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Abstract. In this paper we develop a theoretical model of global language complexity, based on a 
constrained optimization approach. We assume that language is a system that chooses different levels of 
complexity for its different domains (i.e., phonology, morphology, syntax, vocabulary) in order to mini-
mize a global complexity function subject to an expressivity constraint (which also depends on non-
linguistic variables related to geographic, phylogenetic and demographic factors). The model is illustrated 
with the aid of a dataset based on a short text translated into 50 languages, for which global complexity is 
measured using a version of Kolmogorov complexity. That dataset is used to run simultaneous-equation 
regressions, which represent different relationships between language complexity measures. 
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1. Introduction 

The literature about global language complexity is relatively vast and diverse. On one hand, there 
is a considerable amount of theoretical literature that has dealt with topics such as the definition 
of language complexity (e.g., Kusters 2003, Miestamo 2008, Culicover 2013) and its deter-
minants (e.g., McWhorther 2001, Balasubrahmanyan & Naranan 2002, Hawkins 2004, Trudgill 
2009). On the other hand, there is a good deal of empirical work that has either analyzed the 
relationship between complexity measures (e.g., Nettle 1995, Fenk-Oczlon & Fenk 2005, Shosted 
2006, Sinnemäki 2008) or the relationship between those measures and other (non-linguistic) 
variables (e.g., Hay & Bauer 2007, Atkinson 2011). 
 The theoretical literature has also developed models assuming that language is a system, 
and that its behavior is guided by a hidden process which tries to achieve some desired objective. 
Among the main contributions to that literature we can mention Beckner et al. (2009), which 
states that language is a complex adaptive system whose structures emerge from interrelated 
patterns of experience, social interactions and cognitive mechanisms. Another group of studies in 
a similar line are the ones related to the concept of “synergetic linguistics” (e.g., Köhler 2005), 
for which language is a self-organizing and self-regulating system whose properties come from 
the interaction of several constitutive, forming and control requirements. 
 Part of that theoretical literature has explored the possibility of explaining the behavior of 
the language system through an optimization model (e.g., Ke, Ogura & Wang 2003, Ferrer-i-
Cancho 2014, Futrell, Mahowald & Gibson 2015). However, we have not found any example 
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from that literature in which the model used is directly related to complexity minimization, and 
this is probably the main contribution of the current article. The model that we develop here is, 
nevertheless, well known in other social sciences such as economics (e.g., Chiang & Wainwright 
2005), where cost minimization is a standard approach. 
 The main challenge for using a model like this is probably the fact that global language 
complexity is a rather indefinable concept, and it is therefore very hard to measure. The 
theoretical literature that has sought to find results related to its determinants (e.g., Hawkins 
2004, Culicover 2013) has in general ended up with the conclusion that language complexity had 
better be studied using concepts that are applicable to specific situations (e.g., markedness, 
economy, efficiency). In the empirical literature, however, there is a measure derived from in-
formation theory that could represent the global complexity of a text. That measure is 
Kolmogorov complexity (Kolmogorov 1963), and it has been used by some authors in different 
linguistic settings (e.g., Juola 2008, Ehret & Szmrecsányi 2015). 
 Kolmogorov complexity can be defined as the length of the smallest algorithm required to 
generate a certain string of characters (Li & Vitányi 1997). Although in general it is formally 
incomputable, it can be approximated by the size of a compressed text file that comes from 
another (original) file. The ratio between the sizes of the two files, therefore, can be seen as an 
empirical measure of the global complexity of the text to which those files refer to, since the 
possibility of compressing the original file into a smaller one is directly linked to a series of 
characteristics (e.g., letter inventory, letter repetition, morpheme repetition, word repetition, 
clause length) that signal the complexity of the text. 
 In the following pages we will develop a model in which we assume that global language 
complexity is measurable (for example, by computing the Kolmogorov complexity of a repre-
sentative text) and that it depends on several partial complexity variables (which can also be 
measured). We will also assume that those partial complexity variables are somehow “chosen” by 
the language under analysis in order to minimize global complexity, but that they are also in-
fluenced by non-linguistic variables related to phylogenetic, geographic and demographic factors. 
Those factors can also be important to determine language “expressivity”, i.e., the capacity of a 
language to discriminate between possible alternative referents for a certain expression (Kirby et 
al. 2015). That expressivity will also depend on the different language domains involved in the 
production, transmission and decoding of linguistic messages (e.g., phonology, morphology, syn-
tax and vocabulary). 
 Our model will be illustrated with an example based on data from a short text for which 
we have translations to 50 different languages. With those translations we compute several 
complexity measures (including Kolmogorov complexity) and build a dataset in which those 
measures are seen as the variables of the empirical version of our model. As the languages belong 
to different families and regions, and are spoken by different numbers of people, we can make 
use of that diversity to build three additional (categorical) variables. With all that we proceed to 
estimate the parameters implicit in our theoretical model, using a statistical procedure of 
simultaneous-equation regressions known as “three-stage least squares” (Zellner & Theil 1962). 
 
