
CHAPTER 11: THE BLACK-SCHOLES ANALYSIS 
  

11.1 Lognormal Property of Stock Prices 

 A variable has a lognormal distribution if the natural logarithm of the variable is normally distributed. In Section 10.6 

we showed that if a stock price follows geometric Brownian motion, 
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From this equation we see that the variable ln S follows a generalized Wiener. The change in ln S between time t and T is 

normally distributed: 
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From the properties of a normal distribution it follows from this equation that 
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This shows that ln TS  is normally distributed so that 
TS  has a lognormal distribution. A variable that has a lognormal 

distribution can take any value between zero and infinity. Unlike the normal distribution, it is skewed so that the mean, median, 

and more are all different. From the last equation and the properties of the lognormal distribution, it can be shown that the 

expected value of 
TS , E(

TS ), is given by 

   T t

TE S Se
 

  

The variance can be shown to be given by 
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11.2 The Distribution of the Rate of Return 
 The lognormal property of stock prices can be used to provide information on the probability distribution of the 

continuously compounded rate of return earned on a stock between times t and T. Define the continuously compounded rate of 

return per annum realized between t and T as  . It follows that 
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Equation (11.1) implies that 
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What Is the Expected Rate of Return? 

 In Chapter 10,   was defined as the expected value of the rate of return in any short interval. How can this be 

different from expected value of the continuously compounded rate of return in a longer time interval? 

 We should expect that the expected rate of return in a very short period of time to be greater than the expected 

continuously compounded rate of return over a long period of time. The expected rate of return in an infinitesimally short periof 

of time is  . The expected continuously compounded rate of return is 2 2  . These arguments show that the term expected 

return in ambiguous. Unless otherwise stated, we will use it to refer to   throughout this book. 

 

11.3 Estimating Volatility from Historical Data 
 To estimate the volatility of a stock price empirically, the stock price is usually observed at fixed intervals of time. 

Define: 
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For i=1,2,…,n. 

 Since 
1

iu

i iS S e , 
iu  is the continuously compounded return (not annualized) in the ith interval. The usual estimate, s, 

of the standard deviation of the 
iu ’s is given by 
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From equation (11.1), the standard deviation of the 
iu ’s is   . The variable, s, is therefore an estimate of   . It follows 

that   itself can be estimated as s*, where 
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The standard error of this estimate can be show to be approximately * 2s n . 

 Choosing an appropriate value for n is not easy. Ceteris paribus, more data generally lead to more accuracy. However, 

  does change over time and data that are too old may not be relevant for predicting the future. A compromise that seems to 

work reasonable well is to use closing prices from daily data over the most recent 90 to 180 days. A rule of thumb that is often 

used is to set the time period over which the volatility is measured equal to the time period over which it is to be applied. 

 This analysis assumes that the stock pays no dividends, but it can be adapted to accommodate dividend-paying stocks. 

The return, 
iu , during a time interval that includes an ex-dividend day is given by 
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11.4 Concepts Underlying the Black-Scholes differential Equation 
 The Black-Scholes differential equation is an equation that must be satisfied by the price, f, of any derivative 

dependent on a non-dividend-paying stock. The Black-Scholes analysis is analogous to the no-arbitrage analysis we used in 

Chapter 9 to value options when stock price changes are binomial. The reason why a riskless portfolio can be set up is because 

the stock price and the option price are both affected by the same underlying source of uncertainty. When an appropriate 

portfolio of the stock and the option is set up, the gain or loss from the stock position always offsets the gain or loss from the 

option position so that the overall value of the portfolio at the end of the short period of time is known with certainty. 

 There is one important difference between the Black-Scholes analysis and our analysis using a binomial model in 

Chapter 9. In Black-Scholes the position that is set up is riskless for only a very short period of time. To remain riskless it must 

be adjusted or rebalanced frequently. It is nevertheless true that the return from the riskless portfolio in any very short period of 

time must be the risk-free interest rate. This is the key element in the Black-Scholes arguments and leads to their pricing 

formulas. 

 

Assumptions 
The assumptions we use to derive the Black-Scholes differential equation are as follows: 

1. The stock price follows the process developed in chapter 10 with   and   constant. 

2. The short selling of securities with full use of proceeds is permitted. 
3. There are no transaction costs or taxes. All securities are perfectly divisible. 
4. There are no dividends during the life of the derivative. 
5. There are no riskless arbitrage opportunities. 
6. Security trading is continuous. 
7. The risk-free rate of interest is constant and the same for all maturities. 

