.438 9.65 0.5992| 0.6661
Average 42.28 5.019 10.31] 0.6521| 0.7080
Table 2
Correlation coefficients between complexity variales
Complexity variable INV PWR WCR TTR KC
Phonological inventory 1.0000
Phoneme/word ratio -0.3720 1.0000
Word/clause ratio 0.2136 -0.7265| 1.0000
Type/token ratio -0.0428 0.5581| -0.5046/ 1.0000
Kolmogorov complexity 0.2543 -0.1395| -0.1108| 0.3639| 1.0000
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4. Empirical estimation

The dataset that we described in section 3 cansbd to perform an estimation of the model
developed in section 2. In order to do that, wst fireed to define which empirical variables will
be used to approximate the theoretical variableh®fmodel, and which functional forms can
approximate the relationships that that model digpl

One obvious possibility is to usdV, PWR WCRandTTR as proxies for “p”, “m”, “s”
and “v”, respectively. An easy way to use them titevexpressions for the functions “C” and
“E” is to suppose that the first of those functiosdinear, and that the second one is log-linear.
This implies that both functions will depend onrfeariables and four parameters each, and they
can be written as:

C=cl:INV + c2:-PWR + c3-WCR + c4-TTR (14) ;
E =al:In(INV) + a2:In(PWR) + a3:In(WCR) + a4-Ii[) (15) ;

wherecl, c2, c3andc4 are the parameters of the complexity function, ahd2, a3 anda4 are
the parameters of the expressivity function.

In order to perform a statistical estimation of’/'@ is straightforward to assume that
global complexity can be approximated by the vati&C. This implies that parametee§, c2,
c3 andc4 are going to be the results of a procedure in WKIC is regressed as a linear function
of INV, PWR WCRandTTR The estimation of “E”, conversely, is consideyabiore cum-
bersome, since we do not have any empirical vaitidt can easily be associated to a measure
of expressivity. What we can do, instead, is tokwsith the first-order conditions of the theoret-
ical optimization problem described in section & arite them in the following way:

0C/dp _ 0C/om _ 9C/ds _ oC/ov . ek _ 2 _ a3 _ A
0E/dp OE/0m OE/ds OE/dv al/INV  a2/PWR a3WCR a4/TTR

(16) .

As those relationships imply equality signs, ip@ssible to write equations that relate complexity
variables in pairs. Those pairs are the following:

INV——GC—EPWR NV =2 B ver: NV =2 TTR  (17)
a2 a3 cl ad cl
PWR-—E—IC—lEIINV PWR——GC—3NVCR PWR——G%EI'TR (18)
wer=2FL oy - WCR——BC—EIPWR wer=2F 1R (19)
al c3 a2 c a4 c3
TTR——ElC—:LDINV TTR——ZBC—DPWR TTR——E)C—3NVCR (20) .
a

The equations that appear in (17), (18), (19) &) €an also be added and reduced to four
regression equations, so we end up with a systentHis:
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INV [:B_—QC—DPWR+_QC_SNVCR+EQ%UTR 21)

a2 a3 c ad

PWRD3 _—E-F—lqu +§G°—SNVCR+2Q°_4UTR 22)
al c a3 ¢ ad

wers =2 F ony +§BC—EIPWR+—GO—4EI'TR (23)
al c3 a2 c3

TTRE= 2 ony + & GC—EIPWR+ GC—SENCR (24) .
al c4 a2 c4d

Another set of equations from the theoretical mdbat can be empirically estimated is the one
that corresponds to the system formed by (9), ((1®)) and (12). One simple way to do it is
working with the three non-linguistic variables deised in section 3, and regressing each partial
complexity variable INV, PWR WCRand TTR against those categorical variables. What we
obtain is something like this:

INV = blr + blf + blp ; PWR = b2r + b2f + b2p (25)
WCR =b3r+b3f+b3p ; TTR = b4r + b4f + b4p (26)

where the differenbij coefficients represent measures of the effecteébhah category (i.e., each
region, family and population size group) has ongartial complexity variables.