 
2. Theoretical model 
 
Let us assume that we can measure the global complexity of a language by a numerical con-
tinuous variable “g”. Let us suppose, moreover, that the value of that variable is an increasing 
function “C” of several partial complexity variables related to different language domains (e.g., 
phonology, morphology, syntax, vocabulary). Let us now assume that those partial complexity 
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variables are themselves numerical and continuous, and can be associated to “g” in the following 
way: 
 g = C(p, m, s, v)        (1)  
 
where “p”, “m”, “s” and “v” may represent, for example, the phonological, morphological, 
syntactic and lexical complexity of language. 
 In a context like this, global complexity can be seen as a measure of the effort that 
speakers have to exert in order to use the language under analysis. Therefore, the smaller the 
value of “g”, the less costly a language is to be used by its speakers. But as language  has to 
express meanings associated to its different components (i.e., to its words, clauses, texts, etc.), 
then its partial complexity levels can also be positively associated to its expressivity (through a 
function “E”, which will be increasing in “p”, “m”, “s” and “v”). 
 Following the ideas that appear in the literature about language as a complex adaptive 
system, we can think of the process of language evolution and transmission as an attempt to 
choose optimal levels for “p”, “m”, “s” and “v”, which simultaneously minimize “C” and 
maximize “E”. But this trade-off between opposing objectives can be influenced by other vari-
ables, such as phylogenetic, geographic and demographic factors (“pg”, “gg”, “dg”). One 
possible way to introduce those factors is to suppose that they operate as a determinant of the 
level of expressivity that a language must possess, through a restriction “R” (which integrates 
them into a single function). If that is the case, we can think of an “expressivity constraint” that 
can be written in the following way: 
 
 R(pg, gg, dg) = E(p, m, s, v)       (2) . 
  
 If “R” is a constraint for the level of “E”, and its determinants are exogenous to the 
language system, then our problem of choosing the optimal levels of “p”, “m”, “s” and “v” is 
somehow simplified, since it can be converted into one where we minimize “g” subject to the 
constraint stated in (2). If “C” and “E” are both continuous and differentiable in “p”, “m”, “s” and 
“v”, that problem can be solved using a standard optimization technique known as the “Lagrange 
method”. This method implies writing a Lagrangean function “L”, which is defined as follows: 
 
 L = C(p, m, s, v) + λ·[R(pg, gg, dg) – E(p, m, s, v)]    (3)  
 
and then finding the values of “p”, “m”, “s” and “v” for which the corresponding partial 
derivatives of “L” are equal to zero. These equalities are the “first-order conditions” of the 
problem, and can be written as: 
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In both the Lagrangean function and in its first-order conditions there is an additional “artificial 
variable” (λ), which is known as the “Lagrange multiplier” of the problem’s constraint. This 
variable plays the role of converting the units in which the constraint is expressed (which in our 
case would be “expressivity units”) into the units in which the objective function is expressed 
(i.e., complexity units). Due to that conversion, the first-order conditions can be stated as 
equations that relate infinitesimal changes in complexity with infinitesimal changes in expres-
sivity, and establish optimal ratios between those changes. 
 Another role that the Lagrange multiplier plays is to include the fulfillment of the con-
straint as an additional first-order condition of the problem. This is due to the fact that, in order to 
minimize “C” subject to “R = E”, we also need that: 
 