 

11.5 Derivation of the Black-Scholes Differential Equation 
 We assume that the stock price follows the next process: 
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The variable f must be some function of S and t. Hence 
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The discrete versions of these equations are 
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The appropriate portfolio is 
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Define   as the value of the portfolio. By definition 
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The change   in the value of the portfolio in time t  is given by 
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Substituting yields 
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Since this equation does not involve z , the portfolio   must be riskless during time t . It follows that 

 = r t  

Substituting from equations (11.12) and (11.14), this becomes 
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So that 
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Equation (11.15) is the Black-Scholes differential equation. The particular derivative that is obtained when the equation is 

solved depends on the boundary conditions that are used. These specify the values of the derivative at the boundaries of 

possible values of S and t. In the case of a European call option, the key boundary condition is 

 max ,0   when f S X t T    

In the case of a European put option, it is 
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11.6 Risk-Neutral Valuation 
 Risk-neutral valuation arises from one key property of the Black-Scholes differential equation (11.15). This property is 

that the equation does not involve any variables that are affected by the risk preferences of investors. The fact that the Black-

Scholes differential equation is independent of risk preferences enables an ingenious argument to be used. If risk preferences do 

not enter the equation, they cannot affect its solution. Any set of risk preferences can therefore be used when evaluating f. 

 In a world where investors are risk neutral, the expected return on all securities is the risk-free rate of interest. It is also 

true that the present value of any cash flow in a risk-neutral world can be obtained by discounting its expected value at the risk-

free rate. 

 It is important to realize that the risk-neutrality assumption is merely an artificial device for obtaining solutions to the 

Black-Scholes differential equation. The solutions that are obtained are valid in all worlds. When we move from a risk-neutral 

world to a risk-averse world, two things happen. The expected growth rate in the stock price changes and the discount rate that 

must be used for any payoffs from the derivative changes. It happens that these two effects offset each other exactly. 

 

11.7 Black-Scholes Pricing Formulas 
 The expected value of a European call option at maturity in a risk-neutral world is 

 max ,0TE S X    

Where E  denotes expected value in a risk-neutral world. From the risk-neutral valuation argument the European call option 

price, c, is the value of this discounted at the risk-free rate of interest, that is, 
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In a risk-neutral world, ln TS  has the probability distribution in equation (11.2) with   replaced by r; that is, 
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Evaluating the right-hand side of equation (11.20) is an application of integral calculus. The result is 

     1 2

r T t
c SN d Xe N d

 
      (11.22) 



Where 

    

    

2

1

2

2 1

ln 2

ln 2

S X r T t
d

T t

S X r T t
d d T t

T t










  




  
   



 

And N(x) is the cumulative probability distribution function for a variable that is normally distributed with a mean of zero and a 

standard deviation of 1. Equation (11.22) can be written  
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The expression  2N d  is the probability that the option will be exercised in a risk-neutral world so that X  2N d  is the strike 

price times the probability that the strike price will be paid. The expression    
1

r T t
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
 is the expected value of a variable 

that equals 
TS  if 

TS X  and zero otherwise in a risk-neutral world. 

 Since c = C, equation (11.22) also gives the value of an American call option on a non-dividend-paying stock. The 

value of a European put can be calculated in a manner similar to a European call. Alternatively, put-call parity can be used. The 

result is 
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Unfortunately, no exact analytic formula for the value of an American put option on a non-dividend-paying stock has been 

produced. Note that to derivate equations (11.22) and (11.23), it has been assumed that r is constant. 

 

11. 8 Cumulative Normal Distribution Function 

 A polynomial approximation can be used. One such approximation that can easily be obtained using a hand calculator 

is 
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This provides values for N(x) that are usually accurate to four decimal places and are always accurate to 0.00002. 

 For six-decimal-place accuracy, the following can be used: 
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11.10 Implied Volatilities 

 The one parameter in the Black-Scholes pricing formulas that cannot be observed directly is the volatility of the stock 

price. At this stage it is appropriate to mention an alternative approach that uses what is termed as implied volatility. This is the 

volatility implied by an option price observed in the market. 



 The implied volatility is the value of  , which when substituted into equation (11.22) gives the value of c. 

Unfortunately, it is not possible to invert equation (11.22) so that   is expressed as a function of S, X, r, T-t, and c. However, 

an iterative search procedure can be used to find the implied  . 

 Implied volatilities can be used to monitor the market’s opinion about the volatility of a particular stock. This does 

change over time. They can also be sued to estimate the price of one option from the price of another option. Very often, 

several implied volatilities are obtained simultaneously from different options on the same stock and a composite implied 

volatility for the stock is then calculated by taking a suitable weighted average of the individual implied volatilities. The 

amount of weight given to each implied volatility in this calculation should reflect the sensitivity of the option price to the 

volatility. 