If we estimate the system of equations represent¢d5) and (26), using ordinary least
square$,we obtain a set of coefficients that can be usdalitld “instrumental variables”. Those
instrumental variables are created to replace tiggnal partial complexity variables in a new set
of regressions, and we will label them 188/, PWR, WCR and TTR. They are formed by the
fitted values of the regressions for equations/(26), and their role is to represent the optimal
values of INV, PWR WCR and TTR in (21), (22), (23) and (24) (without including yan
endogenous elements that could make our estimbiésed or inconsistent).

The new set of regression equations can theremreritten in the following way:

KC =cl1-I\V + c2-PFR + c3-WR + c4- TR (27)
INV-3 = c5-F/R + c6-WR + c7-TR (28)
PWR-3 = (1/c5)-IN + (c6/c5)-WR + (c7/c5)- TR (29)
WCR-3 = (1/c6)-IN + (c5/c6)-B¥R + (c7/c6)- TR (30)
TTR-3 = (1/c7)-IN + (c5/c7)-BVR + (c6/c7)-WR (31)

where €5 = (al-c2)/(a2-cI) “c6 = (al-c3)/(a3-cl)and “c7 = (al-c4)/(ad-cl) Their results are
reported in Table 3, and were obtained using tetage least squares.

* This estimation was performed using the compugiragram EViews 3.1. The same software was used
for the other regressions whose results are regportehis paper.
® For an explanation of the logic behind this praredsee Kennedy (2008), chapter 10.
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Table 3
Three-stage least square regression results

Parameter Coefficient Std. Error t-statistic Probahlity

cl 0.001300 0.000799 1.628061 0.1048
c2 0.026399 0.013069 2.019964 0.0445
c3 0.025719 0.005237 4.911356 0.0000
c4 0.392505 0.164358 2.388111 0.0177
c5 9.087457 0.588355 15.445540 0.0000
c6 4.342966 0.223163 19.461000 0.0000
c7 68.872710 3.391096 20.309870 0.0000

With the values that we have found, we can diyecbtimpute the parameters of the com-
plexity function €1, c2 c3andc4). Using an indirect calculation, we can also cotapualues for
the parameters of the expressivity functiad, (a2 a3 anda4). In particular, if we set those
values so that they add up to one, we get the icaefts of equation (33), together with the
complexity function written as equation (32).

C = 0.0013-INV + 0.026399-PWR + 0.025719-WCR 92585 TTR (32)
E = 0.0821-In(INV) + 0.1836:In(PWR) + 0.3742-In(R)G 0.3601-In(TTR)  (33).

20

16

12 A

10.31

Words/Clauses

0 2 4 5.02 6 8 10

Phonemes/Words

Figure 2. Iso-expressivity and iso-complexity cune

Equations (32) and (33) can be represented inagraiin like the one that appears in
Figure 2, in which we have drawn one particularecat“E” (the one that corresponds to the
expressivity levels implied by the average valuésidv, PWR WCRand TTR and three
particular cases of “C” (then one in which thatdtion equates the average leveKd, plus two
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additional ones). As we can see, this diagram psctied in the space ®f\WRvs. WCR and in it
we find that our iso-expressivity curve is tangenthe iso-complexity line for whic® = 0.708
(which is the average level BIC in our sample). This means that such level of glabmplexity
is the minimum one that could be obtained if weunegjthat a language has the expressivity
implied by the average levels MV, PWR WCRandTTR Moreover, in that tangency point we
see that the values fWRandWCRare the ones that correspond to the average vafubsse
variables (i.e.PWR = 5.02andWCR = 10.3}

If we make a small variation in our model, we caso use it to estimate partial
correlation coefficients between the complexityiailes. In order to do that, we have to write
equations (28)/(31) in the following way:

INV-3 = ¢5-FP/R + ¢6-WR + c7-TR (34)
PWR-3 = ¢8-I\ + c6:c8-WR + c7-c8- TR (35)
WCR-3 = ¢9-IN + ¢5:c9-F/R + c7-¢c9- TR (36)
TTR-3 = ¢10-N + ¢5-¢c10-PR + ¢6-¢10-WR (37)

where we assume the8, c9 andcl0are not necessarily equal X5 1/c6 andl/c7. Let us now
define the correlation coefficients between ouraldes using the following formula:

Fy ==y 22 (38)

wherer,y is the partial correlation coefficient betweeniahlesx andy, ¢y, is the regression
coefficient that corresponds §dn the equation where the dependent variabke3dsandcy is the
regression coefficient that correspondg to the equation where the dependent variabje38

Table 4
Partial correlation coefficients between complexityariables
Complexity variable INV PWR WCR TTR
Phonological inventory 1.0000
Phoneme/word ratio -0.2322 1.0000
Word/clause ratio -0.3720 -0.2592 1.0000
Type/token ratio -0.3947 -0.2750 -0.4406 1.0000

Using the results obtained in our new set of regjoms, we used equation (38) to
calculate the coefficients reported in Table 4. &lthem turned out to be statistically significant
at a 1% probability level, and the largest absohkakie is the one that corresponds to the
relationship betweeWWCRandTTR Note also that some variables that display paspiroduct-
moment correlation coefficients in TablelRY vs. WCR andPWRvs. TTR are now negatively
related. This is consistent with the idea thatiphdomplexity measures are linked through the
interaction between functions “C” and “E”, and musérefore be negatively correlated in all
cases.

® For an explanation of the logic behind this foragidee Prokhorov (2002).
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5. Concluding remarks

The two points that we believe are more importanthis paper are related to the use of the
proposed optimization model, and to its implemeaotathrough the concept of Kolmogorov
complexity. On one hand, we think that our modehis elegant theoretical approach to the
general problem of language as a self-regulatetesysand that it is also good to include the
interaction that the elements from that system fmaye with external forces such as phylo-
genetic, geographic and demographic factors.

On the other hand, we see the concept of Kolmagoomplexity (and its approximation
through the ratio between the sizes of a comprefigednd an original text file) as a promising
empirical approach to global language complexitye@o the fact that it is a measure that can be
applied to different texts, it can also be coregdatio other (partial) complexity measures for those
texts, which can in turn be seen as their intedestrminants.

The logic behind our results is that the relatiopsbetween the different complexity
measures can be interpreted as the outcome ofcagzon which the language system defines
certain levels of partial complexity in order tommize a global complexity function, subject to
an expressivity constraint. Using particular fuantl forms for those relationships, we were able
to illustrate them through various parameters @& estimated in a simultaneous-equation
regression procedure. In that procedure, we aled ugormation from non-linguistic variables
that define each observation in our sample (itee,region and family to which each language
belongs, and its size in terms of number of spesker

However, the empirical illustration included inighpaper is not intended to test the
accuracy of the proposed model to fit actual disapurpose is to show how the theoretical
variables of the model can be interpreted as obb&vvariables, and how those observable
variables can be used to figure out plausible “skagfor the functions postulated in the
theoretical model. Of course, the model could dlsaised, in a different setting, to be contrasted
with another theoretical alternative that providedifferent explanation for language complexity
phenomena.

Another possible use of the optimization modelaleped in this paper has to do with
testing different definitions for the global comyky variables (apart from Kolmogorov com-
plexity). It could also be possible to use the emal version of the model to test different
functional forms for the complexity and expresgivilinctions, since our linear and logarithmic
versions of those functions are just one, relagiemple, alternative to write the relationships
embedded in the theoretical model. That alternatima certainly be contrasted with other
additional specifications.