 0)v,s,m,p(E)po,gg,pg(R
L =−=

∂
∂
λ

 → R(pg,gg,dg) = E(p,m,s,v) (8)  

 
and this last equation is included, together with equations (4) to (7), in a system whose solution is 
the one that determines the optimal values of “p”, “m”, “s” and “v” (and “λ”).1 
 One relatively straightforward way to solve this system of equations is to use (4), (5), (6) 
and (7) to find the optimal relationships between each pair of partial complexity variables. By 
doing that, it is possible to express any complexity variable as a function of any other complexity 
variable (e.g., “m = m(p)”, “s = s(p)”, “s = s(m)”, etc.). Making use of that possibility, we can 
replace those functions into (8), and write something like the following: 
 
 R(pg,gg,po) = E(p,m(p),s(p),v(p))   →  p = p(pg, gg, dg)   (9)  

 R(pg,gg,po) = E(p(m),m,s(m),v(m))   →  m = m(pg, gg, dg) (10)  

 R(pg,gg,po) = E(p(s),m(s),s,v(s))   →  s = s(pg, gg, dg) (11)  

 R(pg,gg,po) = E(p(v),m(v),s(v),v)   →  v = v(pg, gg, dg) (12) . 
  
What equations (9) to (12) give us is actually the solution to our optimization problem. Each 
partial complexity variable is expressed as a function of the different phylogenetic, geographic 
and demographic factors that influence the language system under analysis, and can be inserted 
into equation (1) in order to get the minimum level of global complexity which is compatible 
with the fulfillment of the constraint stated in equation (2). By doing that, we obtain the 
following: 
 
 g = C(p(pg,gg,dg), m(pg,gg,dg), s(pg,gg,dg), v(pg,gg,dg))   (13)  
 
which is an expression in which “g” is equated to a function that will ultimately depend on the 
actual levels of the non-linguistic variables. The whole process implied by this optimization 
model can therefore be represented by a graph like the one that appears in Figure 1. 
 As we can see, the idea behind this model is that the non-linguistic factors (i.e., phylo-
genetic, geographic and demographic), which influence the environment where language systems 
                                                 
1 For a more complete explanation of this procedure, see Sundaram (1996), chapter 5. 
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operate, have an effect on the way in which those systems choose the characteristics of their 
different domains (i.e., phonology, morphology, syntax and vocabulary). But as those charact-
eristics are determined simultaneously, then their implied levels of partial complexity are related 
to each other, and they all have an impact on the global complexity of the system. 
 
 

 

 

 

 

 

 

 
   Figure 1. Language complexity model 

 
 
3. Description of the data 

In order to apply the theoretical model described in the previous section to an empirical example, 
we will use the same dataset that was previously employed in Coloma (2015, 2016), whose 
source is a series of articles published in IPA (1999) and in the Journal of the International 
Phonetic Association. It consists of a sample of 50 languages for which we have a version of the 
same text (the fable known as “The North Wind and the Sun”), on which we define different 
phonological, morphological, syntactic and lexical measures of complexity.2 Those measures are 
the following: 
 Phonological inventory (INV): It is an index that consists of the sum of the number of 
consonant and vowel phonemes in each language, modified by the number of distinctive tones 
that such language possesses, and by the possible existence of distinctive levels of stress. This 
index is defined as: 
 
 INV = Consonants + Vowels*(Tones+Stress)  ; 
 
where Consonants, Vowels and Tones are numerical variables, and Stress is a binary variable that 
takes a value equal to one when stress is distinctive in a certain language (and zero otherwise). 
 Phoneme/word ratio (PWR): It is defined as the ratio between the total number of 
phonemes of “The North Wind and the Sun” text in each language, and the corresponding total 
number of words in that text. 
 Word/clause ratio (WCR): It is defined as the ratio between the total number of words of 
“The North Wind and the Sun” text in each language, and the corresponding total number of 
clauses in that text. 