 

11.11 The Causes of Volatility 

 Some analysts have claimed that the volatility of a stock price is caused solely by the random arrival of new 

information about the future returns from the stock. Others have claimed that volatility is caused largely by trading. An 

interesting question, therefore, is whether the volatility of an exchange-traded instrument is the same when the exchange is 

open as when it is closed. The results suggest that volatility is far larger when the exchange is open than when it is closed. 

Proponents of the view that volatility is caused only by new information might be tempted to argue that most new information 

on stocks arrives during trading days. The only reasonable conclusion seems to be that volatility is to some extend caused by 

trading itself. 

 What are the implications of all of this for the measurement of volatility and the Black-Scholes model? If daily data 

are used to measure volatility, the results suggest that days when the exchange is closed should be ignored. The volatility per 

annum can then be calculated from the volatility per trading day using the formula 

 

Volatility per annum = volatility per trading day number of trading days per annum  

The normal assumption in equity markets is that there are 252 trading days per year. 

 Although volatility appears to be a phenomenon that is related largely to trading days, interest is paid by the calendar 

day. This has led to suggestions about option valuation, having two time measures to make the calculations: 
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And that the Black-Scholes formulas should be adjusted to 
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In practice, this adjustment makes little difference except for very short life options. 

 

11.12 Dividends 

 We assume that the amount and timing of the dividends during the life of an option can be predicted with certainty. A 

dividend-paying stock can reasonably be expected to follow the stochastic process developed in Chapter 10 except when the 

stock goes ex-dividend. At this point the stock’s price goes down by an amount reflecting the dividend paid per share. For tax 

reasons, the stock price may go down by somewhat less than the cash amount of the dividend. To take account of this, the word 

dividend in this section should be interpreted as the reduction in the stock price on the ex-dividend date caused by the dividend. 

 

European Options 
 European options can be analyzed by assuming that the stock price is the sum of two components: a riskless 

component that corresponds to the known dividends during the life of the option and a risky component. The riskless 

component at any given time is the present value of all the dividends during the life of the option discounted from the ex-

dividend dates to the present at the risk-free rate. By the time the option matures, the dividends will have been paid and the 

riskless component will no longer exist. The Black-Scholes formula is therefore correct if S is put equal to the risky component 

of the stock price and   is the volatility of the process followed by the risky component (in theory this is not quite the same as 

the volatility of the stochastic process followed by the whole stock price. The volatility of the risky component is approximately 

equal to the volatility of the whole stock price multiplied by S/(S-V), where V is the present value of the dividends. In practice, 

the two are often assumed to be the same). Operationally, this means that the Black-Scholes formula can be used provided that 

the stock price is reduced by the present value of all dividends during the life of the option, the discounting being done from the 

ex-dividend dates at the risk-free rate. 

 

 



American Options 
 When there are dividends, it is optimal to exercise only at a time immediately before the stock goes ex-dividend. We 

assume that n ex-dividend dates are anticipated and that 
1 2, ,..., nt t t  are moments in time immediately prior to the stock going 

ex-dividend with 
1 2 ... nt t t   . The dividends corresponding to these times will be denoted by 

1 2, ,..., nD D D , respectively. 

 If the option is exercised at time 
nt , the investor receives  nS t X . If the option is not exercised, the stock price 

drops to  n nS t D . The value of the option is then greater than 
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For any reasonable assumption about the stochastic process followed by the stock price, it can be shown that it is always 

optimal to exercise at time 
nt  for a sufficiently high value of  nS t . 

 Consider next time 
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. If the option is exercised at this time, the investor receives  1nS t X  . If the option is not 

exercised, a lower bound to the option price at that time is    1
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It is not optimal to exercise at time 
1nt 

. Similarly, for any i < n, if 

  11 i ir t t

iD X e  
      (11.26) 

It is not optima to exercise at time 
it . 

 The inequality in (11.26) is approximately equivalent to 
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We can conclude from this analysis that in most circumstances, the only time that needs to be considered for the early exercise 

of an American call is the final ex-dividend date, 
nt .  

 

Black’s Approximation 

 Black suggests an approximate procedure for taking account of early exercise. This involves calculating, as described 

earlier in this section, the prices of European options that matures at time T and 
nt , and the setting the American price equal to 

the greater of the two.  

 Up to now, our discussion has centered around American call options. The results for American put options are less 

clear cut. Dividends make it less likely that an American put option will be exercised early. It can be shown that it is never 

worth exercising an American put for a period immediately prior to an ex-dividend date. Indeed, if 
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An argument analogous to that just given shows that the put option should never be exercised early.  

 