Finally, the model could be applied in differemntexts that were not necessarily cross-
linguistic. An alternative sample to the one usedld@d consist of texts written in the same
language, but belonging to different authors, onrgs, or styles, or time periods that cover
different stages in the evolution of language.
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Appendix
Dataset from “The North Wind and the Sun”

Language Family Region Size INV PWR WCR TTR KC
Ambharic AA NAfrica Medium 41 6.958 11.88 0.7263
Apache Other NAmerica] Small 57 4.907 7.87 0.6017 6167
Arabic AA WASsia Large 35 5.741 9.44 0.7647 0.6962
Arrernte Other Pacific Small 35 5.892 6.17 0.6351 0.6150
Basque Other SEurope Small 33 4.831 11.86 0.6506 0.7690
Bemba NC SAfrica Medium 46 5.506 9.88 0.7468 0.7138
Bengali IE CAsia Large 36 4.371 10.50 0.7143 0.7154
Berber AA NAfrica Medium 37 3.873 8.78 0.7468 0.8087
Burmese ST EAsia Mediun 70 7.143 6.00 0.9048 0.9195
Cantonese ST EAsia Medium 85 3.857 9.10 0.6484 0.7739
Chickasaw Other NAmericd  Small 34 8.316 5.70 0.6667 0.63716
Dinka NS NAfrica Small 48 4.000 13.70 0.5474 0.7030
English IE NEurope Large 35 3.389 12.56 0.557H 0.6945
French IE SEurope Large 33 3.176 12.00 0.5926 0.7205
Georgian Other WAsia Mediun 3B 6.058 7.67 0.8116 7781
German IE NEurope Large 53 4.14y 10.90 0.65[14 0.6972
Greek IE SEurope Medium 28 4.165 12.78 0.5478 0.7046
Hausa AA SAfrica Medium 48 3.904 13.83 0.5241 0.6094
Hebrew AA WAsia Medium 35 5.910 8.09 0.8202 0.74Q0
Hindi IE CAsia Large 45 3.766 15.50 0.6290 0.6252
Hungarian Other NEurope Medium 39 4.310 10.00 0.6300 0.7418
Igbo NC SAfrica Medium 50 3.358 13.25 0.5094 0.8044
Irish IE NEurope Small 46 3.14)7 18.43 0.5969 0.7421
Japanese Alt Pacific Large 26 5.045 9/78 0.6023  14%7
Kabiye NC SAfrica Medium 39 4.758 10.11 0.6928 0.7441
Korean Alt EAsia Medium 37 6.350 8.57 0.7838 0.8536
Malay Aus Pacific Large 24 6.16[7 9.75 0.6154 0.6485
Mandarin ST EAsia Large 48 4.385 9.60 0.6875 0.7p40
Mapudungun Other SAmericg  Small 28 4.800 8.33 0.4800 0.7644
Nara NS NAfrica Small 45 4.315 9.82 0.5463 0.6585
Nepali IE CAsia Medium 38 5.340 10.44 0.8085 0.7198
Persian IE WASsia Medium 35 5.308 10.11 0.7143 0.7220
Portuguese IE SEurope Large 445 3.878 12.25 0.6429 0.7747
Quichua Other SAmerica] Medium 26 6.589 8/18 0.7556 0.6037
Russian IE NEurope Large 48 4.825 10/78 0.7820 6172
Sahaptin Other NAmerica | Small 46 6.579 7.13 0.6140 0.7923
Sandawe Other | SAfrica Small 74 5.716 7.44 0.7612 0.6993
Seri Other NAmerica | Small 26 3.777 14.27 0.4459 0.5142
Shiwilu Amaz SAmerica| Small 25 7.750 7.71 0.6759 0.5322
Spanish IE SEurope Large 24 4.381 10.78 0.6186 0.7761
Tajik IE WASsia Medium 28 5.477 12.57 0.7159 0.6559
Tamil Other CAsia Medium 25 6.763 8.89 0.6750 0.5686
Tausug Aus Pacific Small 20 5.018 9.50 0.4825 ®601
Temne NC SAfrica Medium 37 3.568 11.36 0.5440 0.6302
Thai Other EAsia Medium 66 3.664 11.91 0.5649 0.6437
Trique OM NAmerica | Small 101 3.356 10.70 0.5794 08y
Turkish Alt WAsia Medium 30 6.631 7.22, 0.7538 0.8629
Vietnamese Other EAsia Medium 110 2.855 16.71 0.5298 0.7622
Yine Amaz SAmerica| Small 21 9.164 6.10 0.7049 06642
Zapotec OM NAmerica| Medium 36 3.759 9.67 0.6552 4008
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