                                                 
2 The list of languages and their complexity levels are reported in the appendix. 
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 Type/token ratio (TTR): It is defined as the ratio between the number of different words 
(types) of “The North Wind and the Sun” text in each language, and the total number of words 
(tokens) in that text. 
 To measure the global complexity of the texts under analysis we will use Kolmogorov 
complexity (KC). This will be defined as the ratio between the size of a compressed file (which 
contains the “The North Wind and the Sun” in a certain language) and the size of the original 
version of that file, both of them measured in bytes. Compression was made using the program 
“7zip”, version 4.32. 
 Another set of variables that we need for our empirical exercise is the one related to non-
linguistic factors. This consists of one geographic variable, one phylogenetic variable and one 
demographic variable, all of which are categorical. The values of the geographic variable re-
present 10 different regions of the world, and each of them encompasses between 4 and 6 
languages from our sample. The regions are North America, South America, Northern Europe, 
Southern Europe, Northern Africa, Southern Africa, West Asia, Central Asia, East Asia and the 
Pacific. 
 Additionally, the 50 languages in the sample belong to 24 different families, some of 
which are represented by more than one language. Those families are Indo-European (IE, 13 
languages), Afro-Asiatic (AA, 5 languages), Niger-Congo (NC, 4 languages), Sino-Tibetan (ST, 
3 languages), Altaic (Alt, 3 languages), Austronesian (Aus, 2 languages), Nilo-Saharan (NS, 2 
languages), Oto-Manguean (OM, 2 languages), plus two languages that can generically be 
referred to as “Amazonian” (Amaz). The remaining 14 languages are grouped into another 
category named “Other families”.3 
 The demographic variable, finally, divides languages into three categories: “large lan-
guages”, “medium languages” and “small languages” (according to the number of speakers that 
the different languages possess). The group of large languages is constituted by the following 12 
cases: Mandarin, English, Spanish, Hindi, Arabic, Portuguese, Russian, Japanese, Bengali, 
German, French and Malay. Correspondingly, the ones that belong to the category of “small 
languages” (less than 1 million speakers) are the following: Apache, Arrernte, Basque, 
Chickasaw, Dinka, Irish, Mapudungun, Nara, Sahaptin, Sandawe, Seri, Shiwilu, Tausug, Trique 
and Yine. The remaining 23 languages in the sample are considered to be “medium-sized”. 
 The main descriptive statistics of this database are summarized in Table 1, in which we 
find the average values of INV, PWR, WCR, TTR and KC for each group of languages. In that 
table we can see, for example, that East Asian and Oto-Manguean languages tend to be 
phonologically more complex, and that Amazonian languages tend to have higher phoneme/word 
ratios. The higher word/clause ratios, conversely, appear in Indo-European languages (especially 
in the Northern European ones), while the highest type/token ratios seem to occur in West Asia 
and in Sino-Tibetan languages. Finally, Kolmogorov complexity is higher in Southern Europe 
and East Asia, and in Sino-Tibetan and Altaic languages. 
 Another set of descriptive statistics that could be useful to analyze our complexity 
measures is the one formed by the correlation coefficients between the different variables. Those 
coefficients are reported in Table 2, in which we see that there are several partial complexity 
measures that display relatively significant negative correlation coefficients between themselves. 
The most important one is the coefficient between PWR and WCR (r = -0.7265), followed by the 
one between WCR and TTR (r = -0.5046), and by the one between INV and PWR (r = -0.3720). 
Conversely, Kolmogorov complexity exhibits relatively large positive correlation coefficients 

                                                 
3 To see which language belongs to each family, see the table included in the appendix. 
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with TTR and INV (“r = 0.3639” and “r = 0.2543”), and small negative correlation coefficients 
with PWR and WCR (“r = -0.1395” and “r = -0.1108”). 
 

Table 1 
Descriptive statistics for complexity variables 

Category / Variable INV PWR WCR TTR KC 
Northern Europe 44.20 3.964 12.53 0.6336 0.7203 
Southern Europe 33.60 4.086 11.93 0.6105 0.7490 
Northern Africa 42.75 4.787 11.04 0.6417 0.6978 
Southern Africa 49.00 4.469 10.98 0.6296 0.7002 
North America 49.83 5.115 9.22 0.5938 0.6851 
South America 25.00 7.076 7.58 0.6541 0.6357 
West Asia 33.50 5.854 9.18 0.7634 0.7417 
Central Asia 36.00 5.060 11.33 0.7067 0.6573 
East Asia 68.50 4.709 10.32 0.6865 0.7911 
Pacific 26.25 5.530 8.80 0.5838 0.6450 
Indo-European 38.38 4.259 12.28 0.6555 0.7134 
Afro-Asiatic 39.20 5.277 10.40 0.7164 0.6956 
Niger-Congo 43.00 4.298 11.15 0.6231 0.7231 
Sino-Tibetan 66.00 5.128 8.23 0.7469 0.8291 
Altaic 31.00 6.009 8.52 0.7132 0.8103 
Austronesian 22.00 5.592 9.63 0.5489 0.6252 
Nilo-Saharan 46.50 4.157 11.76 0.5469 0.6792 
Oto-Manguean 68.00 3.557 10.18 0.6173 0.7749 
Amazonian 23.00 8.457 6.91 0.6904 0.5874 
Other families 45.50 5.361 9.44 0.6302 0.6787 
Large languages 37.67 4.439 11.15 0.6507 0.7153 
Medium languages 44.48 5.048 10.30 0.6873 0.7315 
Small languages 42.60 5.438 9.65 0.5992 0.6661 
Average 42.28 5.019 10.31 0.6521 0.7080 

 

 
 

Table 2 
Correlation coefficients between complexity variables 

Complexity variable INV PWR WCR TTR KC 
Phonological inventory 1.0000     
Phoneme/word ratio -0.3720 1.0000    
Word/clause ratio 0.2136 -0.7265 1.0000   
Type/token ratio -0.0428 0.5581 -0.5046 1.0000  
Kolmogorov complexity 0.2543 -0.1395 -0.1108 0.3639 1.0000 
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4. Empirical estimation 

The dataset that we described in section 3 can be used to perform an estimation of the model 
developed in section 2. In order to do that, we first need to define which empirical variables will 
be used to approximate the theoretical variables of the model, and which functional forms can 
approximate the relationships that that model displays. 
 One obvious possibility is to use INV, PWR, WCR and TTR as proxies for “p”, “m”, “s” 
and “v”, respectively. An easy way to use them to write expressions for the functions “C” and 
“E” is to suppose that the first of those functions is linear, and that the second one is log-linear. 
This implies that both functions will depend on four variables and four parameters each, and they 
can be written as: 
 
 C = c1·INV + c2·PWR + c3·WCR + c4·TTR     (14) ; 

 E = a1·ln(INV) + a2·ln(PWR) + a3·ln(WCR) + a4·ln(TTR)   (15) ; 
 
where c1, c2, c3 and c4 are the parameters of the complexity function, and a1, a2, a3 and a4 are 
the parameters of the expressivity function. 
 In order to perform a statistical estimation of “C”, it is straightforward to assume that 
global complexity can be approximated by the value of KC. This implies that parameters c1, c2, 
c3 and c4 are going to be the results of a procedure in which KC is regressed as a linear function 
of INV, PWR, WCR and TTR. The estimation of “E”, conversely, is considerably more cum-
bersome, since we do not have any empirical variable that can easily be associated to a measure 
of expressivity. What we can do, instead, is to work with the first-order conditions of the theoret-
ical optimization problem described in section 2, and write them in the following way: 
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As those relationships imply equality signs, it is possible to write equations that relate complexity 
variables in pairs. Those pairs are the following: 
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The equations that appear in (17), (18), (19) and (20) can also be added and reduced to four 
regression equations, so we end up with a system like this: 
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Another set of equations from the theoretical model that can be empirically estimated is the one 
that corresponds to the system formed by (9), (10), (11) and (12). One simple way to do it is 
working with the three non-linguistic variables described in section 3, and regressing each partial 
complexity variable (INV, PWR, WCR and TTR) against those categorical variables. What we 
obtain is something like this: 
 
 INV = b1r + b1f + b1p ;  PWR = b2r + b2f + b2p   (25)  

 WCR = b3r + b3f + b3p ;  TTR = b4r + b4f + b4p   (26) 
 
where the different bij coefficients represent measures of the effect that each category (i.e., each 
region, family and population size group) has on our partial complexity variables. 
 If we estimate the system of equations represented in (25) and (26), using ordinary least 
squares,4 we obtain a set of coefficients that can be used to build “instrumental variables”. Those 
instrumental variables are created to replace the original partial complexity variables in a new set 
of regressions, and we will label them as IN̂V, PŴR, WĈR and TT̂R. They are formed by the 
fitted values of the regressions for equations (25)/(26), and their role is to represent the optimal 
values of INV, PWR, WCR and TTR in (21), (22), (23) and (24) (without including any 
endogenous elements that could make our estimation biased or inconsistent).5 
 The new set of regression equations can therefore be written in the following way: 
 

 KC = c1·IN̂V + c2·PŴR + c3·WĈR + c4·TT̂R    (27)  

 INV·3 = c5·PŴR + c6·WĈR + c7·TT̂R     (28)  

 PWR·3 = (1/c5)·IN̂V + (c6/c5)·WĈR + (c7/c5)·TT̂R    (29)  

 WCR·3 = (1/c6)·IN̂V + (c5/c6)·PŴR + (c7/c6)·TT̂R    (30)  

 TTR·3 = (1/c7)·IN̂V + (c5/c7)·PŴR + (c6/c7)·WĈR    (31)  

where “c5 = (a1·c2)/(a2·c1)”, “ c6 = (a1·c3)/(a3·c1)” and “c7 = (a1·c4)/(a4·c1)”. Their results are 
reported in Table 3, and were obtained using three-stage least squares. 
 

                                                 
4 This estimation was performed using the computing program EViews 3.1. The same software was used 
for the other regressions whose results are reported in this paper. 
5 For an explanation of the logic behind this procedure, see Kennedy (2008), chapter 10. 
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Table 3 
Three-stage least square regression results 

Parameter Coefficient Std. Error t-statistic Probability 
c1 0.001300 0.000799 1.628061 0.1048 
c2 0.026399 0.013069 2.019964 0.0445 
c3 0.025719 0.005237 4.911356 0.0000 
c4 0.392505 0.164358 2.388111 0.0177 
c5 9.087457 0.588355 15.445540 0.0000 
c6 4.342966 0.223163 19.461000 0.0000 
c7 68.872710 3.391096 20.309870 0.0000 

 

 With the values that we have found, we can directly compute the parameters of the com-
plexity function (c1, c2, c3 and c4). Using an indirect calculation, we can also compute values for 
the parameters of the expressivity function (a1, a2, a3 and a4). In particular, if we set those 
values so that they add up to one, we get the coefficients of equation (33), together with the 
complexity function written as equation (32). 
 
 C = 0.0013·INV + 0.026399·PWR + 0.025719·WCR + 0.392505·TTR  (32) 

 E = 0.0821·ln(INV) + 0.1836·ln(PWR) + 0.3742·ln(WCR) + 0.3601·ln(TTR) (33) . 
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Figure 2. Iso-expressivity and iso-complexity curves 

 
 Equations (32) and (33) can be represented in a diagram like the one that appears in 
Figure 2, in which we have drawn one particular case of “E” (the one that corresponds to the 
expressivity levels implied by the average values of INV, PWR, WCR and TTR) and three 
particular cases of “C” (then one in which that function equates the average level of KC, plus two 
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additional ones). As we can see, this diagram is depicted in the space of PWR vs. WCR, and in it 
we find that our iso-expressivity curve is tangent to the iso-complexity line for which C = 0.708 
(which is the average level of KC in our sample). This means that such level of global complexity 
is the minimum one that could be obtained if we require that a language has the expressivity 
implied by the average levels of INV, PWR, WCR and TTR. Moreover, in that tangency point we 
see that the values for PWR and WCR are the ones that correspond to the average values of those 
variables (i.e., PWR = 5.02 and WCR = 10.31). 
 If we make a small variation in our model, we can also use it to estimate partial 
correlation coefficients between the complexity variables. In order to do that, we have to write 
equations (28)/(31) in the following way: 
 
 INV·3 = c5·PŴR + c6·WĈR + c7·TT̂R     (34)  

 PWR·3 = c8·IN̂V + c6·c8·WĈR + c7·c8·TT̂R     (35)  

 WCR·3 = c9·IN̂V + c5·c9·PŴR + c7·c9·TT̂R     (36)  

 TTR·3 = c10·IN̂V + c5·c10·PŴR + c6·c10·WĈR    (37)  
 
where we assume that c8, c9 and c10 are not necessarily equal to 1/c5, 1/c6 and 1/c7. Let us now 
define the correlation coefficients between our variables using the following formula: 
 

 
9

cc
r yxxy

xy

⋅
−=         (38)  

 
where rxy is the partial correlation coefficient between variables x and y, cxy is the regression 
coefficient that corresponds to ŷ in the equation where the dependent variable is x·3, and cyx is the 
regression coefficient that corresponds to x̂ in the equation where the dependent variable is y·3.6 
 

Table 4 
Partial correlation coefficients between complexity variables 

Complexity variable INV PWR WCR TTR 
Phonological inventory 1.0000    
Phoneme/word ratio -0.2322 1.0000   
Word/clause ratio -0.3720 -0.2592 1.0000  
Type/token ratio -0.3947 -0.2750 -0.4406 1.0000 

 

 Using the results obtained in our new set of regressions, we used equation (38) to 
calculate the coefficients reported in Table 4. All of them turned out to be statistically significant 
at a 1% probability level, and the largest absolute value is the one that corresponds to the 
relationship between WCR and TTR. Note also that some variables that display positive product-
moment correlation coefficients in Table 2 (INV vs. WCR, and PWR vs. TTR) are now negatively 
related. This is consistent with the idea that partial complexity measures are linked through the 
interaction between functions “C” and “E”, and must therefore be negatively correlated in all 
cases. 

                                                 
6 For an explanation of the logic behind this formula, see Prokhorov (2002). 
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5. Concluding remarks 

The two points that we believe are more important in this paper are related to the use of the 
proposed optimization model, and to its implementation through the concept of Kolmogorov 
complexity. On one hand, we think that our model is an elegant theoretical approach to the 
general problem of language as a self-regulated system, and that it is also good to include the 
interaction that the elements from that system may have with external forces such as phylo-
genetic, geographic and demographic factors. 
 On the other hand, we see the concept of Kolmogorov complexity (and its approximation 
through the ratio between the sizes of a compressed file and an original text file) as a promising 
empirical approach to global language complexity. Due to the fact that it is a measure that can be 
applied to different texts, it can also be correlated to other (partial) complexity measures for those 
texts, which can in turn be seen as their internal determinants. 
 The logic behind our results is that the relationship between the different complexity 
measures can be interpreted as the outcome of a process in which the language system defines 
certain levels of partial complexity in order to minimize a global complexity function, subject to 
an expressivity constraint. Using particular functional forms for those relationships, we were able 
to illustrate them through various parameters that are estimated in a simultaneous-equation 
regression procedure. In that procedure, we also used information from non-linguistic variables 
that define each observation in our sample (i.e., the region and family to which each language 
belongs, and its size in terms of number of speakers). 
 However, the empirical illustration included in this paper is not intended to test the 
accuracy of the proposed model to fit actual data. Its purpose is to show how the theoretical 
variables of the model can be interpreted as observable variables, and how those observable 
variables can be used to figure out plausible “shapes” for the functions postulated in the 
theoretical model. Of course, the model could also be used, in a different setting, to be contrasted 
with another theoretical alternative that provides a different explanation for language complexity 
phenomena. 
 Another possible use of the optimization model developed in this paper has to do with 
testing different definitions for the global complexity variables (apart from Kolmogorov com-
plexity). It could also be possible to use the empirical version of the model to test different 
functional forms for the complexity and expressivity functions, since our linear and logarithmic 
versions of those functions are just one, relatively simple, alternative to write the relationships 
embedded in the theoretical model. That alternative can certainly be contrasted with other 
additional specifications. 
 Finally, the model could be applied in different contexts that were not necessarily cross-
linguistic. An alternative sample to the one used could consist of texts written in the same 
language, but belonging to different authors, or genres, or styles, or time periods that cover 
different stages in the evolution of language.  
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Appendix 
Dataset from “The North Wind and the Sun” 

 
Language Family Region Size INV PWR WCR TTR KC 
Amharic AA NAfrica Medium 41 6.958 11.88 0.7263 0.6239 
Apache Other NAmerica Small 57 4.907 7.87 0.6017 0.6167 
Arabic AA WAsia Large 35 5.741 9.44 0.7647 0.6962 
Arrernte Other Pacific Small 35 5.892 6.17 0.6351 0.6150 
Basque Other SEurope Small 33 4.831 11.86 0.6506 0.7690 
Bemba NC SAfrica Medium 46 5.506 9.88 0.7468 0.7138 
Bengali IE CAsia Large 36 4.371 10.50 0.7143 0.7154 
Berber AA NAfrica Medium 37 3.873 8.78 0.7468 0.8087 
Burmese ST EAsia Medium 70 7.143 6.00 0.9048 0.9195 
Cantonese ST EAsia Medium 85 3.857 9.10 0.6484 0.7739 
Chickasaw Other NAmerica Small 34 8.316 5.70 0.6667 0.6376 
Dinka NS NAfrica Small 48 4.000 13.70 0.5474 0.7030 
English IE NEurope Large 35 3.389 12.56 0.5575 0.6945 
French IE SEurope Large 33 3.176 12.00 0.5926 0.7205 
Georgian Other WAsia Medium 38 6.058 7.67 0.8116 0.7731 
German IE NEurope Large 53 4.147 10.90 0.6514 0.6972 
Greek IE SEurope Medium 28 4.165 12.78 0.5478 0.7046 
Hausa AA SAfrica Medium 48 3.904 13.83 0.5241 0.6094 
Hebrew AA WAsia Medium 35 5.910 8.09 0.8202 0.7400 
Hindi IE CAsia Large 45 3.766 15.50 0.6290 0.6252 
Hungarian Other NEurope Medium 39 4.310 10.00 0.6300 0.7418 
Igbo NC SAfrica Medium 50 3.358 13.25 0.5094 0.8044 
Irish IE NEurope Small 46 3.147 18.43 0.5969 0.7421 
Japanese Alt Pacific Large 26 5.045 9.78 0.6023 0.7145 
Kabiye NC SAfrica Medium 39 4.758 10.11 0.6923 0.7441 
Korean Alt EAsia Medium 37 6.350 8.57 0.7833 0.8536 
Malay Aus Pacific Large 24 6.167 9.75 0.6154 0.6485 
Mandarin ST EAsia Large 43 4.385 9.60 0.6875 0.7940 
Mapudungun Other SAmerica Small 28 4.800 8.33 0.4800 0.7644 
Nara NS NAfrica Small 45 4.315 9.82 0.5463 0.6555 
Nepali IE CAsia Medium 38 5.340 10.44 0.8085 0.7198 
Persian IE WAsia Medium 35 5.308 10.11 0.7143 0.7220 
Portuguese IE SEurope Large 45 3.878 12.25 0.6429 0.7747 
Quichua Other SAmerica Medium 26 6.589 8.18 0.7556 0.6037 
Russian IE NEurope Large 48 4.825 10.78 0.7320 0.7261 
Sahaptin Other NAmerica Small 46 6.579 7.13 0.6140 0.7923 
Sandawe Other SAfrica Small 74 5.716 7.44 0.7612 0.6993 
Seri Other NAmerica Small 26 3.777 14.27 0.4459 0.5142 
Shiwilu Amaz SAmerica Small 25 7.750 7.71 0.6759 0.5322 
Spanish IE SEurope Large 29 4.381 10.78 0.6186 0.7761 
Tajik IE WAsia Medium 28 5.477 12.57 0.7159 0.6559 
Tamil Other CAsia Medium 25 6.763 8.89 0.6750 0.5686 
Tausug Aus Pacific Small 20 5.018 9.50 0.4825 0.6019 
Temne NC SAfrica Medium 37 3.568 11.36 0.5440 0.6302 
Thai Other EAsia Medium 66 3.664 11.91 0.5649 0.6437 
Trique OM NAmerica Small 101 3.355 10.70 0.5794 0.7059 
Turkish Alt WAsia Medium 30 6.631 7.22 0.7538 0.8629 
Vietnamese Other EAsia Medium 110 2.855 16.71 0.5299 0.7622 
Yine Amaz SAmerica Small 21 9.164 6.10 0.7049 0.6426 
Zapotec OM NAmerica Medium 35 3.759 9.67 0.6552 0.8440 

 


